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ABSTRACT 

Formulas are derived for the longitudinal and lateral momentum kicks to 

which a particle is subjected upon crossing an accelerating gap. The angle S 

between the particle's trajectory and the axis of the accelerator tube is assumed 

to be small) and terms of order higher than the first in ~ are neglected in the 

formulas. 
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Consider an infinitely long rectangular tube cutIn two by a narrow gap 

perpendicular to the tube's axis 0 Z(Fig. 1). A voltage V cos wr, constant in 

phase and amplitude all along the gap, is assumed to be impressed across the 
-+ 

lips of the latter. A particle, moving in the 0 X Z plane with a velocity V

is crossing the plane of the gap at an angle e , and at a point X . It is desiredo

to know how large a momentum kick the electromagnetic field will apply to the 

particle. The problem is of importance for the design of particle accelerators. 

The solution is immediate if one assumes the electric field to have a d 
function behavior throughout the tube, i. e .• to be of the form V SCl)G.<n"X ~-t' 

and if one neglects the effects of the magnetic field. If 'f is the phase of the 

voltage at the moment the particle crosses the plane of the gap (L e., the plane 

Z =0), the momentum kick turns out to be 

(1) 

The electromagnetic field, however, does not follow the assumed S- function 

behavior, and penetrates on both sides of the gap. The momentum kick will con

sequently depend on the nature of the particle's trajectory throughout the gap 

region!. In many situations of practical interest, this trajectory will be practically 

linear. An accelerating gap in the straight section of an accelerator doughnut, 

where no focussing magnetic fields are present, constitutes an example of such a 

situation, provided the gap voltage is not of such magnitude as to materially alter 

1.� Data on the penetration of the fields in the gap region can be found in Journal of 
Applied Physics 28, 12, 1479 - 1483, 1957. 
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the particle's trajectory. It will be explicitly assumed, in the present analysts, 

that the trajectory possesses a linear portion C E J beyond which the gap region 

does not extend!. The momentum kick, can then be expressed as 

flF = j£::F~; 1.B1JK 
C A 

This we now proceed to compute. 

In the OX Z plane, the electric and magnetic fields reduce to the following 

1components 

(4) 

where 'C" =alb is the aspect ratio of the cross section, and j) the frequency 

expressed in units of c I la J the cut-off frequency of the tube. The upper and lower 

signs correspond to positive and negative values of Z respectively. 

The momentum kick is equal to 

3 
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(5) 

Its explicit value can be calculated by substitution of the expressions for EX' E
Z' 

Hy • The resulting formulas are extremely involved. We shall restrict ourselves 

to the situation where t. is a small angle, and compute the zero and first order 

terms in Eq. (5) only. The formulas become much more tractable in these circum

stances. The lateral momentum kick, for instance, turns out to be 

The physical interpretation of Pl is as follows. It is the momentum kick" expressed 

in units of 1vIc, to which a particle traveling parallel to the tube's axis is sub

jected when crossing in quadrature ( Cf = ."".. /2). This zero order component in ~ 

vanishes when the particle crosses in phase ( Cf =0)" and the only source of lateral 

kick, in those circumstances, is the term ~rt due to the obliquity of the trajectory. 

The explicit expressions for PI and Pz are as follows: 

(6)� 

(7)� 
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for a point in the OXZ plane. There, f-= ~ is the velocity measured in 

terms of the velocity of light. 

The formula for the longitudinal momentum kick is obtained as 

There the obliquity of the trajectory introduces a quadrature kick p 4. The 

expressions for� Pg and P4 are� 

00 00 M+)\� 

A= - I~ ~ 2 I (_-I)_.t_t ~ M-rrXfj� 
~ ~ 11'" M "l.~ ~"I,? 0-.� 

(8) 

(9) 

Curves for PI' PZ' P3' P4 are displayed in- Figs. Z to 5 for a fairly wide range 

of parameters. The various figures are drawn with identical scales in order to 

facilitate quick estimates of the relative importance of the various kicks. Curves 

relative to aspect ratios larger than one refer to points in the OX Z plane, and are 

drawn as a direct application of Eqs , (6) to (9). The lateral momentum kick is 

parallel to the X axis in those conditions. Curves relative to aspect ratios smaller 

than one imply that the 0 X Z plane is now parallel to the narrow wall of the tube I 

because a <b. In the parlance of Fig. 1, however, they can be interpreted as 

yielding data on points in the OY Z plane, and these data are still expressed by 

r, Eqs. (6)� to (9), provided the roles of X and Y (and associated quantities) are 

5 
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exchanged in these formulas. The lateral momentum kick is now parallel to the 

Y axis. To give an example, in a Z x 1 cross section, data for the 0 Y Z plane 

will be found from curves labeled 'C" = i t z, 

It will be noticed from Eq. (1) that the t- function approximation does not 

account for the Pl' Pz and P4 terms, and that it predicts a value 7I, for Pa' 

This value is excellent at low frequencies" as shown by Fig. 4. How bad an error 

is introduced by neglecting PI" PZ' P4 will be illustrated in a sample calculation 

to be given shortly. 

