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ABSTRACT
 

The modification of the single particle theory of particles subject to radio 

frequency acceleration caused by electrostatic repulsion between particles is 

calculated. With the aid of an appropriate Hamiltonian the Boltzmann Equation 

is reduced to a one-dimens.ional integral equation for the case of a uniform particle 

densityfu"adi!n.ited region of phase space. For geometries typical of large scale 

accelerators operating below the transition energy this equation is approximated 

by an algebraic equation, and thus solved analytically. Computations are given of 

the "Iongitudinal space charge limit, " as well as the effect of space charge on the 

azimuthal bunching of a beam by all accelerating cavity. Numerical examples of 

these two effects are given for parameters typical of a 15 Bev symmetric radial 

sector fixed field accelerator, where the effects are found to be small. 

*Researchsupported in part by the Atomic Energy Commission, Contract No. 
AEC AT(ll-l) 384. 
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1. INTRODUCTION 

If a large number of particles are accumulated in a particle accelerator, then 

it is well known that the electrostatic and m.agnetic forces between the particles can 

have an important effect on the trajectories of particles. In particular the betatron 

oscillation frequencies will be modified in either a weak focusing! or a strong 

focusing2 accelerator, leading to a limit on the number of particles which can be 

accommodated in the accelerator. This effect will be referred to as the "transverse" 

space charge limit. It is the purpose of this paper to discuss the "longitudinal" 

space charge effect, namely the effect of space charge on the azimuthal distribution 

of particles in an accelerator as differentiated from the modifications space charge 

imposes upon the radial and axial motion of particles. The azimuthal position of 

particles becomes important when the particles are under the influence of radio 

frequency accelerating cavities such that phase stability3 is an important considera­

tion. The electrostatic repulsion between particles which dominates at low energies, 

leads in' most accelerators4 to a decrease of phase oscillation frequency which for 

sufficiently numerous particles will cause a lack of phase stability and hence a 

longitudinal space charge limit. 

In Section II the problem is stated rather generally with the aid of the Hamilton­

ian formulationS, 6 of the acceleration process. With the approximation that particle 

density is uniform in a limited region of phase space, the Boltzmann Equation is re­

duced to an integral equation for the particle density as a function of azimuth. This 

equation may be simply interpreted physically, and furthermore may be approximately 

reduced to an algebraic equation. 

2 
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r'- In Section III g~neral results for the longitudmal space charge limit are derived] 

and expressed in convenient graphical form. A numerical example is given which 

shows that for a particular 15 Bev symmetric radial sector fixed field accelerator 7 

the longitudinal space charge limit is unimportant in !"'omparison with the transverse 

spac. charge limit. In Section IV the effect of space charge on the bunching of 

particles in azimuth is investigated for the situation in which the number of particles 

is far less than the longitudinal space charge limit, but the electrostatic repulsion 

still affects the azamuthal bunching. By in~lud::Lg the transverse space charge limit, 

a voltage modulation program is derived that allows the maximum accelerating voltage 

consistent with a given amount of accelerated charge. A nu:merit.:d1example is given 

for the same accelerator discussed in Section III, and it is againfoun.. that for the 

o contemplated parameters the space charge effect is only a small correction. 

II. GENERAL FORMULATION 

a. Statement of the Problem 

We consider an assembly of particles of charge JZ., , rest energy I:::: o 

with some spatial density distribution in coordinates R . e , ~. Since we ignore 

both the coupling between betatron and synchrotron oscillations and the influence of 

synchrotron oscillations upon radius, only the distribution in fr is relevant. 8 We 

assume that a stationary density distribution is poaaible in the presence of space 

charge forces>' and we look for such a distribution. For present purposes a density 

distribution is staiionary in (f If to a sequence of observations repeated at the 

synchronous particle frequency f s it appears stationary. This is e.quivalent to 

r-.. describing it as stationary in the rotating cocr-dinate system of frequency f s used 

3
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r- in Reference 5. Within the density distribution the particles must individually 

execute phase oscillations in such a manner as to preserve the distribution in density. 

Par~icle acceleration may result from particle transit across a gap through a 

time varying potential difference V~z1'i F- t . Successive gap transits in 

general occur at different phases l' ' except for synchronous particles of frequency 

f$ = f/'A., , (, being an integer which we call the harmonic number. If F is 

a function of time, synchronous particles must cross the gap at some phase f/Js. 
different from zero such that their synchronous energy gain per revolution ~ VIUiw9's 

maintains them at synchronous frequency; other particles oscillate in phase and 

frequency about the synchronous values. 

