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ABSTRACT

It is desirable to introduce radial straight sections into spiral sector
accelerators in order to accommodate accelerating cavities of reasonable
design and magnet windings. Such straight sections make the accelerator
non-scaling, i.e., in general the betatron oscillation frequencies vary
with energy and resonances may be crossed. These effects have been
investigated analytically in the linear approximation. The equations of
motion are now functions not only of the accelerator parameters, but also
of the geometry of the radial straight sections and of the equilibrium
orbit radius. If the number of spirals per revolution is N and the number
of radial straight sections per revolution is p, then all harmonic nunbers
n<-;— g, where q equals p divided by the greatest common divisor of p and N,
do not contribute to the change of betatron oscillation frequencies with
energy. Since the contributions of a harmonic to the frequencies decrease
as the harmonic number increases, it appears that the variation of beta-
tron oscillation frequencies with energy can be kept within acceptable
limits.

*AEC Research and Development Report. Research supported by the
Atomic Energy Commission, Contract No. AEC AT(11-1) 384.
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This report obtains the linear equations of particle motion about the
equilibrium orbit for two types of radial straight sections. The special
case where one neglects the field harmonics greater than or equal to
q/2 for a spiral sector accelerator without radial straight sections is
treated in detail. It is found that for this case that there is no variation
of the tune with the radius for either type of radial straight sections.

II. THEORY

A. Form of Magnetic Field in Median Plane

The form of the magnetic field in the median plane for a spiral sector
design of a FFAG accelerator without radial straight sections is given

1)
by the vertical field, [Bi] ( (The [ ] about Bg indicates the field in

i

the absence of straight sections):

4 n
[B,=-8, (1) S 8, e’

where

(1+%) = ‘%,

g=6-7%
S = Tany Ln (110 = 25 n (14X)

8= 85

and the index n takes only the values:
n= 0, t N, t 2 N, '}_’ 3 N, -----
One can expand the form of the vertical magnetic field in the median

~— plane with radial straight sections, B% , in a Fourier series:
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where 7\h is a function of not only the geometrical properties of the
straight sections but also of the variable x (i.e., >\n. = 7\,;(’( ) ).
Consider the two types of radial straight sections shown below.
Type I is where two radial slices are made and the portion of the magnet
between the two slices is removed. Type Il is where a series of slices
are made and the magnets on each side of a slice are moved apart from
the slice while each magnet (and associated normal straight section) is
shortened or moved outward radially so that there are still N sectors

in the acdelerator.

Type T Tyee I
In the following development p is the number of straight sections,
A 6 the angular width of each straight section, and 7 the angular

distance between a spiral ridge and the center of a straight section along

a cirele of radius Ty
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Below are diagrams showing B 3 asa function of @ when r =rg,

A-B:

T

N

B2

2

Several things are apparent from the diagrams. First, Type I field
is of the form:

Bz= - B, (I+X)’k Z @h ctn¢

)
except for a region of width =3~ on each side of a radial straight section.

Secondly, except for a region of width A-ié on each side of the center

of the radial straight section, Type II field is of the form:

8!:‘ _ Bo (H'X)'ﬂ ; Qn 6”;3’(95" ras)
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where

7~ ¥ = 3‘,:;%_5 8
and where r is an integer equal to the number of straight sections
between the region under consideration and the origin. The factor
r A6 is needed because the field must slip in phase every time a
straight section is crossed. The factor ¥ is needed because n waves
must fit into a width 2/T= pAé

The results of Appendix I, where expressions for the 7\,:5 are

derived, are given below.

For Type I field:

(A~ i )
_ pag
A, = (1#%) @n(l m)‘f‘
N
$ ‘ T
5 o g (Y 2]
@n-rsp st *
$%0
For Type 1II field:
k- i ;er PAQ
(k- L(:Lﬁl’.’_‘:] p ec[(nrspﬂ“-n][ﬁ Ar} [[ C-Ln(l-x)(Ae—:'g)
— X — -
SZ §(|+ ) (%"HF [ 21 [intsp)T=n]]
Sy hon¥
PY
From the expressions for the 7\n\ s it is readily apparent that the
form of the magnetic field in the median plane is:
—~
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For Type I field:

