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"ABSTRACT
The sphttmg of 8 contmuous vector functmn into a gradient plus a curl
is poss;ble in an infi.nite number of ways The pres'ent paper is basically
f'\ caneerued with two par’ticular uniquely determined sphttings called electrlc
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am ed, and the application of these expansions to the calculation of the

A various tarms of thé eplitting is cons1dered
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| e L INTRODUCTION
A certam mxmher of papersl 2,3 have recently been pubhshed on the
" poaaibility of representiag a solenoxdal vector by the curl of a vector potential
in multipiy-bounded anl multiply-connected regions, and on the related problem
_of fmdmg a complete set of exgenvectors for such regmns. The present work

‘4 :_endeavors to examine these problems in the light of ‘Helmholtz's theorem

. L e. of the splitting at 2 vector into a curl and a gradient It culmmates in a

Table whxch not mthstandmg its seemmgly trwzal character, is thought to be
ofpotentml interest vto »ph_ysmzsts. The mathematmal-background to the present
study was provzded by Weyl shortly after the turn of the century

_ Let a be a piecemse continuous v@ctor functmn | It 15_ sought to investi~

tgate #hether, and how,. a can be split into

L oo

o ‘ (4» « (rr ’ , Lok awx.{, s;: o B a )
" L m a fimte régular regxon V. , Which can be .eit:hf.;’r simply-bounded and sizppl}r—
| connected -as.m Flg.-_ la, sunply-coﬁneeted and‘multiply-bdurided as in Fig. -lb
= .f:(and for the sake of clamty doubly-bounded regions only will be cons1dered) or
:lsimply-bounded and mult;ply-connected as in Fxg lc. There again dpubly-

connected regions, cf the type encountered in toroidal particle accelerators,

l'T " Teichmann énde P, Wi.gner v "Electromagnetic Field.Expansion in LOSs-

Free Cavmes Excited Through Holes. " J. Appl Phys. 24 262-267, 1953,

.‘ ZA F Stevenson “Note on the Existence and Determination of a Vector Potent1a1 "

-3K ~Kurokawa "The Expansaons of Electromagnetzc Fields in Cav1t1es

IRE Trans ’Vol MTTvG 178-187'
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will be examined at the exclusion of more complicated structures. General-

izations are obvious. The‘gradient and curl terms of the splitting will be

_.cé.‘l‘-l‘ed "longitudinal" and "transverse" terms re‘ppectively',

v "First ‘of a_iL it is appareht that the problem can be solved in at least

Eo,ne way, f‘o_r the equation

,'VK’:WMw--MW;:w - | (@)

admits at least one solution in the regions considered above. - As a matter of

~fact, it admits an infinity of sol_ut_ioris_, and one suspects right away that the
splitting must be possible in an infinite number of fashions. This is confirmed
by the remark thﬁt vectors do exist which can be written either as a gradient

- .Qr,}a éur-l. Add_itiOnf_of such a vector to the longitudinal term, and subtraction .

from the transverse .term,f yields a new splitting. It will consequently be ‘

 possible to impose certain conditions on {2 or W (for example that W be

perpendicular to the bou’ndary surface) to restrict the generality of the splitting,

‘ and make it unambiguous. ‘The "electric, " "magnetic, " and "mixed" splittings,

‘to be discussed hereafter, result from well-chosen additional conditions and

A 3
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are of particular r‘inter‘est‘ for solenoidal and irrotationavl've’c’:tér.s. Their use
is fruitful in the analysis of electromagnetic fields in finite regions. Other
splittings, 4 pot to be consideréd here, are of intefést for other branches of
physics. | | |

II. THE ELECTRIC SPLITTING

A. Preliminary Cor};ls:idevra,tions on Irrotational Vectors ( i A O ).
An application of Stoke's theorem sho_v}s that',ih Regions I and I,

( ” a ‘3“ ‘ is :i'mvi‘ependent of the path joining AtoB pxjovided this path
is entirely contained in the region throughout which a is irrot#tior_xal. If is
consequently posslble to express a as grad __\’2 , Where ,,(’Z, is defined by
the relation _Q .i/) () “+ f A A4 . Things are somewhat

~ different in Region III The contour mtegrai of a still vamshes along a

~curve such as AC B D', that does not "encirt_:le" the hole (i. e. that can be
reduced toa poinf without leaving Region III),. ut takes, in general,a hon-zero :
value T for a contour s%;ch as A C B D' that encircies the hole once. This
value T, éalled the period, is iridependent. of the éncir.cling contour. There
now exists a multi\}alugd function L1 such that. A - ¢ocd 2 . The values

of this function at any given point differ by an integral number of times T.

B. Existence and Uniqueness.

The electric splitting is generated by the solution of the problem
V ,{ = ?q.c\,‘\.i v 7,( TR P | {: a  unte /w “}é o § (3)
v ’ —-‘ J -t Fvr

4H Weyl. 'Das Asymptotische Verteilungsgesetz der Eigenschwingungen Eines
~ Beliebig Gestalteten Elastischen Korpers "' Rendic. Circ. Mat. Palermo, 38,
1-50. 1915 4
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- where (% ‘"is"'-'t'he" unis: Vector directed along the outside normai to.S. The
A

gueneaa of the solutzon should be mvesugated first. If there were two

-Jv

d;fferent aolutiona { » a.nd Ifz their dlfferenee ‘1‘{ would aatisfy \/

Apphcatxon of the formula

ff([" gie m *;;__ia;.g:; +,,,;\.{.f;:.w.:‘v’q]d Ve //{ &) dl +(7 x;m_:;e'»i‘:).‘;‘cg\']}%é @
| to v w f ‘ showo that abw ?; awl F _0 throughout the regxon.
Such a vector wxll be called "source-free " It can be represented as. grad ‘F’
: where (r : 13 a harmomc functmn whmh because of the perpend:culanty of
| : T’ R to S, takes a constant value along eaoh of the closed surfaces of wh;ch
,.\ the-'boundary consists ‘In. sunply»connected regmns, ¢ is obv;m;»s;y 51“-8,19'”
T valued In Region III { s 'single-valued too, becau'se the period T i:s -
| »equal- ;o zero. _ This is easxly shown by particulanzmg the contour over which
: f :’ﬁ . e o xe,'eva,._ltgated"to lie on the surface S, where ? is perpen‘d_icula:_'- -
to Al . It is now:i;ogsi}ole -,t_o show that 7 ‘mustrbe zero in Regions I and I, R

