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ABSTRACT |
The theory given in MURA-IOé: of rf acceleration near the transition
~ energy is generalized to apply to moving coordinates synchroheus with a freqﬁency
modulated rf voltage. Fermulas are developed far fixed points and separatrices
in the rf phase plane, and for freqizgncies of phase csciliatinns. Digital computer
studies of the acceleration process have been made and resulting rf phase plots
are prqqentgd; Computed bucket areas are given as functions of the parameters
77 , [ introduced in MURA-106. A criterion is formulated for the appli-

cability of the adiabatic appreximation in the neighborhmd of the transition energy.
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Symon and Sessler! have shown that the behavior of a particle in an idealized

accelerator dan be described by a Hamiltonian function of the form

(1)

H*‘=2/7’f(b’)' '9%!“/ * ;]f cos (4 ™)
where L\/:' G_L_E. |
o | /f ()

is the harmonic number

| )) - is the frequency of the oscillator
V is the voltage across the gap

@* ‘is the angular coordinate in a cylindrical phase space rotating
' at synchronous. frequency ;

{( E) - i the frequency of revolution of a particle at energy E.
ancmperform an additional canonical transformation specified by the generating
~ function : 2 - |
I =0T (W W )
| )
| *x |
where V - h/__ M(t} |
(4)
‘and W_ isthe synchronous value of W.
f\
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/™ ' The Hamiltonian is then rewritten as

H 2o Elw) -2ry ™, Y o3 (4% 7»;’4/,,@»7

+ (5)

va expand. E(W) in a Taylor series about Wy

FW)= &, + £ E W s 2EW -

‘ From Eq ‘(‘53) of MURA- 106 we have near transition
f G )L (- UML)
e ( -5 ) (/-6 e

* ,

f f(/ “/*7[/ | @

(6)

e o | (®
‘ ,Fsgf; (-a(W—%)ﬂj — 3“14*7‘_‘;3
o -ZE,; . ‘W.SA %E:
| (9)
v, 3
f.= 4 -2)
~ . ‘kE*-L (10)
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m The Hamiltonian now takes the form:
‘ 2.

B 2t an oW W ean ow W 977‘_-[? S
| ,kE kaf 3’/?55

-ﬂ‘ﬂ")),'/*‘ﬂ %@* ‘z *
St ( /*/h caa@&)

4,

(11)

If we introduce the variables |
-\j = G ( W*" h/-:) | (12)
' N | C&"‘ ']T’ - ~—4}7 CE’i*.

T=aVt

(13)

(14)

where

RELV

on (Lrh L

(15)

and niakeathe abbreviations

"7 ke .(' mf;) (16)
e We ,
-V

(17)
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| %
g- ava)t (45)”

then the Hamiltonian ({° (" y ‘ ? T ) has the form

C"“-‘h(av) H % - 'h **-’-y 7y+dasf+f’cf

(19)
where we have omitted terms independent of y and ¢ . We see that y and ¢

(18)

are canonical variables after this change of scale, for

a_ -_-:)_H-M*QI -—a’_ﬁx’(_L _J_Q
'S 0 ow' ot T - &0 aV acP (20)

NPY Y- ) MR
a’[' 00" ot T W™ “V e)’j (21)

Note the change in the definition of (P here from MURA-106, where
' (P "',h e The coordinate of the reference point revolving in the accelerator
at frequency V/h is @ 2@ . From the equation of mortinn it can be seen
that the reference point crosses. the gap when VM -'A 6 =0 and the -
voltage is decreasing. For a particle at the reference point,
*
9 - IH » : x
x = 0= Vieen h 6™
oA 26 (22)
QY

r~ For small positive values. of ,/7 6* we want Y to be positive. A
particle with a cogpdinate (& > O  arrives at the gap before the reference
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pa_rticle. In order for the voltage to be paaiﬁve at this time, the reference
particle must crp8s the gap when the voitage is decreasing. If we set

cp s 7f-=J, e* , ? has the phygical meaning that it is the phase of tne“
veltage when the particle crosse's the gap. This can be clearly seen from the

following diagram.

vt

‘We can now investi(ate the properties of frequency modulated buckets near
transition, |
The condition for a fixed poi!it is
o o y | (23)

By differentiating Eq. (19) we find that the values of @ and y at the fixed

points are : ‘
9= sin”' P -
| (24)
’lj = X JQ'Y]
. (25)

From Eqs. (6), (12), (14), (16), and {(17) together with

/%’:765 (26)
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one can see that thevahwef y at the fixed point is just y,.