[~ 50| e(na
B;z—BoZ[('+X) 7”,5
ns
where ?n,o - [l' -E;%?'] Qn
- S §J‘;_—‘9) tspT
c
js":o ( ST @ms;
For Type II field: [fk-—lq%%ﬂ]
B2 'B°Z[(HX) Jn.S:l

ns

where

,en)g-—n_r = Sn,rp g%)-l:p Q-%.— [j_ %QTT'?J

pr

» FL[M*SPW"”]%'.Q L',,(,-_,)(Ae-’ig) (Lntopv -n] T
2 . = (JE f )(1- ¢ B €

ns

: r-n
oy mon an fnespr¥-nl
PY

It will be advantageous for the calculation to have the magnetic

field in the form:

Bz.: -B, Z{AM"‘AMX tALX F - ,,}eine

This can be accomplished by expanding

(Hx)ﬂ___ [1+ Rx + f—(-gﬁ X + f—(i—élgf—izxﬂ. ])
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which gives for Type I field

Aoun® Z gus
Al,n z (&—L%) 9”.5

Aons 5T (ke BEE Aot - 558 G

and in general

mn

S LS (e B e (BE) <o (e el L D) s
"

and for Type 1I field

"H’l Z’P ns

2(4- ) f s

A /2(,& (L*?_Lr)(-'k- - ("Hrw) Ln,s
and in general

. (n ne (*SP\B‘
Am,n® sz:(*"%)(‘ﬁ'/"%')‘"(’ﬂ-m-n AT

B. The Equilibrium Orbit

The first step in determining particle motion in the accelerator
is to find the equilibrium orbit, i.e., find a periodic solution x = x ().
One starts with the Lagrangian describing the particle motion in

(2)

the median plane

L= L3 [\Imx)‘»r x* + Eo%'o[xlA” “HQAG]})
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where « = e:;Bc | X = I.:F_E
/ d X
X = 78

Expanding the Lagrangian in terms of x and x' gives(z)

[ 1+X+ 45X - 4 xx R [XAr+<'”‘)A6]

[

The approximate equation of motion derivable from this approximate
Lagrangian is

) 2 I %
X"z |+ 45X +xx+ 5 (1+X) B;

Inserting the expression for Bz gives:

For Type 1 field:

(’ﬁf’ ‘yHS) ‘ng
X= it Y xx' =« 2 f’('“‘) j"'s} e
For Type II field: (k- t."_*.ﬁ.E).";] in6
X"s 14K x4 xx'= %Zg“*") jns}

-1
Expanding (l 4»)()g < [] + Q)H. g.gi-—) x‘-‘,.. . ]
gives for the equation of motion

X'z 1+5 X Fxx'- D [Bon + BynX+ B,.X't-]€

nd
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where for Type I field

B.,n-: Z In,s
Z(%u LB ) g
B, n -LZ(JH-/ ¢—N—ﬂ)(4€- )jns

and in general

L 3 et 52 (k5 o (emia - 5) s

and for Type II field
BO,'L = Z /e'l-S
3

n= T (hei- T s
3
n n+sp)T
Bun=k (Ari-1 SE2T)(A- | G2 ) A
s
and in general

T (nfsf)r
M=-',;,"Z ko1t SN (A1 G ) e e (omia= LT ) A

For the equilibrium orbit x = x (8) must be a periodic function, so

that we may expand x in a Fourier series,

X= 5 Ko

ne-0

Inserting this into the equation of motion and the use of harmonic

balance yields

"H;Xn: Cs-o,n."’(Bo,n— X Z_ Br,m Xh-m
- }i ZM(n+m)X”_mxm"O< z B.),m Xn-m—rxr+ o ¢

10
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In order to arrive at an approximate solution,(z) we will substitute
the ith approximation in the right hand side and determine the (i + 1)th
approximation from the left hand side; also we will choose the zeroth
approximation equal to zero. We will choose x5 = 0 thus specifying the
value of X and hence the value of ro,. This gives for the first approx-

imation xn, 1

Bo, L

Since non-linear terms in x, are small, we will neglect them in

making the second approximation x,, , and then it follows that

A

Xp2= {Bo.n_‘f X

(h-m)*

Bl. m Bo,n-m }

min

If the process of successive apprxomation is continued and more
and more terms included, then higher and higher powers of X enter
the solution. There are therefore an infinite number of values for X .
However, most of these are not of practical interest, since } °(I >>I
and consequently the circumference factor is very large. Thus keeping

1
only terms through & gives the quadratic equation
2 Bo -m - -
5 S [Bymtk Bom]t* B, =/ =0
mrgu

. C. Linear Equations of Motion

Let the radius vector r be given by
A - o -
r=r,+XxXn +%b

11
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-h . . sqs . . . .
where T is the radius vector of the equilibrium orbit, T is a unit

vector in the median plane perpendicular to the equilibrium orbit, and

dn

b is a unit vector perpendicular to the median plane.