: by,tppflyinz the_ relatlm

(ff [ﬁV 8+Wdﬁ ,W*e]av jfﬁ 33 ds R
valid for single-valued functions, to A B ‘f ‘/’ ’ where ?g is the constant

value which 4}’ takes on the boundary surface In Region I however, there are

U e

_non-zero solutions for f{ , all mulnplea of each other, and derived from

potentials f wluch take different constant values on 5; and Sz  Let

—

{ 4 nex i a{ be the normahzed" solution, determmed by the conditmn ‘




o m-m |

l’f f ' “/ 'rhc fouowtnz atatemeatcan nowbemade., {
exilta, it il \miqae, excopt in Ragion II where it is determmed with the excop-
tion of a mulﬁpla d ; ln the latter region, the wious determimtiom
lead to Mieal 1«!:%\36&@#1 and tranaverse tcrm. _because M \f
B ”m w,\t «{ Qne comludgs that there is at moat one. wsy to :plit
& vcctor ’shctru:&lly | R o

For a prooﬁ of the exmtence of a solution, one has to turn to a paper

by wcyl 5. whare tbc axtstence of a Grem’l dyadic 3 ( 2, x ) " luﬁh thlt

i ";is uto,hlmmd tor » limply-boundcd regiou 'I‘his relation impliel that the

. _ ;Lwlaeml e! tm ucond mcmber, taken with reapect to the 4- caordmttea. o :

L repreducn d { IL) In tm’m worda, the solution of (6). conaidcrcd as an -

-~,:intc¢rgl cqmticn m 3' with gwen aecond mcmhar '{ g : a = V2 /

.provided { does mt h;ve any tangent;al component on S. and poasesses a

B piecemie continuws Laplac:.au. In pax'ticular. the homogeneoua integral

" eqmttm dnivcd from (6) by utting the aocond memher f equal to zero, o
| m '5 = o u m oniy aohstiﬁn. 'rhis important property wiu be used later in
. tm argument, S ' o :

ln thc course o! provmg the exiltcnce of ? Weyl establishes the

o _]following properties et the dyadic, :

(t)itinsymmutrwtl ie. S (%, «'z') ? [,zf xr)

= Weyl ’cht dic Randwertaufgabe der sczramngsmeom und Alymptotiache
Spektralzcutze‘. " Jaurn Reme A.nzew Math 143 177-202 1913
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.»'orthogonal to each other,ﬁz
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- (b) it beksv-'es. for rs —>'2' | in such a manner that
Ll 5B ”“*,”‘*
R }/z./z[ P
When the regiou-is multiply-beunded no uniQue sciution_ Z ‘exists a’nd‘,

onuequently, uo Green 8 dya.dm in the sense of Eq (6) There is a way ou't

' of thia difficulty, however, if one deczdes to split ‘{ . aud a into two com-

(-{OHM S
et s

R

.‘;-All the poasible solutions / have~the same "core" part ;- which 13, ': -
' conaequenﬂy, umqu:ly determmed The two parts of the splitting can be

: '.thaught of as the functional projections of ‘? (and a ) on { and nn the aub- _‘

a—

o space i ‘ orthogongi to “f reupectively. Notice that both projections are |

in the sense that [/j ;! f

The problem

B “can be proved to have a unique solutmn, ‘which Weyl shows to. be obtamable in

the form

where a ‘ 1

18 an. electric Green s dyadm in the extended sense Thié dyadic -

; '.‘(7_')\' g S
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s

= has the same symmetry property, and the same behavior for 4>l as the

usual Green's- dyad:c» 5 ‘ It now appeara that the eleetric Sphtting is always
Ye v |

ponible in the form o

ZZ 7{{'{M +§Mw(*a~4m6{ ST i _(9)‘

) | —

‘. wkeré the'termin <f k ex;sts in Begion II only, and where the three parts of

o the sphtting are uniquely determmed The name ”longitudinal" will henceforth

be reserved for the lacond term grad d,w {

c. Further Pr@crnes Applmatmn to_ Solenmdal and Irrotatxonal Vectors

1. The longitudmal term can be obtamed by solvmc a potential problem

T&king the dxvergence of both terms of: (9) yields, indeed

\7(4“;-{) d/v/a | 'thf\ a(,.,q{-—o a\,.

| B '.Tha longitudiml term turns out to be the electrxc fxeld created in region V

bya charge density E a{w a the walls being metallized and grounded

2. The three terms of the splitting are functionally orthogonal to each

dther » 'rhe orthogonahty of %o and gra.d Auy / can be. established by

iapplymg the equatmn o

jj (1 grod g AV = [ ¢ @ B)As [ G T av 10)
'_toi '{6,,%* f‘w'\f S
The orthogouality of 7[ and grad a'wz to =~ curl cuﬂz ix"esultsff:rom
applymg SERETEE | |
| Q/Z R AV [ & .4 - {‘)A -,-[jj a. aufé AV a1y

