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ABSTRACT 

It is desirable to introduce radial straight sections into spiral sector 

accelerators in order to accommodate accelerating cavities of reasonable 

design and magnet windings. Such straight sections make the accelerator 

non-scaling, i. e., in general the betatron oscillation frequencies vary 

with energy and resonances may be crossed. These effects have been 

investigated analytically in the linear approximation. The equations of 

motion are now functions not only of the accelerator parameters, but also 

of the geometry of the radial straight sections and of the equilibrium 

orbit radius. If the number of spirals per revolution is N and the number 

of radial straight sections per revolution is p, then all harmonic nunb ers 

n< ~ q, where q equals p divided by the greatest common divisor of p and N, 

do not contribute to the change of betatron oscillation frequencies with 

energy, Since the contributions of a harmonic to the frequencies decrease 

as the harmonic number increases, it appears that the variation of beta­

tron oscillation frequencies with energy can be kept within acceptable 

limits. 

*AEC Research and Development Report. Research supported by the 
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This report obtains the linear equations of particle motion about the 

equilibrium orbit for two types of radial straight sections. The special 

case where one neglects the field harmonics greater than or equal to 

q/2 for a spiral sector accelerator without radial straight sections is 

treated in detail. It is found that for this case that there is no variation 

of the tune with the radius for either type of radial straight sections. 

II. THEORY 

A. Form of Magnetic Field in Median Plane 

The form of the magnetic field in the median plane for a spiral sector 

design of a FFAG accelerator without radial straight sections is given 

, (1) 
by the vertical field, [B iJ (The [ J about Bt indicates the field in 

the absence of straight sections): 

) .-A '" A in ¢[ Bi J~ - B ( I t XL.-\" h eo 
n 

where 

(I+)()=- t 
~=8-f 

.-Lr= ~f~(JtX)= N.w k (I+X) 

it 

~ n= ~-~ 

and the index n takes only the values: 

n = 0, + N, + 2 N, :!:. 3 N, 

One can expand the form of the vertical magnetic field in the median 

plane with radial straight sections, Br ' in a Fourier series: 
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"" in8B : - 8 L AI'l e0
l' r'l. 

where A h is a function of not only the geometrical properties of the 

straight sections but also of the variable x (i. e. > AI'\. = An.(X ) L 

Consider the two types of radial straight sections shown below. 

Type I is where two radial slices are made and the portion of the magnet 

between the two slices is removed. Type II is where a series of slices 

are made and the magnets on each side of a slice are moved apart from 

the slice while each magnet (and associated normal straight section) is 

shortened or moved outward radially so that there are still N sectors 

in the ac~elerator0 

In the following development p is the number of straight section's, 

A e the angular width of each straight section, and T the angular 

distance between a spiral ridge and the center of a straight section along 

a circle of radius roo 

4 
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Below are diagrams showing 8 ~ as a function of 9 when r = r o. 

~--~ >if-'-----I~- ~ 
~1T 
N 

,~, 

r--- r ---1- ~1T' -----­

J-~~
 

Several things are apparent from the diagrams. First, Type I field 

is of the form: 

B = - B (I+X)"* 2 ~n c.iV/? 
! 

o 
~ \ 

except for a region of width on each side of a radial straight section. 

Secondly, except for a region of width A-.9 on each side of the center 

of the radial straight section, Type II field is of the form: 

-A ,Y,'(C¢- ~Ae) 

St': - Bo (I+X) ~ ~n e 

5 
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where 

and where r is an integer equal to the number of straight sections 

between the region under consideration and the origin. The factor 

r A 9 is needed because the field must slip in phase every time a 

straight section is crossed. The factor cr is needed because n waves 

must fit into a width ;. rr - pAB. 

, 
The results of Appendix I, where expressions for the ~ n S are 

derived, are given below. 