Then the linearized
equations of motion are(s)

wre_L:__Es.) [
he ( (

evaluated at [ = Ye

- (5.32) &

evaluatedat ' = fe

e
Denoting B,2 on the equilibrium orbit by B z

_L__E e_e ({n?
e P B, = & B.2 junc

ams
where ¥V 2 ——

. and s is the length measured along the

equilibrium orbit, and s, is the total length of the equilibrium orbit
around the machine. Observe that
c

o 38"_9_802 in?
" T @ Bx - P R LIn©
and hence that

21 S
| e -in
dom=-ivB, §, B2 € A7

an e .
L 98, ¥
3/,11." 2T B, D:a-i"e Jd?

12
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1. Relationship Between dt and de

. 42 ds - d? ds
Adv= 35 75 dAé substituting for e d 73
yields:
zrr A1 2
d¥= d-l Y+ x" de
Expanding \[ (1+x)°%+ x'Z‘ in terms of x and x' yields:
/2
d 27 = 4x o o} de
or
d7 _ armr, ”
X ATh 4 xt K g
de ° .
no
Substituting for x the sum > X, C yields
n

d’j,v ATy Ln
50 SR [T e 3 (g e e )

n¥o

o
A Y
Sez T, f\r(ﬁfx)% A d 8
o
then an

S.x T, L (HH'&X'Z)AO

Since

or

s x AT, ;; - Zm’X—mlxmz

one obtains |
1Tr, .
~ 2
S, D - 'QER m X-me] J

13
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and hence .
Js T (Xumk 7,000 Xn Yoo ) €77
7e Tt = x|

/ - »/ﬁ iy‘m1 X-me,

since x, is small compared to one it can be neglected. Notice that
while x, is neglected compared to one, neither k x, or %’v X, is

neglected compared to one.

4}
a6 )

Hence

and 2

Jon x - {‘"985
4 n 3t B, d—a—i—e e

2. Relationship between X and x

The geometry of the equilibrium orbit is indicated in Fig. 3, from

which we obtain:

14



. - ds
Since reX r, and -5 = h \,(H-x)‘;-x" <y,

QU
w

Hence

S °~[
©
3
m'f
®
S
Q.
le)
o]
0
-8
b

@
»
-

%l
w
»
o
N
2
n
—
[\
o3
jo B

€
IB, 3B, or 2B
25X  ar 2% ' 36 2

or e
aBi_\'_I_ng
2L ~ h X
Consequently T .
o [38; (n®
3’)'1-" v?n-Bo > ax c Jﬁ

o
[, ¥
"

11

tno
Substituting for x the sum Z X, €
. n

e
magnetic field on the equilibrium orbit, B.z,

€
evaluated on the equilibrium orbit, %—B—L
X

and

15

and the ——
X

28,

¢
Using these values for ﬁ » and .s.x—

b Aot EAtbe 5 A Kot ]

MURA-434

- B, Z fﬂo,n FARX tAXT m}e‘”

>% - B Z {Al,n +l/4,,nX+3A3,nX1r---}eme

yields the

4
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3un= (A, #ZM-a X+ BJ,Zr Apetor X Kot ]

The linear equations of motion now become:

€ 8 (o ., _
dsv. 'f'Z[ %30,»«30,;0#; +-C—¥-F:3‘)n8 x"“o

Since 0
My, “ ~ I
Se - I" fm" MX
SX sk L
51. - r;t d : ~ y_ot deg

- wmanspey As ——
LR AR R A SR
then a p
% in _
it lpemx=0
and

det "
where D, = [ 0(1 ;:’MM 3a,n-m + £ 3',n]

and En: - &£ 3,,"

16
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D. Treatment of the Special Case for Type I Field