v 4

pi éewue c

itinuous ,ﬁrs@ dgrivgtive.s. :
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tod =~ curl'f and&»@ / and grad ab»{ m succession,
| 3. When' a is aoleno:.dal i.e. dn/ a:o0 ., the longitudmal term vamahes
and the. Splittmg takes the form ' o | |
f /d {; ”’J N N ! L S . (12)
The solenoidal vector a cannot in general, be derived from a vectm' potent1a1
ina muluply-bounded region of Type II. To Justlfy tlus assertxon, consider
f1rst the fact that f _cannot be derlved from a vector potentlal lf indeed ;
| were: equal to curl M— , an application of the formula |
| )f [Cu.«('a ot k- & aufwll_]dv ﬂ UL (a * cm{)dS o (13)
~ o R S
to 4 = »@: M w0uld yleld fff fw ﬁ. -0 i.e. { equal
: - ' Vo .
to zero, an obvmus contradmtion Clearly then; der:.ves from a vector
potent1a1 1f and only 1f its funcuonal pro;ectmn on z is zero,> ie.
{{ A, ( P V V_amshes. But this implies that |
,[,:( ’ V= [j ’} X (fo‘ adV = [} ‘%C ( o ‘l':v« )&Ig - “} (f‘) doia ¢! \/ , (14)
v . L o S+ v ‘ - '
o (1x = o S
- ,f)o'l {S(a ',um)d'g' * 1o S]S(a uTv\ )dgl =0
S )
where Cf and (/) are the two (unequal) values of ?; on 51 and Sz On
o
the other hand an apphcat:ton of Gauss' theorem to the solenoidal vector a
yields .

2
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A comparisoﬁ :)f Eqs. (14) and (15) shov@that a solenoidal vector in a doubly-

led reg:.on derlvea fram a vector potential if, and anly if, its flux through

ach of the two boundary surfaces is equal to zero, This result has prevmusly

been obtained by Stevenson by somewhat different methods.

4. When a is irrotatmnal and possesses a tangenual component albng
S; all terms of the electric sphttmg are present. Both f and the longitudinal
part bemg perpendicular to S, 1t is the tra,naverse term whlch will be responsible
for the tangential component. The ma;n function of the t,ransve_rse term is, so
.to*speak,' to account for that compon‘eg%,, because - curl cﬁrl Z‘ vaﬁsbes when

Sy

7 is perp.endic'ul’af to | S. This can'ba ﬁr;‘ovte,d'by applying (13)to & =4« C».A\,..\{’_{

/{/[w(cuif]d\/ ﬁ/&mf Mamlmnffd\/ ﬂu, [wé[xwtwe(]ds»i

'The second member vanishes because curl curl curl '{ = - curl a, is equal

" to zero, by hypothesis and because curl curl “/ 18 perpendlcular to S. Thxs

unphes the vamshmg of the first member, and of curl curl 7 in consequence,
The irrotationa_lv character of a allows re_prese'nt_ation of thatvvec‘tor as

) the gradient of a s_caiar potential. A look at ‘Eq. (9)  ghows_ that the traﬁgvgrse

term cé.n, cons_eéuently, ‘also be derived from a'écala.r potentié.l' an&; fur:ther-

more, one that is harmonic throuéhoﬁt V. A consec}uence of this facf

_ whlch rests on properties to be enunc:ated later, is that the transverse term

| cannot be purely tangentml in a s:.mply-connected region. It then contnbutes

| part of the normal component d! 2 at the surface, the other part bemg furniahed

by the f | and longitudiial terms
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5. The electric splitting can be put in the form

a-_-{ H {AV “;ww«m{ w o o (16

where (f vanishes on the boundary.. Cotwers.ely, if a splitting such as (16) |
has been achieved, it must be the electric splitting. Taking,the diirergenqe~ of

PARY ——— .
both terms shows, indeed, that V ‘f{ T Aand A . This equation, together with

~natn

the condition for ’ﬁ ~at the boundary, is also satisfied by Ao -#' . The
solution of this potential problem being unique, # must be Ay { , and the

splitting (16) is unique. Notice that ‘W |8 a tangential vector, being the curl .

i
o
»

¥

of , a vector perpendicular to the boundary.

D. Eigenvector Expansions Suitable- for the Electric.Splittigg_;

In the search for a complete set of eigénvectors, some fundamental
properties of intégral operators will first be reviewed; 6 Let G ('I',I ') be a
symmetrical kernel (i, e. such that &(x, x ) G (5 %) ), and let G be square

integrable in the plane domain & < > ¢ £ N < £ . Then there.

exists a sequence of orthogonal eigenfunctions - '~f f‘ x) , and corresponding

Y

non-zero eigenvalues A ., such that

: j

B
/ a
g ( )L 1 '{\ «'n- L //\» (( (!-',\( ) -
“ W ™o

where the (f belong to the space of square integrable functions. Any square -
Fon

integrable funCtiOh Q}/ b ((,(/j) admits the expansion
LV(*\)= Z Cfo("‘) I ¢ (xi) L("’[Dc')d/x’ -+ 9.(7;&”)
M e a W '

OF. Riesz et B. S. TLecons d' Analyse Fonctlonnelle " 3d Ed1t10n
p. 239. Gauthler-Vlllara, ParJ.s 1955; .
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‘where the convergence is in the mean, and the rest term €7~ 1is a solution of

- (’* (xx) @ d

f | - When the latter integral equation admits zero as its only solution, no rest

term is necessary, and the set of the f is complete.
' EL

q’.8

The same sort.of expansion tﬁeor,em can be establishe in three-

d1mens1ona1 Space, where the elements & and ‘f’/ are replacéd by sqﬁare
1ntegrable three-dimensmnal vectors, and & faon)ois replaced by a symmetric

I ks

dyadic ~f (i.e. such that 3 I t {0, . ) . having the
¢ ; JV .

. 'I . . )
_ property that [/; {' { ., ; J \ ~‘;“ﬂ AV is a finite and continuous

h - function of 7 whenever 2 is continuous. The two dyadics :7 and ! have

N 1
. gt “

sufficiently mild discontinuities at 7 =7 - to satisfy these requirements. Con-

! sequently, in Regmns Iand I11, the elgenvectors F of

e

———

[ G, Ay */& F (%)= Cam
R S o

¥

form a complete sét; . The homogéneous integral equation (6) has indeed been

o~

shown to have zero as its only solution. It will be noticed, by taking the

| Laplacian of both sides, that

L — . I

. r"' . Y - e -
P S B . \\1/ ,- (/./, N
N : o i ;

o R e Iy

On the othezf hand, the nature of Cg is such that the vector represented by

——

the integral in (17) satisfies W <t = Fos on S. The / are

1c. E. Weatherburn "Vector Integral Equations of the First Kind. " Qﬁart J.
Pure Appl. Math, 46, 334-356, 1915.