By expanding Eq {(18) in a Tayldr series about the fixed points, we can
determine the type of fixed point. If the Taylor series has elliptical form, the
pelnt is a stable fixed point. If the Taylor series has hyperbolic form, it is an
unstable fixed point. It can thus be seen that the unstable fixed point is in the
second quadrant below t‘nanai_tian and in the first quadrant apove.transitian. | The
fixed points are plotted as a fumction of 7' in Fig. 1.
| Substitution of the unstable fixed points in Eq. {19) gives the following

wvalues of C on the separatrices.
2 % -
C ’COS CP“+ FQ“" ‘3\/;7}2 “above transition (27)

C ‘360.5 CPM..'- r'Qu-" %/_2_7()% .belowtransitim (28)

wheré @u is the value of d at the unstable fixed point.

The properties of these frequency-modulated buckets near transition have
been examined by means of digital computer»studies, using the TTT program,
This program cémputes the energy increment gained by the particle each time it

crosses a gap.

AE = Vi(tN)sin @, -
where ty is'the time of arrival of the particle at the jib oscillator on the Ntb

‘revolution and (P iN mﬂm phase of the jth oscillator at the moment when. the

(’\ particle passes the gap on the NP revolution.
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~ The graphs of the buckets were obtained by using two gaps, one oscillating
sinuseidally with constant frequency and a maximum voltage V, and the sther not
oacillating but with a constant veltage of«—r" Vo- In this way we can obtain graphs
of a moving bucket in a fixed coordinate system. This can be seen by differentiating
Eq. {5) with respect to O *

% | | ‘
3\2/*-.- -gg,{ sinhB* W.s - Vs’ﬂ? ) WS

In an acceleratdr with two gaps as described above, the increase in energy per

(30)

unit time is

dE - fysind - frv

| -1 | (31)
a%/: Vsin@ -V = Vsind - W

Thus if _Q s 4 , the meti_on of the particles in a fixed coordinate system in

(32)

this accelerator with twe gaps, mie with constant frequency and the other non» .
oscillatory, is equivalent to the motion of particles in a coerdinaté system moving
with a rate W, in an accelerator with one frequency medulated gap of the same
voltage with Ws ry .
We have obtained graphs for buckets witha |* of .5, but the following
discussion is applicable to buckets with £r< | |
vrar‘lar‘e values of 'r) there e:iist separate buckets above and below the

transition energy as shown in Fig. 2 for ' = .5.
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These buckets correspond to W < > O . One should note that these two
buckets do not exist in a real accelerator at the same time however. Below
transition ))) O when W > Q© . but above transition, )} <0

when W‘ 2O . ¢ Ws < O . then these buckets would be re-
fleeted about the point ( W = W, ¢ % 0) as in Fig. 3. In an accelerator

then, ane of the buckets in Fig. 2 would be reflected about the point (W = Wg ¢ = 0),
It y D O . the bucket with E SF . 18 reflected and both buckets mave |
toward transition. I y < O th? bucket with t' < < Et‘ is reflected
and beth buckets move away from transition. | |

Ther»evia a value of ')7 = )7c ( r'!) for which the two values of €
become e_qﬁal. and the separate buckets merge, as shown in Fig. 4 for r-' = .5,
| 77 ¢ ™ay be found by setting the values of C in Eqs. (27) and (28) equal to
each other and solving graphically for 77 . A better method is to consider anly'
one of the buckets, either above or below transition, and solve Eq. (19) for the

values of y where 'Cp.-.- @S’ here @S is the value of @ at the stable

fixed point, Note that in a cubic equation of the form

x+ax+b ¥)

2
it b ( (o) there will be three real and unequal roots
4 sn
b" |
-‘T -itl = o there will be three real roots of which two at least

are equal The latter case corresponda to m}?‘

Accm'dingly we consider the bucket above transition. Using Eqs. (19) and

(27) we get +63 nljJ—CO-SC? +F'C?s= COSCP -\-"'CP“ 3

9
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“’ZLH—’YI11+COSCPS+T'@=COSCP +r-4) F’)’L)
, - | 3
By rearranging terms and making the substitutions

&u" - Qs

(34)

ws(pae—uS@s . s
Lj Grr]*jﬂ:ecosc@s-rdr‘(ac?s"\’*-‘iJ_V) -0

~ At '7) =7, »
@+ @) 00 [ (e )rmmsaﬂ

~ +3Ccss (fs rar(ad 5-71‘) "3Cr(2ds ) cos P
A

- ;aoosq9+3r-(2cﬂ ) 12r(ad) )005‘@:]%
c ["/—(9@5"’01'3 8/z cosPs |

"\  where @S is the value of (Q at the stable fixed point above transition.