For Type I field: 

(~- i:Pw) PIlATT~) +
(1+ X ) ~n ( I - " 

~ r (~-L~)
L L( 1+><) 
s 
s~c 

From the expressions for the "n\ it is readily apparent that the 

form of the magnetic field in the median plane is: 

6 
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For Type I field: 

[i.-i (7v S
1')j 1(118 

Bi! = - B, ~ (ItX) '" In,$ eI

n,~ 

where 

-:. (- ~ Uf!) ~
 LSf i 
S TT ~ ntSf 

For Type II field: 

where 

It will be advantageous for the calculation to have the magne-nc 

field in the form: 

This can be accomplished by expanding 

t .t(~-/) 2 f(~ -I)(e -'1) \~ )

(ItX);:. [1+ ~x + ~ X t " . At··· J
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which gives for Type I field 

A0, n. = L ~I'lIS 
S 

A" n. -; L (*- i. t1~J) ~ttlS 
s 

A2,1t: 12 (--k- i tJ.N~ X~-I- L nzs.;) Jf1 I S 
s 

and in general 

A"" ~ = .!p.j L. (.-1<-. ';:;J X*-I- I ':iff) •••(+ M+ ,~ i ';~ ) j n,' 
s 

and for Type II field 

AD,n= L....fn,s 
~ 

A'J n. -:. 'Z (..-A. ­ l ~~s.!}~ ).Jrt, S 
s 

A1, rL~ ~l. (~- i (tI;:!H~) (-14. -1- ~ (~T~~r) ~rt" 

$ 

and in general 

B. The Equilibrium Orbit 

The first step in determining particle motion in the accelerator 

is to find the equilibrium orbit. i. e .• find a periodic solution x =x (9). 

One starts with the Lagrangian describing the particle motion in 

the median plane (2) 

L= r.t> [J (I tXt + X'·' + feJX' At + (I +X) A8)L 
8
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r .. roe r" 8 0where c(: - X= /""" c-:p t'c 

dxXl: 
Je 

Expanding the Lagrangian in terms of x and x' gives(2) 

I .1. I ,1.
L~ I T X+ ~X' - y~ XX + 

The approximate equation of motion derivable from this approximate 

Lagrangian is 

1/ I 2. " eX. ) BX = J + ~ Xl +XX + - (I+X t8e 

Inserting the expression for 8z. gives:
 

For Type I field:
 

l f ~tl-~~W!) i in8 
X":: 11 ~ X' t X)(" - 0( ~ (If"X) In.sJ e 

For Type II field: 

/I L J. 1/ tYX:. J t li Xl t XX- -\ 

gives for the equation of motion in 8 

XII =,+~ X1:Z t XXf _ =( L[Bo, 11. +8,) n X+ B"" II X"L t 4() ] etI 

I'\. 

9 
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where for Type I field 

B.ln.: L 'tllS 
.$ 

e" ~ ~ ( ..... 1· L I1Z::') 3n,sr1 , 

and in general 

and for Type II field
 

Bo.n. = L..-f !'l.S
 
s 

BI , tl ~ ~ (-i+ /- r(~;J~) .-£n'5 
s 

-",,~(... L cnt'sPH")( J._ i QlHill).Jh SB~tl- 2.L ""J(t/- ~..IJ<. N.MI" I 

$ 

.1" and in general 

)0 . (ntse2!) nBM,ft : ~ L. (~H-L <;J! )(,1. -I (Itt:.1- ) ... (~-ttltl-L t"»1" .An.s 

s 

For the equilibrium orbit x :; x (9) must be a periodic function, so 

that we may expand x in a Fourier series, 

tX= L
00 

xn e
. 

l?8' 
ne-cO 

Inserting this into the equation of motion and the use of harmonic 

balance yields 

t.1.X ­- n n­

{ L M (n+m) Xn-mXm - ~ L BJ • WI Xt1-t>t-~ )< r 1- ••• 
1"1 """ r 

10 
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In order to arrive at an approximate solution~2) we wi 11 substitute 

the ith approximation in the right hand side and determine the (i + l)th 

approximation from the left hand side; also we will choose the zeroth 

approximation equal to zero. We will choose Xo = 0 thus specifying the 

value of 0( and hence the value of r o. This gives for the first approx­

imation xn, 1 

Since non-linear terms in xn are small, we will neglect them in 

making the second approximation xn 2 and then it follows that , 

If the process of successive apprxomation is continued and more 

and more terms included, then higher and higher powers of 0( enter 

the solution. There are therefore an infinite number of values for 0( 

However. most of these are not of practical interest, since J o() >>J 

and consequently the	 circumference factor is very large. Thus keeping 

'2 
only terms through	 0( gives the quadratic equation 

o 

c. Linear Equations of Motion 

Let the radius vector	 r be given by 

.... ~ ­r :	 re t X n t t b 

11 
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where r:e is the radius vector of the equilibrium orbit, 1i is a unit 