C. E. Weatherburn. "Vector Integral Equatlons and Gibbs' Dyadics. " Trans.
Cambr. Philos. Soc Vol I, 133~ 158 1916,
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consequentlyv aiso the eigenvectors of the dxfferentlal cperator V‘z cofrespond-
| mg to these boundary condltlons the exgenvalues bemg now ’A = ..i...

v It is shown m Appendlx Ithat these elgenvectors fall into two categg;les

| (a) solenoidal gigegnvector's' _ ef,,\ , ‘solutmx}s of -

—cw( (,M,Q 2 D Rx€ =0 8 (18)
, o™ T e : no ™

(b) irrotational eigenvectors #f = '?e\ aud (f , obtained from the eigen—'

functions (f ~of
e

"VIC/ +) ¢ = . -9

These 'eigenvecto'rs' are _all'orthbeonél tb each other, and it will be assumed

that they have been normahzed

In Region II su'nilarly, the elgenvectors F 3 (h, by ) A vl
rform a complete set w1th respect to the subspace of vectors that are orthogonal
to | ﬁ | Thls restnctmn is made necessary by the fact that

/ (j€ [f; 1.> Z/’c ) dv' . is equal to Q (1} . In conse‘qﬁence,'
»}1fthe integral (” C\ NCNS (X(z Mv vanishes for all 7 T . we can
'conclude that the vc\:ore part 5(0 of a vanlshes but not that & 1tse1f is equal

'to zero. In fact any multlple of { is a solution of the homogeneous integral

equatmn It then follows that the "core ‘part of any square integrable vector

———-

can be expanded in the F . In formula:

e

—

Z{E’r-/ ﬁ(}) I[/s}d/ #ZF/Q)//}F/ / a(" )'”/ (20)
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I is found by arguments sumlar to thoee used for % , that the % belong

‘ to the subspace of vectors orthogonal to { 4' » and that they ‘arevthe eigen-
vectore of V belongmg to elgenvalues different from zero. It is a simple
matter, mdeed , to e,s_t;ablish the .orthogenahty of ‘the latter e‘;genveetors to g

byfapplying the fermu’la

m[“ v‘:& ,6 V&]Av,lg )M‘—{ék)d/ﬂ)a +(u.xa)w<i {uxl) ava’ﬁ_]ﬂtﬁ (21)

e

te o a ={ 6 F ’ “ . Itis apparent from (20), by the way, that .‘r/ can

0

‘be mcluded in the set of eigenvectors ‘to make it complete wzth reepect to the

‘ space of square mtegrable vectors. . The F ’ ~can also be subdivided into

(

categorles (18) and (19) already introduced for sunply-bounded regmns. It is

' nOw possible to expand each term of the electnc spl.itting (1 6) in *the 5/ the

6 and I . The coefﬁments of the expansmn can be fmmd hgr repeated
Pen L

use of formulas (10), (11), .and (1 3), The resulting formula, ofigreat 1mportahce-

for practmal apphcations 1s

alt)- l[ i, & (f! (NM'VW] "’Z% [ ‘fd»/id\/] Z »«U]jaki,ws’e.av (22).1

i Vb /

—. B v f o N ——

-']}m xa )Me AQ]

.-—-QA,— £ Lot
- All the results rela’tive to" solenoidal and irroational vectors can be obtained
directly from this formula | SR R ) |
A short adcht;onal remark will be of 1nterest here Forn;uia (22) shows

that, in a reglon of Type L a sourceless vector is expanda‘ble m the solenoidal

* This formula is valid enly when the first order parnal dermatlves of @ are

| sufficxently regular for Gauss' and Stokes' theoreme to be a?plmable
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'vec»tors Z -. but does not ha've any funetiona;'l ',pr'oj'eetion,»on the '){ {7},&.\:{ (/
T
On the other hand a sourceless vector can certamly be represented as the

‘grad1ent of a scalar potent1a1 ¢ . The latter can be expanded in the complete

" set ? s and one obtaxns a representatmn of a as grad [ 4 V L C 5/1-.-._].

Here then is an 1nterest1ng example of a s1tuatlon where the gradlent of a sum

.is, »not the sum of .th’e‘gradlen,ts, i.e. a is not ¢ W %_, a4l ’7”’"“1 y

throughout the reg1on, a fact whxch is due to the non-continuous character of

differential o.perator-s, and wh;ch parallels the well-known property that a .
. Fourier series cannot, in general,‘ be d’ifferentiated term by term, To convince
himself of the validity of .thes_e 'statenients,,, the reader might want to direct,h’i,s‘r |

attention to Ap’pendix II, where a particular sourceless vector is expanded in

““terms of the e , and where it is checked that the series ., indeed, converges to -

e , : _
- the original vector. The conver‘gé;ilce.,is in the mean; implying' that the series S

converges everywhere but in a set df zero measure, whmh in this case is made ’
Tt ‘

out of the boundary pomts. Not1ce zmdeed that all e, ' -, and consequently the1r, f

sum, are perpendmular to the boundary, wh11e the or1g1na1 vector is not. As a
; result the expanszon converges "uniformly" to the normal component of a, but .
the cOnvergence to the tangen_tial component‘ presents a.Gibtgs_ phenomenon, es_.‘
suggested by Fig‘. 2, and of a nature similar to_the bett’er i&;ﬁwn-(}ibbs phenom-

enon assoclated w1th the convergence of the series Z a ‘“,\ )( around \( =

2 " "
VA ahadtalls ! .
R’.\/ ¢ PO . . :
A S ‘i ] }\'\ A ‘L ‘r, P &
—— — - — — W

Wb,."‘\ Mew
: 9%

"}t‘v..!:}»"\v«fg« M

Figure' 2
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I, THE MAGNETIC SPLITTING