In order to write a differential equation for rate of change of particle energy, 

o	 it is convenient to resolve the gap field into a superposition of travelling waves and 

neglect all components of frequency different from F which contribute nothing on 

the average; this procedure is simply the replacement of energy jumps by the con­

tinuous function with the same integral, and gap transit phase is then replaced by 

travelling wave phase. At azimuth e- (positive in the sense of particle revolution) 

the wave phase at t =() in the laboratory system, and at any time in the rotating 

coordinate system, is 1> ~ I:. 9-, since there are f!L wavelengths in the cir ­

cumference. The corresponding instantaneous rate of energy gain from the wave 

is /l. V~ CP per revolution. 

To include in the equation of motion the effect on each particle of the electric 

field due to the other particles we write e(9-) as the instantaneous space charge 

" electric field; alternatively we may write e('IIt,) . If e is taken as positive 

in the sense of decreasing ~, it removes energy from a partie Ie at the rate 

per revolution, and the net rate of energy gain per turn becomes 
4 
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r- ~~:,. e, v~f - ~rr R -€..-€" . FoflowfngSymon and Sessler5 we define 

the new variable 

(1) 

where t-
f 

(e::) is the frequency of a particle of energy E • in terms of which 

oLE _ (' d«: cA.,Jq- _ •
 
,1;;: - 7f~= n-=-~.J and.
 

(2) 

The description of the motion is completed by the equation giving the time rate of 

change of phase of a non- synchronous particle of frequency tf differing slightly 

from '*oS • namely by 

r)~l #-!! a1flUr- tJ 
#=- ;l.7f (1 fr - f ) 

(3) 

The variables .A.ir and!f so defined are canonical since these two equations are 

derivable from the time dependent Hamiltonian 

which differs from the corresponding single particle Hamiltonian without space 

charge only in the addition of the term containing the space charge potential tr(!II"-'). 
(It of course remains to be shown that the assumed stationary distribution actually 

exists in the presence of this potential.) 

It turns out that a canonical transformation to new variables 'vi . f defined 

by the equations 

5 
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(5) 

leads to a separation of the Hamiltonian into time dependent and time independent 

parts. This is discussed in detail, with certain differences in notation. in Reference 5. 

One may readily see that the result is, ignoring the arbitrary time functions that have 

i\~ bearing 6ii tlie equaHons of moHon, 

Since 'VI is a periodic function, the monotonic part of the increase in «r: with 

acceleration being contained in the AV5 defined for the synchronous particle. we 

o expand E(Wt..w;) about ,~ , and obtain 

E(WrM:S)~ f s -r[M~1 W+Yl. (f,:'~ W~+, 
..	 <A.~) 2.­

:::::	 ·E:::, + (' W + Y2.. If rrzr: IN' I ' . 
~ T.s	 l c7I Cj.s 

The first term £.~ and the term ~ Tf f-~ do not contain Wand may be neglected. 

while the 2..n+Wand the -2rrA, f" W cancel, leaving 

as the Hamiltonian fora single particle subject to space charge forces. 

This is time independent, irrespective of the rate of energy gain defined by 

o	 ~ · If the coefficients ( f j tjs • V . and ~ are constant and the function 

;-r(g/t) remains unaltered during acceleration. This last is obviously impossible 

6 
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~ with given total charge unless the radius remains constant; but in practical cases. 

especially if the magnetic field index It, is large. R may be nearly enough con­

stant. Even if all coefficients and U ~vary. the phase motion may be derived from 

this Hamiltonian if the variations are not toor-apid, 

The potential V (8) involves an integral over the charge distribution; it may 

be written 

(7) 

in which). is the charge density per unit length. written as a function of azimuth. 

T~J.equantity K is a dimensionless kernel, which must take into account the influence 

of such important effects as electric shielding by the accelerator vacuum tank. Since A is 

"	 itself dependent upon the phase motion of the remaining particles. we look for a self-

consistent solution. 

b. Boltzmann Equation and Integral Equation 

We have derived a Hamiltonian which defines time independent trajectories 

in W- 'f space if the potential function U is time independent, I, e., if the assumed 

stationary charge distribution exists. Let the corresponding density distribution in 

phase be • which if stationary satisfies the reduced Boltzmann 

Equation: 

--or •
....	 -- W+ -- o 
~w (8) 

We may ask. for example. whether this equation is satisfied by the distribution 

~f r- 7'/ = const within the region bounded by \1/:~ (if) and zero outside. (Actual 

density is determined by the particle injector since the system is Liouvillian in 

7 
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',..... \V'-Si space and .density is consequently a constant of the motion. Uniform 

density is probably not too far from correct for most contemplated injectors.) 