The special case treated is the one for which one can neglect the
field harmonics greater than or equal to q/2 for a spiral sector acceler-
ator without radial straight sections, where q is equal to p divided by

the greatest common divisor of p and N. The results of Appendix II

show that for Type I field and the special case A, , and Bm, n €qual
zero unless n =r N - sp where r and s are zero, or positive or
negative integers. It also shows that:
tspt
AM;rN sr 7( (f A6 r,S)G
and tsp
Bm,ru—sp = Fm ( P, a6, r, s) €
The equation for o is:
2 o - =
1Y Benfp,ty B, ]r B, -] =0
" h
Since Bp,, , =0 unless n=rN - sp
B"t Z ﬂ_ L
[B,Jn?; Bc,\] (yN- $P)1' B.Arn—sp t A Bc,rw'sr
— A@A—Y -3 l i
- LA )[F(M@,H)*S.FO(P,A@"’”]
(rN_ 5P )‘). s J
r,s
. Bo, [ .
Since Z Bun* “ B, . ] is independent of T
n
and B, .= F, (P 86,00 J is independent of T , it necessarily

follows that o is independent of 7 -and A= X(P, 46)
| 17
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The expression for Xy is:

- OL Iym nw
X It{Bo,anz—-———-—B, £ M}

mkn  (h=m)*

Since Bm" n=0unless n=rN - sp

Z Bi,m Bon-m _ Z B:,w-ﬂ-r Be,n-(tn-xp)
Q= m ) -

man 2, A [""(t“""‘f’)]z

and since BO e (tN ap)z= 0 unless
¥

n-(¢ N-mp)z PN -5 of =¥ N-5P,

and also B = 0 unless n =r N - sp, therefore x

o, n =0 unless n=rN -sp

n

and
X - _2_(____ Z B»,M—Mp Bo, (r=tyN= (S~ a)p
ruest ™ Grnespre | Boruesp + X (— " [r-t)N - (s-x)p]?

or, substituting for the B's yields

o v CaspT
Kro-sp® Focraers) e 4

(VN-SP)‘

t(s-ujpT

or
+°<Z F(pa0,tu) €T Flpnort su)e
[ty v (somyp

and hence

Kow-sp = H(P A6,v,s) €

Since x‘(: O unless ¢z { N-up

; Al, net X,( = .‘Z /4;, neftN-axp) \K tN-acp
)M

18

LspT

then
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The expression for xy is:

K% T Bunr a T S e |

mxn (h-m)*

Since Bm, n=0unless n=rN - sp

Z B';”’ Bo,n"" - Bl,tM'/««p Bo,n-(tN'MP)
- 3
min b= m) X, i [n- (tn-ap)]?

and since Bo n-EtN=-ap)= O unless
b

n-EN-up): F'N-SPp oF =Y N-SP,

and also B

o.n°= 0 unless n=rN - sp, therefore x

n =0 unless n=rN -sp

and
X - X Z 8‘,t~',up Bo, Lr-tyN= (Smac)p
ruesp = Grespr ) Borw-sp + X (—  [r-t)N = (s-x)p]?

or, substituting for the B's yields

T

v i
er‘SP: Fp(?, ABJ r,S) € 7 "'

(VM'SP.)1

F PT
+°(Z (PAB'!'u)E F(P/_\é}r-i/s-;&»)e
[(V* )N - (s,u)p]"

L(s-ujpT

and hence

Kramsp H(20,m5) €

Since X_{Z O unless A= tN-up
then

; /4/,, et X.e d fZ A:, n-(tN'MP) \X tN'MP
/Aw

18

tspT
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The expression for xy is:

% B’H’\ s,
)(n Iz{Bo.nTo(Z—_-_rL_m}

o

mgn  (h=m)?*

Since Bm, n=0unless n=rN - sp

2 Bun Bonr B tw-sp Bop-(ewmen

min b= m Z, v [h-(tN-Mp)]z

‘and since ch H'(fN‘MP) =0 unless

n-(kN-up)y: p'N-Sp of h=r N-Sp,

and also B, ,, =0 unless n=rN - sp, therefore x, = 0 unless n=rN -sp

n

and

X - d 8!, fN‘MP Bol (V"t)N"S'M)P
rn-sp (rpmsp) ) Borw-sp + 24 —
P rAoSP [ Cir-£IN = (s-+)p]

or, substituting for the B's yields

spT

ad , i
Kru-sp® F.(rasrs) e +

(v v-sp)°

L{s-ujpT

tupT
+ o Z}F,(r,ae,t,u.) e F(poe,ri s-x)€
L, [(V‘*)N'(S'M)P]I

and hence

¢
XrN_SP: H(p, a6,r.s) ¢

Since X_('-: O unless gz {N-up
then

; A/, net X.‘( = *Z ”1, n-(tN'MP) y tN-4sp
/Anu

18

spT



and since A iy ne (EN=AP) =0 unless n=rN-5p

therefore ZAUM”" )(4 0 unless p-=rnN-Sp
Similarly
2"42’”"? X~€ -0
unless
nz ¢y N-5SP
A= AN-mp