A. Existence and Uniqueness.

The magnet;c_.l.s:plittiing' is geﬁér-‘at'ed" by the solution of the problem

]

: “‘~ - ;‘ » -’;zx ‘
Vlﬁ, %I’x ‘A {,.\,\,‘.gf M £ = Cpndd DLM , ? mﬁs ) ) -(23)

—-—
- "
{ X A | “ﬁ— %

s

The mvestlgatmn of the solution of this problem proceeds along lines which

parallel those u’sed for the electric splitting. The uniqueness is proved by

——

S , ' ' 20
. examining tke solutions of the homogeneous problem v} R =0 . An

- applicatibri of (4) shows these solutions to be sourceless vectors. They can
'. cbnsequently be put in the form - ol yd , with ' harmonic, and

_ ;f ’  tangent to S (i.e. 254 -'¢ on S). An application of {5) shows that no
such vector can exist in Regions I and II. This implies that the only solution

to V'f-0 is £z or, in other words, that an eventual solution of (23)
must be unique. In Region I, h-_owever, there is an infinite number of non-
Zero solutions (f/ , all multifpl'es' of each other. In a region bounded by a sur-

ace of revolutlon fer mstance Lf/ is a multiple of B -r constant ‘and { !

is a multiple of ___Q_ Let

L -

7 :
SR 4 L/; be the normalized
- solution. The following statement can

—

now be made: if { exists, 1it'is unique}

~except in Region III where it is deter-

mined with the exception of a multiple

a—

of {; . In the latter region, the various

determinations lead to identical longitu-

Figure 3 dinal and transverse terms. Notice
L 16 . -
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—

that 7‘3 wh1ch denves from a multwalued scalar potentml V/ , can also

be deri\"red from a .ve,ctor potent1a.v1 An appllcatlon of the e1ectr1c splittmg to

| K | shows, -indeed,'that there is_-a‘Vector { ) such that ‘/i R AN CW((
R : |

——

where .‘ is perpendicular to S. In consequence K is the curl of a _

~ vector tangent to © .

The ex1stence of a solutlon follows agam, from results obtained by

Weyl 45,9 who mchcates that ina sunply-connected reglon, a dyadic

/L(o.) //j ﬁ (X,70].2 (4 v) A‘/ | : : », (24)"

Th1s dyadic has tho symmetry property, and the behavior for 7 -9 /t' s

'wh1ch were assoc:ated mth 1ts electrxc counterpart Also,' the homogeneous

mtegral equatlon possesses a 0 as its only solutmn In a doubly-connected

region, a magnetlc Green's dyadlc in the extended sense can be 1ntroduced

‘where, ﬂc in_dic_"ates the “core' part of a vector, obtsine_d' by subtracting

T —— v

- from the vector its functional pro'jection on é . The 'dyadic jﬁ has -

properties.similar‘to those of g N ¢+ is now possible to state that: ''the

magnetlc sphttmg is always pos51b1e in the form

f[/ Aav +de MMZ e

YH. Wey1 ”Uber das Spektrum der Hohlraumstrahlung " Journ., Reme Angew

‘Math, 141, 163 181 1812,
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where the term in é - exists in Region III only, and where the three parts of the

splitting are uniquely determined." The name 'transverse' will from now on

-

: " »
be reserved for the third term - curl curl { .

B,. Further properties. Agphcatlon to Solenmdal and Irrotatmnal Vectors

—

1. The boundary.éonditlons sat1sﬁed by A 1mply that a ( d,.,u & )= a ;”

on S. This result 1s easﬂy obtamed by pro;ectmg (23) on the normal g The
vector curl ﬁ, | bemg perpend1cular to S its curl i.e. curl curl ﬁ s
tangential to S.(this property is estabhshed by applymg Stokes' theorem to ‘any.

—

small curve drawn on surface S along wh1ch the c1r culatlon of curl &

- vanishes, so that the flux of curl curl "ﬁ through any portlon of S is zero;
thls unphes that curl curl K is tangentml) “The pro;ectmn of the left
member of (23) is ™ g/w.d M'ﬁ (dM){ ) ", the proJectlon

of the r1ght member A, and the two must be equal., ‘The scalar ,(M. .A

_ _,-’can riow be obtamed by solvmg the potent1a1 problem '

{dmﬁ) d,wa wﬁif (dwﬁ) a S - @

', ’and the restriction that ‘i ﬁ must be slngle-valued Once th1s problem is |
- bsolved, t_he longitudinal term follows direc_tly by taking the gradient of d,w f
Notice that this .ter_m e.,cconnts for the normal coni'pone‘nt of a on S. :

.- ,. 2 The three terrns of the splitting (26) are functiono.l'ly ortho‘gonnl‘.
-This can easily be‘ checked by applying relations (10) nnd. (.-11)0 |

3.' When a is solen01dal and tangentlal to S, the only smgle-valued

solutmn to the potenual problem (27) is dw£ = constant ‘The longitudmal. ‘
term v_amshes. B |
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4, When 2 is irrotétional,_ the transverse tex."m | - curl curl ;4
vanishes, This term can, indeed, be derived from a scalar potential, all |
other terms of (26) being the gradient of something. So, - curl curl A grady/ ,
where ‘5/ is-har'-monic, 'at';d ;—;\f =0 §n S, the transverse ferm being tangential, .
to the boundé.ry surface. In a simply-connected region, the only solution
satisfying these reqﬁirEments is the trivial one \[/: 2 . In doubly-connected
Region 118 y/ must be i ‘multiplg of \fé , and -curl curl Z a multiple
of é . But-curl cufl r: must simﬁltaneously be functionally or_thogonal to
Z . The zero vector is the only one to have that property, so ;chai - curl curl z—

vanishes.