This case may be represented by 

(9) 

in which .(:,.... q- is a constant equal to the charge density in \\1-- f space, and S 

is a step function which is unity for negative argument and zero otherwise. Use of 

this in Eq. (8) gives 

• 
~lw- wt~) W 

from which, since r; and f are canonical variables, 

• 
(10) 

,This equation is identically satisfied for W1:- Vb ; and for 'W:; Wb we must 

equate the second factor to zero. It mtegrates immediately to give 

(11) 

as the equation for the boundary curve, which is not trivial since it is only valid 

for the boundary curve Wb and not for all values of W .9 

Although our subsequent discussion will be limited to the case of uniform 

charge density within the phase boundary. it is interesting to note in passing that 

Eq. (8) may be written 

(12) 

in which 11"" is the phase velocity :vector directed along 
. 

a phase trajectory. It 

8 
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o follows that any density function r with zero gradient along trajectories and 

arbitrary variation perpendicular to trajectories leads to the required stationary 

solution. 

For the uniform distribution we have, since we are neglecting the influence 

of phase oscillations upon coordinates other than $" and the equivalent cP ~ the 
J 

relation 

(13) 

in which we have used the fact that W=- \v( (<g) is symmetric in VI . This is 

valid unless E is near the transition energy. The boundary curve is therefore 

described by the integral equation obtained by putting the expression (6) for the 

('""\	 Hamiltonian and the relation (13) together with the potential integral (7) into Eq. (11). 

namely by 

~ (f"'	 d.}» \ ,J- &t'1f~Lcrl;t.\ILI KId I \/ ..I'-n"j(, \ ~_. s WL - f\ - J t'Yb (&.J e- j e- +-e. V~ r +.1,,'5 ..~ =- canst. 

(14) 

This equation is the condition for a stationary density distribution given an 

initially uniform distribution within the boundary. The potential determined as a 

function of 0/ by the values of . Wi) obtained from this equation may then be 

used in the Hamiltonian (6) to derive the self-consistent equations of motion for the 

particles in the many particle system under consideration. The integral with values 

of \Jb substituted becomes a function of ~> independent of the particular trajectory. 

,J..	 •
and the Vv term alone determines ~ along any trajectory inside of the boundary. 

9
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"" Since in the present paper we shall be concerned solely with the total charge 

within the boundary we shall drop the subscript, it being understood hereafter that 

'vi always refers to the value on the boundary curve. 

c.	 Reduction to Algebraic Equation 

We may observe that in a large accelerator K (e; fYI) will be essentially 

zero for 1&- e' I··~ 00 since the accelerator vacuum tank shields the contribu­

tion of charges separated in angle by 

where G- is the vertical gap of the vacuum tank. Except near the ends of a bunch 

of particles localized in azimuth by the accelerating cavity I the variation of charge 

/">	 density within an angle G-/ /0h is negligible. Since the ends are of order G-/R 

and also negligible compared to the extent of a bunch, for anything except operation 

on a harmonic of order.t ,/;rR/6- we may neglect the ends and consequently 

the dependence of W(e l
) on '(7''' in the integral in Eq. (14). Formally: 

/ I IC - '1/5
K (fJj (7"/) II-v It/] Idfr "'" W(fl)Ij K (0t1) Of B' +
 

+	 ~ WlJ ~. K (51 tt/) Ie/-tJ/4f' /+ I;;) .J 

and	 we keep only the first term in the expansion. 

Now the integral of the kernel in the first term on the !\as of Eq. (15) is 

simply proportional to the potential at an angle er due to a uniform tube of charge. 

We may ignore the curvature of the tube since the turning is negligible in an angle 

of the order of r;./ f\ ' and replace the problem by the linear two-dimensional 

10 
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,...,.. problem of finding the potential in the center of a uniform tube of charge of infinite 

. extent midway between two parallel conducting grounded plates. By replacing the 

infinite set of image tubes with line charges this is solved in Appendix I where it is 

shown that 

(16) 

where QI is the radius of the tube of charge. 