Z Az'h-}?'m X-& XM:O
L. m

unless
= rN-SP
A= t N-puP
m= ZN"lff
and

Z As, he£=m X< Xn 0
HLem

MURA-434

unless
ns yN-sp
Az th-up
m= gN =
Therefore 3"‘“ and ’3,) r equal zero unless n =rN - sp.

Substituting for Ap, , and for x, yields

Forvn-sp ™ {{O(MO, s+ ; £ a8, y-t,s-bM)H(p,ne,i,M) +

+ Z 'Fz (P) A8, Y'-t-z, gemnm1r) H (I’,AG, t M)H(p)[w)z‘v) + .o.} e

tMlzl“f

19

ispT
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and

dnrN-sp= {er.aems) + 2D . (pae,rt ey Hpagt ) +
) 4n

T 32‘& (f*, 46 r-t-g ,S‘M"")H(P,Aejt’M)H(ﬂ A&,z, v') '} €‘SPT

‘LJ‘MJZ:V

and hence

Lspt
30,”\:-59 = T(P,Aé,r. s) €

and

LspT
3')"”’5” - L (PJAB,",S)E

It thus follows that:

[0(7- %jo,m jo,n‘m + 9( 3')"] - O

unless
h= YN-5§ PJ
En: - °< jl,n =0
unless _
ns rN-s PJ
_ | ispT
DrN—sp'M(F,Aa,"'S) < )
and .
. LSPpT
E"NSP: Q(P,AO r's)e .
From Vogt-Nilsen's formulas: (4)
" _ Tlace 20VB, D+ D.
e TF = coeanm VD, TS, e

o T 1= coqanVE, = "%#—EZ E4 E_4
? bR
20
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where V;\* is the phase change per revolution for radial betatron
oscillations, Va* is the phase change per revolution for vertical
betatron oscillations, Ty®= 2T 2y and V—y LS ]1"1}:[

Since D) and Ej equal zero unless k =rN - sp, then it follows

that

TTM an \J—ﬁo D - D.
% - rN-5P ryvEsp
(e TX - OOQ J,T Dc a \.’-Bo - (HV—SPV - 4 Da

and

ﬂmin\ﬁo Z Evi.sp E-rmsr
Coe T *‘:—: ¢ T em—
4 e TV E, P (rusmr- 4.

r,$

Since D, and Eo are independent of T ,

DHPSP D-MH’SL - M‘P;AE;T)SJM(P/DG) -Y, ‘5)

Cru-spyt= 40, R
kS rs [ru-sp]* - 4D,

is independent of 7" and

is independent of 7" , it necessarily follows that V}" and V:;’* are
independent of T~ . Since AdT =z - {:—i, dr , the change in the values
of V'x* and V'?’* due to a change in 7" are proportional to the change
in V}* and V’ty* due to a change in the radius r. Therefore it must follow
that Ty ¥and V}* and hence 1& and 7—% are independent of the radius r.

E. Treatment of the Special Case for Type II Field

The results of Appendix II show that for Type II field and the special

case where one neglects harmonics greater than or equal to /2, Bm n

21
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equal zero unless n =r N - sp where r and s are zero or positive or

negative integers. It shows that:

LrNCE-DNT [ spT
Am,r»/-sr"' Rm (P,AQ, r.s)e (4

trN(r-/)T ispr
mrN Sf T (PnAe C

The equation for O( is:

Z B”‘ [8,,+% Bup] + ol Bop=/ = 0

Since B,, ,, =0 unless n=rN - sp

BO,'n Z o rﬂfsp [ ‘l
nt [ B'Jn Bo, ] rN SP)L BI,"N',’JF* ‘i Ba,rﬂ‘ff’

T, (p ae,-v, -5
= Z t’(r;/_sJP)z ) [ﬂ(P)AGJrIS)"'%.Tb.(P'Ae’Y.S)]

r.s

~Since

Z B°' I;n ’LBon]

is independent of 7T and Bb’o = To ( P, AQ, o,a) is independent of T ,
it necessarily follows that K is independent of 7~ and «= 0(( P, AB)
The expression for x, is:

- °< B‘gm Bo,n-m
Xn. - T" 580”1 + O( Z (n-m)"

min

22
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Since By pn =0 unless n=rN - sp

Z Bo,m Bo pemo . B“tN-MP BD)H"(tw"“F’)
U\-m\“- Z

man L n- (tN=p)] 2

£, A

. ' - _ - o<
and since Bo,n-(tN‘MP)“‘o unless N=-(t N-up)= F'N-SP
or n=rN - sp and Bo,n = 0 unless n=rN - sp, therefore x, =0

unless n=rN - sp and

- °< " ¢ (r- “\s-
XrN-Sf’- {B oy rN-sp T Z Putres B e

(rN- SF)‘L [(Y'i)N'(S'M)P]l

or substituting for the B's

x*“ 5P (ene sp)‘{T(Me, r,5) e MMT@“”

NN T uApT iGN - T L§u)p?
€

T(PAB ret, 4 €

+ o Z T(rﬂe-t W) €

b, [lret)n- (s-4)p]"

hence

: - e N(E-IYT _ispT
XrN—SP - u (P,AG,P.S) € f’ F

Since Xl unless _f = tN-up , then

; AU n=4£ Xa? = Z A i,ne{t N-sxap) XtN‘MP

t,
and since A,, n- (t N-p) = O unless n = r N - sp, therefore

»;A:,n-l )‘-( =0 unless n=rN - sp.

23
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Similarly

z A.‘l.n-—«e Y.{ -0

3
unless

hz rN=§pP
,@: fN‘/‘-\vP 5

Tl X K= O

&ym
unless
h= rN-$SPp
A 2 AN-MP
me -
gN-=vP -,

and
Z As' Hodom y-e Xm -0
A, m

unless
hs FN-5$

Az tN-mP
m: IN-VP

therefore 3 o,n and 3,, n  equal zero unless n=rN - sp.

Substituting for Apm, n and for xp yields

Za,m-s,, : { R,(P,A@,r.s) + *Z- R.(r,ag)...z‘ §v an) U(F,M,-t,.«) +

+ Z R;([",Ab’r—fz’)s-u-v) u<ﬁlA6, f:“)U(P,M‘;Z,V)-} . eLrN(r.:)TCLSPT

t, M, z,‘\f
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and

3l)rN'5P: {K‘<PJA6JY.!5>+ ZZ RQ(?JAQJ r‘tfde)U<r'A€) tlu) +
£,

LrNer-NT (spT

1;"‘"!21”

']L 3 ZR; (P,AO, r-f-s)s-»-v) u<ﬁA5,t,“)u ('J”Ji:")"' ' u}e

and hence
irNCr-ny
- spT
Zd}rN'Sf-\/o(F:Ae)r»S)e e‘P
and
irN(E-) T ispT
3/,"”"5P= v‘(P/AG, r,S)e c

it thus follows that

Dh - [.°<1 g j‘,m}b,n-m + j'm]: 0
unless n=rN - sp,

En.‘ Edj’)“] =0

unless n=rN - sp,

LrNOY-))T jepT
DYN-SF: W(Plua; rls),c e P

and

Erv-co = Yinagrs) €

LeNCT-0NT  ispT
e
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From Vogt-Nielsen's formulas:(4)

% 'ITMQH\”D, D.AD-.A
cou Ty = conan - ——
X QJBA %2%1_4,30

4 el :!/T\E‘
C/NT;, = mﬂﬂ\ﬁ, - en” - _'::_ﬁ__fi
VE #-4E
'ﬁ [
Since Dk and Ej; equal zero unless k = r N - sp, then it follows
that:
T an 21D, Drv-sp D-n‘f?_p_

Coc V‘X*: C&ozﬂ\)’ﬁo"

2.p, — (rv-5p)™-4 D,
and ~
M aindTIVE, Eviesy E_W”F

*
e 07 = AR -
8 : am \,Ea 2 \[’Eo 5 (rn-sp)t=4q F,

1

Since D, and Eq are independent of T ,
Z Drn-sp D-rwasp W (p, 88, r.sy W(F 86,-7,-5)
(ynv-sp)*-4D, (rN-gp)t = 4W(n160,0)