vector in the median plane perpendicular to the equilibrium orbit, and -b is a unit vector perpendicular to the median plane. Then the linearized 

equations of motion are (3) 

oI t x-d 54 + [~d ~11 X=0 

d~e. 1'1::: 0
d st 

Iwhere - evaluated at 

(i 
\ 

-- - (:::) -r= -re 

';) 8~ 
n ':;. evaluated at 

~ 

r ':: 
~) re?JX 

. r­

e 
Denoting Bi on the equilibrium orbit by Br 

I e Be e ~ L'n V 
~ = - cp t: <=1' 80 ~ ) a, n. e 

arr s 
where V = and s is the length measured along theSo 

equilibrium orbit, and So is the total length of the equilibrium orbit 

around the machine. Observe that 
1"\ Be et1 eo cJ i _ 

f' - C1' -d-:t:,-- Co f 

and hence that , 

Jo,n. = - .1IT 8
0 

;2.'11 Be..rJ 
31,,,: - .;1;8 f. '~:x;~ e-'" J.J 

0 

12 
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1.� Relationship Between d"1J' and de 

J 1J:: ~~ substituting for ;: and;:=; de 

yields: 

Expanding ~ (l + x)2 + x,l in terms of x and x' yields: 

or 

Substituting for x the sum L Xh 

i rt e e yields 
n. 

J-tJ-d fj "'" 

Since 

then In 

S" ~ ro (� (, +Xt y~ X'.l ) de 
or 

s" ~ JJf f o JJ - ~ f m1 X X-~ t1\ ] 

one obtains 

J.1f r o ..... ...... 
$,� J 

13 
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and hence 

I 

since xn is small compared to one it can be neglected. Notice that 

while xn is neglected compared to one, neither k xn or ~ xn is 

neglected compared to one. 

Hence -dtJ
:::: I 

cjf1 

.,)~ e 
and i2lT ,n

..!.- d
. eJ0, n. ~- s; e- Je 

.;l IT 80 

r _~II&o [m dB;J" il -"" -- edoTT 80 
c1e 

~ CJ 'J., 

2. Relationship between X and x 

The geometry of the equilibrium orbit is indicated in Fig. 3, from 

which we obtain: 

~r 
::. (.,C<1¢-';)j; 

vB­ :: AJ.M. ¢. 
dX t", 

JS -- re Ul<l. f1Cf8 
F,'~ . 3 

14� 
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~ S .... r- ~d9 .... e and cos 1 ...... I Hence� 

de at"� 
--~o 1 and»':: I 
~); ) 

- = - + -
e 

- ­a B: () 8: o Be~r () 8i 'J8 ..., ~
 
CJ~ ()r ()'J.- ;;8 ()X, C)r� 

or 
d Be Q� 

t I d 8~

-"'"..... 
0): r;, -C>X 

Consequently 

~XheLneSubstituting for x the sum L yields the 
11. 

~ B~
magnetic field on the equilibrium orbit l and the ­B: 

C 8: ~)( 

evaluated on the equilibrium orbit l _ 

21X 

Using these values for and 

and • 

15 
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The linear equations of motion now become: 

Since 
i. _ 

~ I 

-
then 

and 

where 

and E ~ ':. - ~ J '.I t\ 

16� 
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D. Treatment of the Special Case for Type I Field 

The special case treated is the one for which one can neglect the 

field harmonics greater than or equal to q/2 for a spiral sector acceler­

ator without radial straight sections. where q is equal to p divided by 

the greatest common divisor of p and N. The results of Appendix II 

show that for Type I field and the special case Am, nand Bm , n equal 

zero unless n ::: r N - sp where rand s are zero, or positive or 

negative integers. It also shows that: 

and 

The equation for 0( is: 

=L 
r,S 

Since L 6b~:~ 
YI 

[13 '1;\ + ~ 130". ] 

is independent of 'T 

is independent of 

, it necessarily 

r 

follows that 0<.. is independent of 1'" and 

17 
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The expression for xn is: 