5. The magnetic splitting can be put in the form

E,_ = é ]g a. é d \/ + } ot %’ -+ ot ;F : ' (28)
where | is perpendicular to the boundary and \V/ is single-valued. Con-

versely, if a splittixig such as (28) has been achieved, it is the magnetic one.
Taking the divergence of ‘both members of (28) shows, indeed, that ¥ must
satisfy
(7& Y= A a : while 2» S
Dw
But these are exactly the relations sétisfied by i —Z: . In consequence, 4
and dw Z differ by‘ a constant (the only single-valued solution of the homo-

geneous problem), and the gradients of these two functions are identical.

C. Eigenvector Expansions Suitable for the Magnetic Splitting.
The considérations valid for the electric splitting can be duplicated

here. In simply-connected regions, the eigenvectors relative to the integral
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operator ] ff 3 (n q’ ) A V ' form a complete set. These e1genvectors
fall mto two. categomes.
{a) solenoidal eigenvectors Z- , 'sdl-utioris of
»

—

“(MM'K« +V {":'_o . u.xc«/\fﬁ =0 mS @9

The normahzed { is snnply related to the normahzed e encountered _
™
in the electric problem The relation is { ..._.- twnf ¢ - and both
A ’he V . e '
€ and ’A have the same e1genva1ues y A‘ o
(b) irrotational e1genvect_ors 2 Grod \.f , obtained from the
eigenfunctions ¥  of
’ . m
~ oty o oY,
VY LY o meo S ‘
. G ' Dwn |

These eigenveetors are all orthogonal to each other, and it will be assumed

that they have been normalized. Their eige‘nvaluesk are different from zero.

—

In Region Am the vector 7{; must be adde'd to obtain a set that is com‘plef'e
w1th respect to the space of square mtegrable vectors.

The expansmn of the various terms of the rnagnetlc splitting in ter

of the 'Ko , the K and the ? is expressed by t-he important formula:

T - _,_~_ | (31)
a:{b‘ﬁfa,ﬁodv -+ Z%’M[fjgu.hﬂ Jf/(?hiwra AVJ_'.Z _L"_I[[W\fkf M(A dv
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The convergence is in the mean, and, at a boundary point, the sevries convérges
to £he tangential component of 7, ail vectors of the expansidn being tangential
to the boundary surface.
The inforrﬁétion obtained from the electric and the magnetic splitting is

summarized in tﬁe following table. For each category of vectors, the electric

| s_plitting is shown on the the first line, the magnetic on the second, and it should_
‘be're'membe‘r_ed fhat each of these splittings can be realized in one and only one
wvay.'_ The symbols .fl ’ Cf , QP denote respectively sbme scalar function,
a fﬁnction whiéh vénishés af the boundary, and a function which takes some
c‘onsbtant value on each surface of which the boundary is comprised. The symbols

5}‘ and ‘f; denotg respectively a vector which is perpendicular to the

boundary, and a vector which is tangential to the latter. The notation

<a, “f "> stands for the functional projection of a on ;f (L //!E\' &/0 4aVv.
o ‘ [ 7}

The .{L , g '_and' SZJ ‘are all single-valued. For irrotational and sourceless

vectors in Region III, the projection £ & ) 4 o 7 is proportional to the circula-

tion of @ around the hole.

21
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m’ <~ ILE
Category Region I Region III

Any continuous vector &

-C},f\.,CLC& (( -+ Caand i:

Grad ¥ 4 aant €448, {03%,

-

. W _(2- + Card C},\ ed 1 -+ wf.f :; afvo;*_ﬂ e taard 7+<XA?>D(;
LSolénoiﬁal vector Coamk F ot B “"<‘§‘fo> ﬁ et b
( Lol &5 2 ) 19004 () +_:;_M£E 5 ad O+ cod had 2 fame.,,(o_«,'/\QKo

[ L2 Frsoemironc)

(_Q &LW"AC)

-K'\ y (22 Rarpmonic) | (L2 Rarpmeornne) (<2 Rarwmonic)
Sdleriéidai vector - ol b Cuf t Gunk
tangent to boundary o - -
R J . CAN\( ? a,{f;f W C&\;\, v+ £ ;, { >£0
£
Irrotational vector | gnod F 4 Cin ;; o %d ¢ + s 1 Ey (aj'p Ged ¥+ Cont b
' ' 410 —f—(Ifa)‘{?
gread 12 oud M2 (A ’
Irrotational vector , ~oud a /) ol
erpendicular to 1 Y © ¥+<4, i{" 270 ¢
boundary o .
Lsr\ - | Gt € el E4LadF, 1 antE
[fourceless vector G4 R grosd L qeod R+ LA KD Ro

(L2 Lo npmatront)

22
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'IV. THE MIXED SPLITTING
"It consists of splitting a vector as
X =9odf +cad T 44 (32

- wher»é (f vanishes on the boundary, ’17' is perp.endicular to the latter, |
and Z denotes a certain sourceless .vector. To obt aih this splitting, one.

can first calculate grad  , which is a term furnished by the electric épiitting,
and then apply thé _méa!gn_etio spiitting to what is left when grad Cf is éubtracted

from a. The mi:ied splitting is unique. The relative importance of the three

terms can best be'illustnatéd by writing down their expansions,

e » ) S—
B ﬁ T
. 'Z{ [ ﬂﬂ/d‘wad\l_{ -+ g—fijﬂwfk wrla AV ol (33)
,(perpendicular to the boundary) - (tangentzal to the boundary)

which indicates which terms disappear for a solenmdal or an irrotational
vector. The term »0( , which é,ppears as a rest term in ('32)', can be ex-

pressed as

Z-27 [a-2ywas +£ [z, av e

P 0
1 R " P 2
S v v
The term -—.Ao f / j W ¢ £o AV which the application of (31) introduces
in Region III can be discarded. This term vanishes because / / f%v.d¢ }'Uﬁd % dv
is equal to zeré, as seen from an application of (5) where A would be the
single-valued function § , and B the harmonic function Y, . Notice that
(f vanishes for a solenoidal vector, and that the term ,;«—-f appearing in (34)
_ : . N

can be put equal to zero in those circumstances.