Ys
/ r,s

is independent of “T , and

Ew-sp E-rﬂrﬁf’_ Z Y(P,L\é, rs) Y(P,Aérr,":)

(rN-$p)* =4 E, - (rn-sp)t = G Y(p, 08, 0,0)

F s
s s ™ . . ¥ v-*
is independent of , it necessarily follows that {Ux" and y are
. . 2 .
independent of T° . Since JT7T=z - o d K the change in the
values of Vx* and Q’,‘y* due to a change in 7 are proportional to the
change in Yx* and Vy* due to a change in the radius r. Therefore
it must follow that Vx* and V‘g* and hence ‘I/Ox and 4 are

7

independent of the radius r.
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V. APPENDICES

A. Magnetic Field in Median Plane

For Type I field 822"86 (H"X)‘A Z Qm e£m¢ except
m

for a region A8 idth on both sides of the center of a radial straight

<

section where Bi =0 . We expand Bé in the Fourier series

B2, Z A€’

where .. 48
‘}\“"'(Hx)ﬂé‘ QZM¢ —inb
nam By | e Pt dp 4
m

P! T+ 40

,, } , an ¥y
-l— Z ( "etmﬁétnaa,9+£ ezm¢etn90/6

MAS LY 1) 42 .

Since
@ = b 3m Ln (14x)
L m

"o (1ex) ™ e

J

and therefore

m
p-1 T 3’,’%,”%% am
m-n) G tim=n) g
tZ | e 4| o€ e
Fe ! " g 2 a@
Ty 2 (v ,)4» _A_f l+ Pﬁ(P-I)" /{'
2l
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Performing the indicated integrations yields

A= 0+x 9 [ - &E]

4 n ({m=n) T ) A6
" e e “htmen)e= L
T z (1+x)" B § — [e el 05 -2)X

myn AL (men)
X | - eL(m-n)&ﬂ'
| - Ei(m-n)lﬁ‘;
Since
i (m-n)2T
[1- ¢ _
2(m*'7)°»‘/7§’ - 0 if Mm-n ’R SP
|- €
and  (men) 2T
,—
i!m'm)?:% ~ P if p-n = SP
| = €

for positive or negative integer s, one obtains for Type I field

Aoz (14X ) i Q, [1- ]
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imY(p-rae)
For Type Il field [3;°

af
JIr=-p A

4
-B. (i) 7 Qn€
yt
where ¥ = and r is an integer equal to number of
straight sections between the region under consideration and the origin.
Expanding B 3 in a Fourier series yields

.8, ch‘

where e

- 'n(M)*Z\gm 5 m¥ S g0 F

neé

ar

' -ing . imr$ =18 _im¥poe
etmzr¢e mee LmTrAi,9+ o' # im¥p

-l T'flny-, ¢

e b

el 14 3%(r'/) * ég T+ 2(9-/)‘#%@
Since ¢: e_____/gn(HX)J
im¥ ¢ R LMY 6
et (XY
and therefore
‘ - 48
/ (4= 55) 1
'>\ 2 9./17 (1tx) i (mT=n) 8 +
n m d6
m v
1"?% Ve @—e- 2

p-!
Fe1 T+ 1(»‘ /]r

t(M)‘-n)B -arnrmede _f,

L{m¥y=~n)a
¢ A6

T+l ., AR
P(P ‘)f«-i- ]

- impYra
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Performing the indicated integrations,

i} - (i flc)
A, = cﬁ’r?cﬂ%)tf (1) (3 [1- pae]
- rr-n)r22) i (ny-nX 8- 1)
+Z(;+x @m(:m(m-n) )(/"@ (rrRAE )X

hﬁﬂ

X(I-(i’

} -

t{m-n)arm

0 /f i X ]
where &j is the Kronecker delta J <

and r and t equal zero or any positive or negative 1nteger, also since
| - c(w n}ay // "“"%SP

( - I(M‘“)’P/> < p Af menz Sp

for zero, positive, or negative integer s then

>\ J qrn.t (H'X) LWQ%_ "%%?] +

(—l- M) .,[stp)a‘-n-]ﬁ'-Ag]
Z( 1+X) Q ( X
nsp\ 21 Ta+sp ¥-n)

5* h-n¥
Py

X ( cin[r-ﬂ[“'l%]
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B. Special Case

In the following argument s, n, r, t, and u are integers or zero.