Since Bm · n =0 unless n =r N - sp
I 

and since 8 
01 

t1 - (t N -",M..p) :: 0 unless 

I 

n-(tN-..M-P): riN-Sp 

and also Bo n =0 unless n = r N .. SPI therefore xn = 0 unless n = r N -sp 
I 

and 

or I substituting for the B I s yields 

T
Xr.-sr = (t:.SPJ' fF. (r, 49, t,S) e,sr f 

i U f j t ( S • I.A Jf r+0( I.F, (p,lle 1+' u.) e F. (p, /leJ r-t, $-;«) ~ 

iJAA. [ (r-t) N- (s-".AA.)p]l. 

and hence 
t Sf iXr ~- SP = H(PI A I) J ('. s) e 

Since X.(: 0 unless ,.,R -: l N - M P 

then 

18 
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The expression for xn is: 

Since Bm • n =0 unless n =r N .. sp 

and since 6 
01 

t1 - (t N -.,M.p) ::. 0 unless 

n-(-t N- p,P):: 'r i N - S 
J

P 
and also B • n =0 unless n =r N - SP, therefore xn =0 unless n = r N -spo

and 

or. substituting for the B I s yields 

0( I sf;f FX,.-sr: (, "-Sp]' I D (r, MJ, r,51 e +� 
i U f ; t ( S - lA If r�+0( L,F, (r,A9, t, lI.l e f,(r. 1l9J,-t, s-"",)_f 

~jM. [ (r-t) N - (s_ ........ )p]l.� 

and hence 
t Sf iXr tJ- SP = H(pJ A a I Y', 5) e 

Since X-(: 0 unless ~ -:. t N - »- p 

then 

18 
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The expression for xn' is: 

Since Bm • n = 0 unless n :c r N - sp 

and since 8
01 

tl- (iN -.Mop) =0 unless 

n-(tN-P,P): 'r'N-S'p 

and also B • n == 0 unless n =r N .. sp. therefore xn = 0 unless n = r N -spo

and 

or. substituting for the B' s yields 

XrN -sp : (y:. Sp)' f Fe (r, 48, Y,S) e i sf'" f 

i U f t l ( S • v. If r+0< I.. ,f.( r, AS It, 0.) e F. (r, Hi r-t, s-~!..-~ 
tJM. [ (r-t) N - (S-""",,)p]" 

and hence 
t SF iXr (11- SP ': H(p, A a I \"', S) e 

Since X.(: 0 unless "R -: i N - M. P 

then 

18 
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and since unless h':. r N - S r 
therefore unless 11 ~ r N - Sr 

Similarly 

unless� 

n= r N-Sp� 

.J: t tv -.,v.p 
)� 

unless 

Yl':. r N .. SP 
...e 'e. t N-~f
 

~::. ON-1fP� 
. ".... and 

L A'3, w·.1 .. ttl )( -l XI1 : () 
..i.,1'YI 

unless 
VI': rN- sp 

...to:. tN-.(..4p 
~ .. ~N -"lrp 

Therefore J0 I Yl. equal zero unless n = r N .. sp. 

Substituting for Am. n and for xn yields 

~1)1ti'i.Sr:'. ffo(PiA'lrJS)+ ~ f.(p,A8)r-t J S'-·A.-l.)H(p,/.l8,i,M) + 
tjM 

I sp'1'
+ L f 2. ( Pi A9, r- t-6I S - ...... ·11) H(r, ABJ t 1 

0M ) H(pJ A9) ~ I 1.f) +·•.Je 
'"'tj M,Z,-v' 

19 
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and 

~'!rN-Sr': ftl(FIA8Jr,S) +~~ tJ(~Ae)r.t)s..~)H(PJA8J(M.)+1 tJ~ 

and hence 

and 

It thus follows that: 

unless 
n:=. r N - S P..I 

En = - cI.. JIJYl = 0 

unless 

n·: rN- S r J 

Dr N" S P : M (fJ ~ eJ r, s) e i. Sf -; ) 
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rr:'"where Vx. is the phase change per revolution for radial betatron 

oscillations, ~. is the phase change per revo!ution for vertical 

betatron oscillations, Vx' = ~ IT~]( and ~ -¥ = .( rr tf, 

Since Dk and Ek equal zero unless k =r N - sp, then it follows 

that 

and 

Since Do and Eo are independent of -r , 

is independent of r , it necessarily follows that <1X" and ~ iI are 

independent of .,. Since J't ': - k1 J r , the change in the values 

of \[x't and \f"1,j. due to a change in 7' are proportional to the change 

in v;. Wand ~* due to a change in the radius r. Therefore it must follow 

that V'x -and ~./., and hence oz.{ and ~ are independent of the radius r. 