23
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Another expression is possible for o

74 [z, jcgds-ff(f‘gd«»iﬂ‘*"]"g% N2tV ]t A5 o

L 42

Notice that U~ vanishes for an ir_rotational vector. It is sometimes
desirable to calculate ¢ directly, instead of finding its gradient by a
formula such as (33). rf‘he.steps afe rather trivial, and invcive expansion

in the normalized”™ eigenfunctions ?9 of (19). The final result is:
. i
o ¥ »

S S N T TS A < . .- :

V=2 2 |¢ dmadv=—2 ¢ JJW dt & AV (36)
o | .

where (/ is the scalar potential used above for the normalized vectors

—a——"

f - ;_’};',:,g:,\,.{ (f .. Similarly, it is interesting to have an expansion for U™
) T~

in terms of the eigenvectors of the electric splitting. Notice that V' stands

for - curl { ', and is consequently solenoidal. This implies that the f
, , : . « -

~ do not appear in the éxpansion‘. Notice also that V' being the curl of minus

, does not have any functional projection on ﬁ . because T cannot
c . . i : Q

i)

—

be represented as a curl. In consequence, the terms in € are the only ones

to sur\}ive in the expansion of V- , which then turns out to be

V=2 S ME Cconl s AV | | (37)
P x) LR VN .

*Notice that the (f vappea‘ring in formulas (22) and (33) are not normalized.
VoA —

- It is their gradient # which is hormalized, and an application of (5) shows that

. ‘ ' }x‘\ . A

. | Y
/;’ { Vi V= J . The functions (f

are, consequently, identical with | Y f’/
e e

24
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Obviously, any gradient perpendicular.to the boundary can be added to (3'.’ )
and still furnish an acceptable AV ., i.e. vield an unmodified frarnrnr oo 4 em

curl ¥ . The V¥ - given by (37) is the particular choice associated with the

~ magnetic splitting.




‘No term in 4 is necessary in Region II, because /' and

~ |
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APPENDIX 1
In this,apﬁeridix, the properties of the eigenvectors of the Laplacian
opérator are examir_xed for two different sets of boundary conditions. Only
those eigenvectors relative to eigenvalues different from zero are considered.

i

(a) Consider flrst the eigenvectors F of
iy

) . ' ) —h‘ . ) ) : : — ) . \ M:h ” (::‘- Sl
. ‘3/1-5%. 3 :’}m ( - (",&,\')\f;‘, \{‘,‘A_,‘_ﬁ "‘ -1»); F =0 K ti d ) - ) (} [ g (38)
d , P T e A 3\ Jant F ol

v

—

The eigenvector F  can be split electrically as grad <  + curl W
v : Yo

- . ——

are functiohally

Wk

The

orthogonal to each other. This results from the formula

;I“ \;i:.xe! }f f j/' - eru/ +/}S[Lk f d» (V‘ F) &”’/

e

v

.+{‘<A,,\ x fa-). tant 'i*/ ;E * ﬁ Jound f) ¢ % s

< P

_ .‘ Al"l'integra.ls of the last member vanish, which implies that / ]] ._/a ‘ ﬁ:\ dV=0 .

Introducing grad * + curl W/  into (38), one ar'rives at the formula
" RN - ™

[N

Ny BT g PRIP (WA W] e

Laad

Cailing :}' the .comm‘on value of the two members, one sees right away
that g}’ must be sourceless and perpendicular to the boundary surface. On
this surface, indééd,’ “Lm is zero, .and O{WE . "‘71,’4’“ vanishes too. The
gradient of \::-c’m +)s Qé"m is consequently perpendicular to that surface.

\
o,

In simply-bounded regions, there is no non-zero sourceless vector perpendicular

“to the boundary, and both members of (39) must vanish, This implies that

26
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V oZ + )\ a{ is constant throughoutrthe volume, and that the"épnstant

is zero smce this is the value V oL+ A ol takes on the boundary. We
e :

write .

VL + A & =0 Ao (40)

e

But this implies also that the transverse part curl W , which will now be

 writtenas € , satisfies

= N\ | = . = - (41)
}-Mwﬂﬁw +.}%€W:a Utmxe;w.\ O o §

-One then arrives at the conclugion that to each eigenvalue )% there correspond

two possible 's_orts of 'éig‘envectors viz: grad 4% , where o{% satisfies (40),
and (or) 'é‘w ., 'wtzgre | Ew satisfies. (41). Conversely any eigenvector o.f (41),
and the gradient of any eigenfunction of (40)) are eigenvectors of the original
probl'e-fn (38). Therg' is, consequently, compléte identity between the iatter
and the ensem}_dle of the grad 'fn suppiemented by th.e' ensemble of the é;

The same is true for the eigenvalues }% , which are made up of the eigen-

N : : > ;
" values A of (40) supplemented by the eigenvalues }% of (41), some of the

eigenvalues beinvg possibly common to both classes, as evidenced by the

' example treated in Appendix II.

-In doubly-bounded regions, the same sequence of arguments can be used.

- Vector 5— must be a mult-iple of ?{) , being sourceless and perpendicular to

| the boundary. But (39) indicates that 7 can be put in the form of the curl of

a vector potential. This is impossible for 7{ and its non-zero multiples, "“s‘a\
' ‘ . 0 ;
3' must vanish.