Given

N

Tn.o
9 ¢

[ 2] 6,

a2 n
(— Sn ——“‘S;Ae (SpT
T ¢ Qnrsp

and Qn"-'-‘o unless n =rN.

If one assumes that QHJ 20 for|rl 2 —Z where q equals p

divided by the greatest common divisor of p and N, then it follows

/ 4

that if j’h ¢’ Y Othen In,s" = Ounless 5% s

Proof:
3"1,5' 'x- O implies that Qms’/: i 0
oo - L ¥
Qh’r p implies that nN+sp= N Jvi¢ %4
- . vt N I Y
Similarly jn ¢“X ¢ implies that Nn+s f = 2

n+sp=rN
nes*p=tn implies that (s-§')pz(t-r) N

If A° is the greatest common divisor of p and N, then

W 4 —E - _t_ r- ﬁ,—
(5 S )‘”If ( ) v where Py and == are relatively
“r .
prime numbers.
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E

N o
Since r and 7. are relatively prime numbers,

r\
P
(f"r): M ar - /""6
Since <Yy - ; h Wz ¢
14 < Za ')rl 5/2. ,;‘ (1.‘ r)<z ence 1z (
. " / _./
L. S -5 =06 arvd o
For Type 1 field
[1-+= +Z( - “)‘{\'/’Q )
o Z Inys = j\ﬂ - 1”3
Since for any particular value of n at the most only one value of
in s % 0 then the 7 7 #s  contains only one term. Also if for
Y1 s' % (, then n + sp = rN and therefore n =rN-spif A, . .}
K From the expression for A «,rt, it is obvious that
LspT
Am rN-Sp T { (P pe,rs) €
It can similarly be shown that -
Al,)‘N'iP = { (f, AC’;"‘ <
Aer g, J ( '), /\! »}* A
/43,1»/“3[’ - 43 (panmir-} o
(ST
Bé) "M SP s Fc ( P» AC),' \}) t .
. : - LEP T
By ez By (1070 ) €
and in general
oo t5pd
Am. ra-s {m (r, he, von)
~ ' g
[, conp = Fu Cyone sk
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In the following argument s, n, r, t, and u are integers or zero.

Given

o weny = pae
h, L’:—’l—r- J o0 I = _—E
pY nrp .é}..tf Y pel

_} Pe"‘ Covspy-r] ¢ } ¢ nly-1)(46" a/r[;) e "[‘"”P)‘\”'ﬂ T
-C
Cear N L] "
8%
My

and Q" = O unless n=rN.

If we assume QW =0 for |r|2 ?/1 where q equals p divided
by the greatest common divisor of p and N, then it follows that if
- I
vjhlsl 0 then ,ﬂm ¢ =0 unless ST5° .

Proof:
i[ertsp)r-n]T

/011.5= ﬁ (p 26, 1 s) @nrspe

/pn's/# O implies that Q"’ yf,ag O

' 2
ans’f‘% O implies that N+ sp*= YN ri< %

Similarly jn' s’ 4% (0 implies that nfgkp - tN It 3/7,

h+s'p =N
H"'sfl:;tN} implies that (s”—s’)P=(t'Y‘)N

If ~-is the greatest common divisor of p and N, then
-ry &
(s"-s') % = (t-r) %
where _1)',;_ and:l/g are relatively prime numbers.
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Since pr and ;’%,, are relatively prime numbers,

(+-v)z Bz oang
Since jt}<‘54 and |r|< Z/;_ then({-«r)<8 hence A=z 0

I’l S”' SII o a"\'e/ s/,: s'/
For Type II field

hon= e T Flrsons)fuop€
S s )

Since for any particular value of n at the most only one value of
j n s 5‘ ¢, then the Zj n, s contains only one term. Also if for
jn, ¢/¥0, then n + sp = r N and therefore if Ao.n * O, n=rN - sp.

From the expression for A o, n it is obvious that

| c[ynvy-rNtsp]l T
At, FNSP T Ro(P/ A, 5) €

It can similarly be shown that in general

o i Crvparnesp] T
Am.rN'JP: R”‘”’M’l’))e

and

rne-rNvesp] T
Bm)m-sf * Tm (P, Ao, S) I~

| rNW-i)TEL SpT

L1}

o AM;I’I‘/’SP RM\(P/A&JF'S) €

Bm,rN'SP

o irnvir-yt spT
T, (pae, sy e ¢
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