10
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}E'quival‘ent« results would have been obtained if we had considered the bucket

below transition, The value of V] _ is plotted as a function of J7 in Fig. 5.
For (O ')’) 4 ’)’)C , the phase plot is similar to the one shown

in Fig. 6. Below transition the particles in buckets execute oscillations in phase

‘space in a counterclockwise direction. Above transition they oscillate in a clock-

wise direction. For Y’: O . the phase plot obtained from the digital computer

is aB shown in Figf 7.. : There is a small discrepancy here between digital com-

puter results and the forggoing analytical treatment in that, whereas no buckets

‘were predicted in the phase plot at Y) < O , small buckets were found to exist

in digital computations at Y] =0 , evenfor "= () , i.e., static buckets.

- The diserepancy can perhaps be attributed to the fact that in the analytical treat-

ment, the energy gained by the particle as it passes the gap is assumed to sccur
continuously as it travels around.the orbit. Investigations were made on the

digital computer for V" <O at =0 and [7 =.5. Itwas fmmdthat |
amall buckets continued to exist for both M= O and M =.5from 0O<7) <.04.
For Yl < = .06 there were no buckets, as predicted by the analytical treat=
r#ent. In Fig. 8 a graph is shown for the case Y] = - | , N =, s .

The area o of the buckets in )j - (_P ‘units as a function on] and |7
has been measured by the TTT program. The area in \/\/— @' units is then given
by the following formula | |

A= Lol
é 8
where a is defined in Eq. (15), and the function ¢ ( ’)’) | r') , the area in

)'j- (P units is plotted against Y] for various values of [ ' in Fig. 9.

11
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The frequency of phase oscillation may be found by expanding the
Hamiltonian about the stable fixed point and comparing the resultant form
with the Hamiltonian for a harmonic oscillator. The Hamiltonian expanded

about the stable fixed point is

S AL .

(39)
The Hamiltonian for a harmonic oscillator is
_ )
i B, L ¢ “ ;
L 9m 2 |
{40)
and the frequency of a harmonic oscillator is ' : s

)) ")
= e .
AT (41)

In comparison the frequency of phase oscillation in 2 units for small buckets is

))/o—.: 5177» [/I—F”/EVY%' "

(42)
Since L= 2-}'/ , the frequency of phase oscillation in T~ units is
t 7T
2
e b [T 7 TV
(43)

where a is deﬁne;l by Eq. (15)

The phase plots of frequency-modulated buckets do not represent the
motion of the particles unleﬁs the parameters 77 ) r' change slowly in com-
parison with the frequency .of phase oscillation. One can perhaps consider a

12
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plat of a bucket at a particular value of Tl meaningful if the time required for

a phase esciliation at that ¥) is equal to or greater than the time required to

‘accelerate the bucket from that point to transition. By equating these two times
-we cn determine a value of ’}7 = '}7 4 which we consider to be the division
between the adiabatic and the sudden regions. That is, if }7 > >'Y} | - the
parﬁclg behaves adiabaticauy with respect to the phase plots., If Y] < < 7] d’ ,

the transition to 77 = O can be regarded as sudden.

For a particle near transition, the time required for acceleration to

transition is

t- 4w or Z"a Ys (49

where ys is given by Eq. (25):

2 :
T = Z_)% | (45)

7
The square of the time required for one phase oscillation is, from Eq. (42)
>
T, = LI
P fr-r>lan (46)

Equating the times in Eqs. {45) and (46), we find

a= (2L

This value of 'Y] is plotted against |~ in Fig. 10. By comparing Fig. 10

(47)

with Fig. 5, we see for example that the concept of a critical value Y] ¢

which the buckets change their character has a physical meaning only if |7 < 0.2.

13
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Phage Plane at Transition - Moving Buckets
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