We now obtain in place of the integral equation (Eq. (14), the algebraic equation: 

lfl (+ ~ ~-t VI ~ t MJ; f +~Ve--J - '1 If.c;rr)/f I~ .1 = const, 
","' 

(17) 

.('\ This may be written in the form 

const. , 

(18) 

where: 

1--= 

•
.,A.J..r: 

(19) 

11 
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,..-... A relativistic treatment would yield this same result with the quantity R 
in Eq. (l9)replaced with '("'- R , where ¥:-::. .E.4 (;' . 

ID. LONGITUDINAL SPACE CHARGE LIMIT 

.In this section we first show that the approximate linear relation between 

potential and charge density leads very simply to an upper limit on the total charge. 

We then return to the more general formulation, still restricting ourselves to a 

range of parameters of most interest (eo g. to the non-relativistic limit where 

longitudinal space charge effects are largest), and develop relations for the space 

charge limit as a function of accelerator dimensions, rate of frequency modulation, 

etc. 

The confinement of charge in a phase-stable region involves the balance of 

the electrostatic repulsion between particles and the bunching effect of the accelerating 

gap.' Evidently the maximum charge is contained when there is neither phase motion 

nor frequency modulation, i. e., when the particles are all moving synchronously a; 

constant frequency. The problem is then merely one of static balance, the condition 

for which is Eq. (Z), with energy gain per turn set equa.l to zero. This, toge 'ft.. with' 
,-.... 

the value of e, derived from linear charge density, gives 
'. 

:=0 

which immediately integrates to 

(20) 
lZ 
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,.......	 in which the integration constant is.evaluated to make A::: 0 at !:f :-::...::J:. /( . . 

(Strictly speaking, this charge is ~bound in a phaee--stable region, and any 

arbitrary constant density could be added; but we shall see later from the general 

formulation that the distribution specified is obtained for phase- stable charge in 

the limit of phase motion approaching zero.) Total charge in one bunch .is then 

merely the integral or .A , I, e., 

(21) 

If at harmonic number ~ all phase- stable regions are filled > the maximum total 

charge in the machine is G2. =11' 
To develop the general case, we first note that in the non-z-elatfvisttc limit 

0· and in the approximation that variations of ~ are negltgible, the coefficient of W· 

in Eq. (l 7) is 

1
~ ._..,"'_.,..-----..-.,.'~- ..,~-.-

and the coefficients in Eq. (18) consequently have the values; 

c(...::. I ~ 'IT:2. RM\. e: Q"'"'J.;­
.fr ~~ Li·· if f{' ~.~ V/,t, 

c..= &f~ R2-~,A.;rs/~ 

If we introduce the new variable d .:=. /( W, with
 

I< z, - _. J" .._._---,'_­
- ~1T	 R~~.e..V ) (22) 

13 
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Eq. (18) becomes 

+ A ,~, + ~.r +- r!:! = const, (Z3) 

in which 

~$ _.--
•

- •
.C V (Z4) 

This form of equation is convenient for computation since the whole effect of 

space charge is contained in the one parameter A , while the remaining 

Jparameter r contains the effect of frequency modulation. It must however be 

remembered that phase density 0- refers to W'· til space; and in the transformation 

to ~ - variables phase density is altered by the factor I< -I , which is the function. 

of operating parameters defined by Eq. (22). For a given fJ and !,I,1dep~gent of 

A ' the stable regions -of phase space will have maximum extent in l' for 

appropriate chd.ce of the constant on the R. H. S. of Eq. (23). Let the limits of j" 

be called S)j and ~~. The maximum area f+ , in ~ -:f space encompassed 

.by the stable region is given by solving Eq. (23) for ~ (f) and then integrating: 

• 
(25) 

14 . 
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r-- The total charge in the accelerator ~ is then given by: 

1

Q _~t rr A(.A. r) = ..e- J.r A- (A. r ) ' 
-. to< .J K :..I J 

longitudinal space charge limit. 

In Figs. 2 and 3 we have plotted some of the parameters characterizing the 

o .maximum stable phase region as a function of..A- and r . The quantities 

fJ I and '3'", are the limits of the stable region and independent of JL # while 

; '" I 
'} ~ is the maximum value of d- which Occurs when f = 5'oS ,,=~, r'. 
The energy spread of the particles is given then by: 

LJE =­

DE 
(27) 

. In the case that J\. >.., I we may obtain an approximate solution to 

Eq. (23) without recourse to numerical tntegratton, since the term in ~ J.. becomes 

t'"' negligible compared to the linear term in } , and Eq. (23) becomes: 

15 
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(Z8) 

The constant ::b is determined by maximizing the azimuthal spread, i. e., by 

solving 

(Z9) 

to obtain <f.s::: ~-I r'..J g',::: 7f'- ~ s . Thus 

(30) 
.~.. 

and 

.1""" 
(31) 

Now: 
.' ':f1.. 

