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ABSTRACT 

It is shown that for a continuous medium with conservative interactions 

the density in six-dimensional phase space is preserved as one follows the 

motion of the medium. 
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I. INTRODUCTION 

The study of the motion of particles in an accelerator becomes a many

.body problem when the interactions between particles are taken into account. 

It is thus important to investigate the possibility of establishing the validity-

or approximate validity--of general dynamical theorems applicable to the 

n-body problem. Such a powerful theorem is the theorem proved here to be 

rigorously valid for continuous media, and asserted to be an extremely good 

approximate theorem for particles in an accelerator. 

Liouville's theorem is a theorem which asserts that in a ZfN dimensional 

space (f is the number of degrees of freedom of one particle) spanned by the 

coordinates and momenta of all particles (called I space), the density in 

phase is a constant as one moves along with any phase point. It is thus a 

statement about the density of points; each point representing a dynamical 

system. The systems constitute an ensemble and of course do not interact. 

The theorem proven here refers to a system of many interacting particles, 

and asserts that in the Zf-dimensional space spanned by a single system of 

coordinates and momenta (called a !' space), the density in phase is a constant 

as one moves along with any phase point. It is thus a statement about the 

behavior of interacting particles, and thus really quite different from Liouville's 

theorem. 

The validity of the theorem, as well as the limits of its validity, may 

readily be seen by the following intuitive argument: 

Consider first a system of many particles, N. Suppose these particles 

are subject to external forces (which may even be time dependent), but there 
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are no interactions between the particles. Clearly density in phase in ~ 

I""" 

space is a constant of the motion as one follows the motion of a phase point. 

This follows then immediately from Liouville's Theorem in 'I space, since 

with no interactions between particles fA-' space for N particles is simply 

i space for a single particle. 

Consider now a system of a great many particles N, with interactions 

between the particles. Imagine that the solution has been obtained so that we 

know the motion of all the particles as a function of time. Concentrate now on 

a "small" number of particles n, which initially are localized in? space. 

We will define what "small" means shortly. Let all the other particles move 

along the trajectories appropriate to the solution of the N-body problem. If 

the interactions between one of the particles and the n particles can be neglected 

compared to the interactions between the N-n particles and one particle, then 

these particles are subject to "external forces" and by the first case the density 

in t space is a constant as one moves along with the sample group of n 

particles. This is clearly true for any sample. and hence the theorem is 

established. 

That is, as long as one has sufficient particles N, that a sample can be 

obtained of sufficiently small number of particles n, that the interactions be

tween these particles and one of their number is negligible compared to the 

interactions between one of these particles and the N-n particles, while at 

the same time n is sufficiently large that fluctuation phenomena can be 

neglected, then the theorem is valid. In the rigorous proof given in the next 

section, the limit of a continuous medium is taken so that fluctuation phenomena 
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do not exist. For applications to particle accelerators where we consider a 

number of particles N (;'1013 this approximation is very valid. corresponding 
tr 

to neglect of particle-particle collisions which throw a particle out of the 

accelerator. but not neglecting long range electromagnetic interactions which 

are responsible for space-charge limits. plasma oscillations. beam-beam 

interactions. and possible two-stream amplification mechanisms. 

The practical importance of the theorem can be readily seen by limiting 

one's attention to systems which initially have a constant density in a restricted 

region of jA- space. and no particles outside this region. (This is determined 

by the injection mechanism. and is a reasonable approximation to most 

situations). In this case. the N-body problem is completely characterized 

by the behavior of the boundary surface as a function of time. This surface 

satisfies a partial differential integral equation of the first order in at most 

2f independent variables. so that the N-body problem«fN) differential 

equations of the second order) is greatly simplified. In particular. for 

problems' involving one degree of freedom. the equation for the boundary 

curve as a function of time and one coordinate is quite amenable to analysis. 

IT. FORMAL PROOF 

Let A i (i = 1. ---, 2f.) be parameters labelling the particles of the 

medium (2 f dimensional phase space; this is the /'-' space). 

dn = cr d \. 1 ... d }... Zf =number of particles in 'volume' element d~ . 

0- = constant 'density' with respect to A 

Let ~ (>..) = momentum density 

= CTft<. 
$IX (.\) =position of particle A .� 
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The Hamiltonian is 

where h and V do not depend explicitly on A , and the equations of motion are 

SH 
JJCrAJ 

': 

Let us introduce a condensed notation: 

? 

= - 71; ,S = f+I J ''') ~/· 

The equations of motion may be written 

where 

= • s ': J) . ") f . 
~ S)t+ s 

, S I,,,. Jf:t
'= -J€f';'$J S 

0 , otherwise. = 
~st 
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• 
Clearly €'St is antisymmetric. Now the density f (~J 7r) 

in phase space is given by 

= erdA 

udA.or 

/ ..Lx Jacobian 

! = cr 

-.l..x det / ;; Is I- ~.cr 

::: 
/ A J say.er 

The inverse matrix to ;) f0 Al' is of course 

~ ?~lan~ the adjoint to ~ ! sh~ / is . Thus"";) Is 
we have for the rate of change of ,I) 

/ 
along a trajectory ( ,\ =constant): 

I 

-= d /criJ;J / 

u 
6 

).,::: Co ",,s t A VI t 

- / <'(L1 'dA;) o~fs 
cr t> d f s ot ~Ai 

But 
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=� 

= 0 

since e is antisymmetric and M is symmetric. So the density in )-t space 

does indeed remain constant along any trajectory. 
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