E. Treatment of the Special Case for Type II Field 

The results of Appendix II show that for Type II field and the special 

case where one neglects harmonics greater than or equal to q/2, Bm , n 

21� 
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equal zero unless n = r N - sp where rand s are zero or positive or 

negative integers. It shows that: 

() j r N ( a"-I) T /' SP7A~, rw.Sr -= Rm PI AS} 1"',5 e e 

The equation for 0( is: 

Since Bro, n = 0 unless n = r N - sp 

n 

--
r,s 

Since� 

80 -t\�I 

is independent of ; and 8 0 J 0 ': r;, (P A(J J 0 J C!) is independent of T , 
J 

it necessarily follows that 0( is independent of T and 0(~ 0( ( F, Ae) 

The expression for xn is: 

8,) \'1'1 80 I >t -#1 

(tt_I11)1. 

22� 
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Since Bm n = 0 unless n = rN - sp• 

f3/ J m l3o/n. m : 8'JtN~,44.-r 13 D,,,- (t"-...... p) 

l~- rJ'\ \''' (11- (tN-.-4J.. p) 12. 

unless t1- (t N-M p)= r
I
tv-sF

I
and since Bc~ '" _(t N-Mp):' 0 

or n = r N - sp and Bo• n = 0 unless n =r N - sp. therefore xn = 0 

unless n = rN .. sp and 

or substituting for the B IS 

·r Xr ~ - SP ~ (r:- Sf)' f1. (p,,, S,r. s) euNIt-I)?, ct r i 

~ 1: lf~e t ) e4tNlr-/)1' i,v.pt r i(r-t)N{~·/)r '('·~}ri+0( L _'_J__J :1':"'LA .:e_-:-~/~p;:..:A.::.&~,t"_.tJ~s-_,,"..:):...:e:..... __~e__
rtr·~) ~ - (5-..1\;.) 11''' 

hence 

Since unless .J. ':. t N- 1A P • then 

I AIJ f1 • .f X.N ': L: A I; n-(t N-"v-r) 'X t~-M..P
~ T, ,M..o 

and since At) - 0 
unless n = r N - sp. therefore,,"'" t N- ...... P ­

.~A,'I1.-I' X-e ':. 0 unless n=rN- sp. 

23 
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Similarly 

L A:1"1--4' 'Xo( =0 
..( 

unless 
t)= I" tJ-Sp 

~: i N-"A4P ) 

L A~,tI-~-1t\ X.( X~ ":. 0 
.QJ Vl1 

unless� 
., ':. r N- S' P� 

"A ~ (t·oJ - ,.,. p 
rv1: gN-N'p ) 

and 
. r""' 

L. Az, h-.J-m X< Xm";. 0 
';1 M 

unless 
n~ rN-sf� 

,)-: t N-J,4 p� 

h\~ %N-1/P 

therefore J0 I YI and ') I) n equal zero unless n = r N - sp. 

Substituting for Am, n and for x n yields 

36 j t'N-Sp= fRtl (p/A8)Y,5)+ L RI(P,A6Ir-t,j.A->IU(f,A8j't,.44.) + 
t,M 

+ 2- R, (r,. e, ,. ~.", ,- k-".) U(p. 69, t, .... \ U(r, ••J Z1"')+ ..1 eL' "("'J~e('r T 

t, IJ., tl ..., ,J 
24� 
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and 

~/)rN-5p:: fR,(PJA&Jr,S)-t 2~ RJ(PJ48Jr-1/5-M.) U(',AB) t)M.) + 
"t) ...... 