It (lL-J r)::. r 5[-~j.s t /1 ()f- 1's ) -' {7J- C(». f ] ~ r 
~l 

A (.A..JrJ 0= ±ar(7T-!I'.s)-eo>.j'.s) (f>.~J',) - {- (P:-j;'-) + 

+ ~:I, - ~ J a, ] (32) 

Tlis yields, using Eq. (26), 

16 
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r- Q= -e-~~ [lr ()(- PS) - ~ 5"05 ) LP,.-f.) - £:- (1/:-1,'") + 
. +~ JI - A.<..v .f~ ] 

.	 (33) 

Q =~~L·~J (Tf-1~J-CQ>-Js)(r~-f'J-t (1).'-11'-) fA.; J',-A:.Jj 

( A '» j) 

(34) 

From Fig. 2 one can obtain CSt) '·f'l-..) j? S for any particular r" . For 

r.	 convenience we have plotted the function :i?> (r) in Fig. 4. This then serves to 

augment Fig. 1 for large values of A . It is clear that 

C (r) . 
.J 

(36) 

~ 

.. ..Y ""(~ K'IE.\ ~ L- (r') (JL»I)L\	 E- g T(''''dIJ. V~ J;WI...-	 ") . 

(37) 

and we have plotted ( ( j') also in Fig. 4, thus augmenting Fig. 3 for large
 

r-- values of..1l .
 

17
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If the cavity is unmodulated, - Tf .)
 

and Eq. (34) becomes:
 

t"l \
 
, .:::;. 0 ) 

(38) 

in agreement with the static computation given at the beginning of this section. 

For a typical radial sector symmetric fixed field accelerator, k = 104 em, 

.Iv = 10, \/ =50 kev = 113 esu, (;- = 30 em, ~. = 5 em; and Eq. (38) 

yields Q... =3.52 x 104 esu, which corresponds to 7.. 3 x 10 13 protons.' Of 

course for ~+ 0 and A closer to zero.this number will be reduced as can be seen 

from Fig. 1. It should be noted that in this case the transverse space charge limit 

is more severe than the above limit. It should be noted also that the numerical 

r	 computation for any likely values of parameters (readily performed with the aid of 

the curves here given) will in general lead to a space charge limit not mor-e than an 

order of magnitude smaller than the static upper limit of Eq. (38), assuming of 

course that the entire phase stable region or bucket is full of particles. 

IV. VOLTAGE MODULATION PROGRAM 

In this section a program for the accelerating cavity voltage is derived, 

which allows the maximum accelerating voltage consistent with a given amount of 

accelerated charge. For the fixed field accelerator discussed in the previous 

section in order to accelerate the charge requisite for colliding beams, the initial 

accelerating voltage turns out to be rather low, but as will be shown here can 

rapidly be amplitude modulated so that in fact the effects of gas scattering are not 

".......	 too serious. 

18 
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,....., Transverse space charge effects limit! the density of charge per unit length 

in a beam to less than 

M'\..;s : ;t. 11'.e: 
(39) 

where ~::; V/c;.. 0"=- E/t=o ' and 6 V../ ,,",) is the permissible change 

in the number of betatron wavelengths V in one circumference of the accelerator. 

'raking av = I/!.f ' and evaluating Eq. (39) in the non-relativistic limit, we 

obtain: 

0" E~) V ...-
- a, iT .,L. Rz, 

(40) 

r--, . For the cases we wish to study the accelerating voltage causes the accelerated 

beam to bunch into a very small phase angle 6.:S . This. in fact, is the reason why 

the accelerating voltage cannot be too large, since the azimuthal bunching of the 

beam causes the local density to exceed the restriction of Eq. (40). Longitudinal 

space charge effects of course allow a larger voltage than would be estimated ignoring 

their helpful effects. The total charge in the beam is given by 

(41) 

where ~tJ is the spread in phase of the charge in one bunch, a...- is the radius 

of the beam am~ is a parameter expressing the distribution of charge in a bunch. 