27
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(b) Consider now the eigenvectors Hw\ of .
I o - - o
e ad daw ’{Nf(««»»i WQ :;‘M-H’iw«&no o g W x Gant H... ‘O,!‘

e

; ' \ (A. . H G
. e

The same sort of 'argument' as in pért (a) can be applied here. The eigen-

—— htated

vector - H ~ can be split magnetically as grad ﬁw\ + curl i/ . with no
T ' : OO .

term in Y needed in doubly-connected regions. Introducing in (42}, one

obtains '

P

?’iﬁa«i L \; :- ‘§ /’ ( ’] ..A.xf ié h&.{uw M ][ -— "J':.A‘ » ) (43)

The common value of both mem_bers is a sourceless vector. This vector is

tangent to the boundary surface, because grad (8% is tangent. being the
difference of the two tangential vectors ' 1 and curl ¥V , and because
! O3 e - :
—_— .y _ .
grad div H = grad \7 (4 is tangent, being the difference of the two tangential
- s

["\

vectors —¥ H and curl curl H . In consequence, both members vaiish

in a simply-connected region, where a sourceless tangential vector canuot

_exist. This unphes that /3 r; [, is equal to a constant ¢  through-
'W\ ~y s P

out the volume, or that V) ( 3 - .p,. ) + y ( ﬁ ...";"..) vanishes throughout
o . b

.the volume. In other words, the 10ng1tudma1 part can be put in the form

grad W where
tas

Lf_'[ Ly ’3/ . ‘
v \'j f‘V \’{/ =0 ¢ ‘4/1*\1 e L <

] _ ) (44)
Faty Yo L ~-—-:-0~""‘° L A Y ]
re D
The transverse part ,( = curl ¥ satisfies
| ‘ Fa | 45
""CU\/\JQ Obv\/(}£ —rv v : U., X..M/véf\ =0 ('\«g (45)
‘ N S Y

28
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Conversely, each grad \V from (44)) and each 7( from (45), is an ‘eigén- :
oo e ‘ : ‘

vector of the original problem (42). Notice, by taking the curl of (45), that

curl ,é ~ satisfies the é’ige_nvector equation defining %» , i.e. (41). Con-

T ———

versely, curl { satisfies the eigenvector ethation'(45) defining the ff
s ) . N M

By

This is seen by taking the curl of (41), and noticing that

s

—— noad ' :
XK€ e e, T e Y . The solenoidal eigenvectors
X ( - ),o o S ’ 1 eigenvec

A

- of both problems are multiples of the curl of each other.

In a doubly-connected region, both members of (43) are multiples of

——

1( , or vanish. " But /J , Aend V}’ﬁ + ﬁ are single-
& ‘ ) e r~ e |

valued functions, a property of the magnetic sp(itting. The integral of
their gradient arbund the hole vanishes. 'The in\egral of %a , however,
is different fromivzero,_ and the only way to resolve this inconsistency is
for grad L Y ;iA?f‘%‘ + \:: {?%] to vanish. From there on, the steps’ féllow

as for simply-connected regions.

29
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'APPENDIX II
. The vector fu;xctloh .
- W(ij) ‘J“x +>U"a
" has zero divergence and curl. This is

) “t'x".gq; in particular, throughout the cube

~ of side T indicated in Fig. 4. It is

T désired- tb éxpand a in teri"ns of the

normahzed electr:c e1genvectors of the

cube. The latter are,. as usual, of two

10

Figure 4

types.

1. Irrotational eigenvectors.

. )
The functions (f are
P

and the

o “’S‘”’“} ?wh

correspondmg normalmed eigenvectors

i N 1

1 g,fx m‘ha w}az y + N mi, wwj /)«mr%u ’o&’w& fwmh mﬁu\%]

where n~ stands for the triple L., ;r , the latter numbers being
!
integers different from zero. The corresponding eigenvalues N are
A T~
It PR e , the lowest value being 3.
‘ [

2, Solenoidal eigenvectors.

They can be split into two categories

" )

(a){i Y (ri EJ(I) [h mfnuww +(&w6xce!hé§wﬁu]

P. M. Morse and H’ Feshbach. "Methods of Theoretical Phys1cs " p. 1849
McGraw-Hill Company, New York, 1953. o
80
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where either {1 or 4. is allowed to be zero, and where ¢. istwofor (=¢ ,
: . 3 3. o a
one for 4 # 0 . The eigenvalues N are, again, 4 7'+_ nhe }»“ , the lowest

value being 2.

T "
Ry Lol (vt Sif
®) ~,..~ j 3(““ D’ *3(( )?} )’ 6 %d f r u,+/m§w@tw:%d (""}'3“

At ey ]

y
\
"!'w . IS: 333_111: {*‘% *f'/} s

where }3 is allowed to vanish, and where
with minimum value 2. The expansion of a, which contains dhljf the &’

terms, yields, after calculations

o LD, | {\'i oo O P |
LSS s e LS & (-1) -
1____m ,, . - BR PP i f \"‘,’( )‘4 -u,,_._A wf/{ j‘.{mm 2 (A
MT:‘“ b b {‘z:f. prss Ay AN

It is a simple _ﬁ;_a_t.ter to'check that thé two Fourier expansions converge to r\}
and X ‘reséecﬁvely'. In the plai'xe X —»r  ; "5 réduces‘tq_?_ﬁ s an&
is _perpé_ndicular to »th'erboundary. The serries converges to “‘1 iy e\}erywhere
on that plane, .exéeptb at those points where the normal is not defined, i.e.
along the .edge's.. In'vthe plane S’:a , the vector a is purely tangential, and,
as expected, the series conirerges to the normal cbmponent, i.e. vanishes,
The convergéncé tb the ta;ngential compoﬁent is non-u;xiform, and presents a
Glbbs Iphenbm‘enon,: of the type associated with ? alf”‘ _{W\/o g | at 3 o,
Wﬁéﬁ_thé éxﬁé.n_é_ion coefficients a,. correspond ;o é‘ functioh' which does not

,J

o+

vanish at { =0 — =
A last remark: the v‘ector T/ solution of \/ Tf 7 '}f{ + \7\_:4 el

- with ! s %:r and &L‘,\; zp on S, canbe expressed as
. '\.’-‘\ N

;\?
2

—_— “K _[ ‘2 0o f p
~t J1 Fron w—— v;/ G AL I A
{ - Zg; Sy ,_“ -2 }‘_‘ s Iy

‘.\,\ 13 f

)?\Ig . I'ﬂjf\ L f

™~
w
-
z-%._,
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