+3 ~R ( ] LrN,r·/)1· TLJ 3 fJ~~Jt'-t-~JS',M.·'II') U(fJA8Jt/~)Ul'JA8J6,-tr)+ ,,, e et!f 
"'; ....18, N' 

and hence 

and 

it thus follows that 

unless n = r N - sp. 

unless n = r N - sp. 

and 

25� 
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From Vogt-Nielsen's formulas:(4) 

~ f-w' = ~.1 rr vD,- rr~~nvD" ') 0-A. ~--A 
" ~JE~ ~ -ll-4Dc 

~ r:: ~t7IfE L ff'f.' r;VO'4 'f~ ::. ~~ rrV Eo - "C"4M\ _c -l ~ -~ 
f/ ~.fF; 1J.~ - ", E 

~ 0 

Since Dk and Ek equal zero unless k =r N - sp, then it follows 

that: 

17 ~~ 11 foc. L!'."$f D.,..S!
~ V)< '* .: ~ "nrDo-

~JD: (rl\l-5 p)'1_ 4 Do 
1', , 

and ­,.. rr ~J.iiJEo 

CAN ~ ~ ~ JTI Jfo -- LIE"." E.'.flr 
;( {ED (Y'N~SP )1_ 4 E 

r, s 0 

-I"" 

is independent of -r , and 

independent of ,. Since 01 i:. - fz.r J It' the change in the 

values of \fx~ and ~* due to a change in ( are proportional to the 

change in \1')( ,.. and V1'* due to a change in the radius r. Therefore 

it must follow that V)( "t and q-~~ and hence vP and 1 arer 

independent of the radius r. 

26 



MURA-434� 

III. REFERENCES� 

(1)� Symon. Kerst. Jones. Laslett and Terwilliger. Phys. Rev. 103. 

1837 - 1859 (1956). 

(2)� F. T. Cole. MURA-406. 

(3)� Cole. Haxby. Jones. Pruett and Terwilliger. Phys. Rev. 28. 

405 (1957). 

(4)� Nils Vogt-Nilsen. MURA 118. 

27� 



MURA-434� 

IV. ACKNOWLEDGEMENTS 

The author would like to thank most sincerely Dr. A. M. Sessler 

and Dr. F. T. Cole for their encouragement and many constructive 

suggestions during the progress of this work. He would also like to 

express his gratitude to D. Reilly who helped check the initial expressions 

for the magnetic field with radial straight sections. It is also a pleasure 

to thank B. Kehoe for developing a computer program which calculates 

the Dn and En for the linearized equations of motion. The author would 

also like to thank Dr. K. R. Symon for the discussions and illuminating 

suggestions concerning the results of this work. 

. I"'" 

28� 



MURA-434� 

V. APPENDICES 

A. Magnetic Field in Median Plane 

For Type I field 8!: - B" (I +-x fA.. 2: ~..., e i.." ¢ except 
I'>l 

for a region ¥ width on both sides of the center of a radial straight 

section where 8% ':. 0 . We expand Bi in the Fourier series 

p·1 

t2­
rsl 

Since ¢ = /). ~ k (I+X) ) 

L m 
eLmeei.m¢ ': (Jt)(f~ 

.J 

and therefore 

J-.2" 
p./ 

+2­
r~ I 

29 
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Performing the indicated integrations yields 

.... _L A 

A. ~ (J t X) NM ~ ~ [I - EN] t 

+ L (IH)lI.' E;, B", fed"'.'l: rC'·il"'.')~ 
m\n. '\ "n L (m" n) l( 

l""'J(~ -~]X
j 

Since 
'(I1'I.n)'~rr 

J - e

e 
- 0 h1-n, SfI (m-I1\ ~ if 

-r- I ­
and I (~-I1).)rr 

.,...".....­ - P if Yfl • 11 -= SP-�t ( w. .. VI) 7}JpF; -
-

e 

e 

for positive or negative integer s, one obtains for Type I field 
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1. ~ U-'''~'(;-rAe) 
For Type II fie Id B ,: .. 8o (ltX) L~met 

jI'Y1 

217 
where l: ~rr. pA9 and r is an integer equal to number of 

straight sections between the region under consideration and the origin. 

where 

JrrJeirnt¢eI nee i "'~I'Ad e 

-r­
tt ~(P·/)t ~ 

Since ¢ -= e- ;!; k l I'foX)) 

. Mr 
e,m"r¢ ': (jtx)_t ~ 

and therefore 
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I - e L (Y>1-n),2rr 

X ( -­
J­

o -1 ...where r, is the Kronecker delta [..{ =< 1­
d~.j 'II} 1--, 

and rand t equal zero or any positive or negative integerJ also since 

i t1o1 1T )_< 0/- e (tlI-/l) 1 m- \: sp� 
( i (M-n)~ ­

J - e -,. t> ~ /'Yl- n :: S p 

for zero, positive. or negative integer s then 
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B. Special Case 

In the following argument s, n, r, t, and u are integers or zero. 