If longitudinal space charge effects domiaate,~ = 2/3, whereas if the effects of 

r-. longitudinal space charge can be neglected, /:::: ~ • 

19 
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f"" The radius of the beam a... will damp as the particles are accelerated so 

that if we let Q.,o be the radius at injection and (K /E,) t:' be the kinetic energy 

at injection: Eq. (41) becomes 

.. 
(42) 

The phase density -La'" is determined by the injector and injection 

mechanism and may be related to the be~m energy spread before an accelerating 

voltage is turned on since tr" is a constant as the voltage is varied. Let A E 

be the energy spread of the beam initially: and define £ by 6 E. ;;,.!. (tel E: )1;1 • 

Then A W=~E/fo I where f 0 is the frequency of the particle at injection. 

;\ and 

-- (43) 

or 

Q.. -t-~ 
2 If.e,P (K~~-'£J: 

(44) 

Now starting with Eq. (23) we may evaluate the constant on the R. H. S. in 

terms of the phase spread ~ 5' : and then .solve for the voltage V after having ­

. related if ~'l('''' ! This relation between '::J ~ and J is clearly:to . 

(45)� 

20� 
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,....... 'which using Eq. (44) becomes:� 

(46) 

whereas Eq. (23) becomes: 

(47) 

Evalu;:iting Eq. (47) at, j.:: ~S, ~ :If,~~ we obtain 

(48) 

which can now be solved for V after substituting Eqs. (46~ (42), (22), (24), and 

. .. 2. g If ( ) 3 IV')'~ 
·v_~~a'tf~).. _~ P 'l..'0 V . f(, f- 0 lI': .E,-. .~ +
,If -/.;s' Q., '1 R (-~fs) 

As an example we evaluate this for Fl = 104 em, .)." =10, G-:::: 30Qn, 

Q.... o =5 em, LI = 4, fs::= 11' .(tc',.E,)o= f:;:,E":. =50 Mev, P = .001, 

r- Q.. =.160 esu, and f~ds that the second term which is the effect of longitudinal 

space charge i.s negligible, while V = 2 kilovolts. Because of the dependence 

21� 



MURA-413 

,..... of V on the kinetic energy. it is possible to increase V rapidly as a function 

of time, and thus avoid serious loss of beam due to gas scattering. 

The authors are indebted to many members of the Midwestern Universities 

. Research Association Technical Group for helpful discussions, and in particular 

they wish to thank Dr. Keith R. Symon who followed the development of the work 

closely and made many helpful comments. 
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APPENDIX, 

We wish to find the potential at the center of a uniform tube of charge of 

radius ct-. placed midway between and parallel to two parallel conducting planes 

separated by a distance G • as indicated in Fig. 5. 

The problem of a similarly oriented line charge has been treated by Smyth. 10 

who obtains for the potential (in electrostatic units): 

-- J (AI) 

where r is the charge per unit length of the line charge. If we let iJ =~ + ~/ 

we obtain 

~ 1f1~~ 
~ '(1)'/6­ (AZ) 

We wish now to study the potential in the neighborhood of the tube of charge. so let 

us expand the above expression for small values of .,4:'::'. "1)")<.:2.-+;/):. 

&.t b;"tr -"""" S~ ;r A,,~ 

tt Ga. ..,..
"""" -~ S~A. g~ #tr - If'- (A3) 

Z3� 



MURA-413 

,......� This diverges asi. goes to zero. which is because we have replaced the tube of 

charge of radius Q;". with a line charge. For a tube of charge in free space the 

potential is clearly: 

(A4) 

(A5) 

Thus we can identify the effect of shielding in Eq. (A3). and replace the singular 

first term with Eq. (A5) to obtain 

J 

(A6) 

Thus� for A.;; 0 
~ 

(A7) 

24� 
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FIGURE CAPTIONS 

The area R(JL) r) of stable phase in ~ -~. space as a function of 

the parameter -A.. which characterizes the effect of space charge, for 

various values of the parameter r which characterizes the rate of 

modulation of the oscillator. 

Fig. 2. The parameters characterizing the stable region of phase space, j, and 

1'. which give the azimuthal extent of the region, and .~ S which is the 

stable angle, as a function of the modulation rate parameter r 
Fig. 3. The maximum half height of the stable region in phase space ~~ (..AI f7) 

as a function of the space charge parameter ..A.. ,for various values of 

the modulation rate parameter r 
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Fig. 5. The coordinate systems to find the potential at the center of the centrally 

located beam of charge of radius .e:t" 
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