The lateral kick due to the slanted character of the particle's trajectory is 

very often a nuisance, and one might conceivably try to offset It, at least locally, , 
by a counter-kick obtained by slanting the gap by an angle ~ (Fig. 6). The total 

lateral kick is then equal to 

·[v(? _1)~t-')~'C1 
(10) 

where� E is equal to Z for m =0, to 1 for other values of m • Curves for P5 
...... 

are displayed in Fig. 7. 

Sample Calculation 

Consider an accelerator tube with dimensions a =1 m, b =0" 1 m, The cut

off frequency c /2a is 150 Me / s. Assume the gap to be in a straight section, and 

2.� J. Van Bladel: Paper accepted for publication in "Nuclear Instruments. II 
6 
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the� average radius of the machine to be 8 m. Consider particles with velocity 

2.c 13: Their frequency of rotation is 4 Mc 1s. If the accelerating voltage is tuned 

to� the 5th harmonic, the R-F will be 20 Mc/s, .yielding a value 20 ~t~s =0.133
1S1J Cs 

for the design parameter V ,while L = ~ = 10. Let the particles cross the 
4 

gap� at a phase angle Cf =60 0 
• Then: 

1. A particle crossing at X = Y = O~ and traveling parallel to the Z axis 

will experience a longitudinal kick O. 75 q"h. . and no lateral kick, 

2.. If this particle travels in the 0 X Z plane, but crosses at an angle 30
, 

the kicks are practically the same as in 1. 

3.� If this particle travels in the OY Z plane .. but crosses at an angle 3°.. 

its longitudinal kick will remain as in I, and a sizable side kick 

o. 036 tf~ .. 10 e., 4. 8% of the longitudinal kic~will appear. 

If one considers a particle in the OX Z plane, but crossing at X =a/4.. the 

results would be practically the same as in 2.. For a particle in the OY Z plane .. 

however .. crossing at Y =b/4, the results are somewhat different: 

1.� I f this particle travels parallel to the Z axis, the longitudinal kick will 

be� 0.75 qV1 . the lateral kick -0.103 q'Vi. . 
2.� If this particle crosses at an angle 3°, the longitudinal kick is reduced to 

O. 735 qV!c. . the lateral kick increased to -0. 140 rVIc. . 
The 0- function approximation would have predicted a longitudinal kick 

O. 75 f"',fc in both situations. and no lateral kick. 

7� 
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LIST OF CAPTIONS 

Fig. 1. Rectangular duct and parameters of the particle's trajectory. 

Fig. Z. Plot of PI as a function of frequency for two val~es of the particle's 

veloc ity, and a point halfway between the main axis and the wall 

(X =a/4, Y =0 for 't: > 1; X =0, Y =b/4 for ~ <. 1). The three 

curves relative to each velocity corrspond to (reading from the upper

most) aspect ratios of 2 R 1, and O. For 't =5 and above, the kick 

is too small to be clearly plotted on the figure e It will be noticed from 

Eq, (6) that PI vanishes at the velocity of light. 

Fig. 3. Plot of pZ as a function of frequency for three values of the particle's 

velocity. The four curves relative to each velocity correspond to (starting 

from the uppermost at low frequencies) aspect ratios of 2" 1, 1/ Z and O. 

For ~ =5 and above the kick is too small to be accurately plotted on 

the figure. Coq,sidered are: (a) a point on the main axis (X =Y =0), (b) a 

point halfway between the main axis and the wall (X =a/4, Y =0 for t' > 1; 

x =0, Y = b /4 for 7:'<. 1). 

Fig. 4. Plot of P3 as a function of frequency for three values of the par-ticte ts 

velocity. The six curves relative to 2c 13 and c /3 correspond to (reading 

from the uppermost) aspect ratios d. 25, 5, 2, III 112 and O. Considered 

are: (a) a point on the main axis (X =Y = 0), (b) a point halfway between 

the main axis and the wall ( X = a/4, Y:: 0 for 't:':> 1; X =0, Y = b/4: for ~< 1). 

Figo 5. Plot of P4 as a function of frequency for three values of the particle's 

velocity, and a point halfway between the main axis and the wall (X =a/4, 

Y =0 for 'L> 1; X =o, Y =b/4 for ~< 1)0 The four curves relative to 
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each velocity correspond to (starting from the uppermost at low frequencies) 
J 

aspect ratios of ZJ 1, 1/2 and O. For ~ =5 and above, the kick is too 

small to be accurately plotted on the figure. 

Fig. 6. Rectangular duct with slanted gap. 

Fig. 7. Plot of Ps as a function of frequency for three values of the particle's 

velocity. The five curves relative to each velocity correspond to (reading 

from the uppermost) aspect ratios of ZSJ 5.. 2J 1 and O. Considered are: 

(a) a point on the main axis (X =Y =0) J (b) a point halfway between the main 

axis and the wall (X =a/4, Y =0 for'1:) 1; X =OJ Y =b/4 for ~ c::. 1). 

9� 
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