Given 

and ~ :F 0 unless n = r N. 

If one assumes that ~ \'" N: 0 for Id ~ !! where q equals p
04 

divided by the greatest common divisor of p and N, then it follows 

_ I Ii
that if JfI. s' ~Othen Jrl) :/' ~ 0 unless .) ::: S 

Proof: 

Jnls' \ 0 implies that ~nt$1:- 3c 0 

implies that n t sIF::' r N /tJ~ ~ 

Similarly Jn, ~II~ D implies that n t s 'f':: i N It 1< ~ 

implies that ( 5"- $' ) f':: (t - y- ) N 

If N" is the greatest common divisor of p and N, then 

P tv 
where 1; and 1r are relatively 

prime numbers. 
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Since t and ~ are relatively prime numbers, 

p
(t-r)= ~:v :; ,)Ai6 

Sint:e Ii I < ~ I r I <. .~ (i: - r) < 9 hence 
; 

.1.\':. () 
? J J-) b 

1/ I r II __ ./ 
..J ..... w•• 5 - S =0 

For Type I field 

AC J lL :: 

Since for any particular value of n at the most only 0Ile value of 

JnI S ~ 0 then the 4 J h, s contains only one term. Also if for 

fill, s' ~ c', then n + sp =r N and therefore n =r N - sp if A('," f ( 

. r' From the expression for A~ J n, it is obvious that 

- i: 

(('"'f\ " 
I 

1. I' <·1 'j::t- - , J ) ­

A�
- J ,~,
 

t 3 (i~, i.i /.) i f. .) (.
3tl N'SP:' 

j~P' , )f (/'1 " " ,JI ' 

and in general 
I S pI�

AYtl I r N -'':, P ': [h\ ( rI At!) I, .,) ~:
 

I ..; j r 

j l. 
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In the following argument s. n. r. t. and u are integers or zero. 

Given 

'i 
.n n- 11 'r _.J, 
)7 

- J., rp ~,t/ 

and ~ n : 0 unless n = r N. 

If we assume ~ l' N :. 0 for Ir I ~ ~ where q equals p divided 

by the greatest common divisor of p and N. then it follows that if 

A ~O h f) -0 I 5'.-SO.,,..{ "J SJ 1· t en .x f1) Sll" un ess 

Proof: 

--in, sJ ~ 0 implies that ~t1t ~/p~ 0 

I r/-< ~I,.~ ~ ,.$1 p\ (;) implies that n-fS'p: rN 

Similarly .-.fn/s'10 implies that I'1rS Ii p ': iN It}'- ~ 

implies that (S"- 5' ) p: (t -r ) N 

If "'IT is the greatest common divisor of p and N. then 

(5 ,J• sJ ) ~ : (t· r) ~ 

where 1. and l:!. are relatively prime numbers. 
11 11'" 
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Since -£. and t are relatively prime numbers. 

(t - r) = .M t = "Mw ~ 
Since J t/ <~{ and Irl < ~ • then (t'r) <Z hence ~:" 

, . ~/( - S I:: 0 /1 e- I 
S = ~
 

For Type II field� 

Since for any particular value of n at the most only one value of 

.in, s \ O. then the f-fI1'S contains only one term. Also if for 

"fn I s' ~ (,), then n + sp =r N and therefore if A0, r1 ~ () • n =r N - sp. 

From the expression for A(.'. I't. it is obvious that 

L [Y'Nt-rNtsf7I 

"r-- ACJ r N - ~ r = R0 (I), A 8 J r, ~) e 

It can similarly be shown that in general 

t (rw'r- rN"'S~ Jj 
Ll.... '~p -= Rw, (V, ~t') I, J ) err "" r~ J 

ana 
.. T ( ) l. [rN~- rl'Jolo 5P ] 7' 
, 1;t1 P, A ell'. s e 
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