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I. INTRODUCTION

This report describes a preliminary investigation of par_':ticle orbits in FFAG
fields which do not possess median plane symmetry. }-;’h'.I‘ti(-e:'i_mpetus»for this investi-
gation was the realization that many of the difficult problg;ﬂ:s' :)f gh; Ohkawé two-
way acceleratorl’ 2 are related to its large circumference factor. The two-way
accelerator derives its guide field from the difference in yertical field between
positive and negative magnets along a 'scalloped" equil-ibriu.m orbit. If radial
fields on the median plane are added, they give rise to additional vertical fields off
the median plane and to additional equilibrium orbit scalllqpinglloff that plane. The

o
average vertical field on the equilibrium orbit can be increased in this way without
4

increasing the magnitude of the field, so that the circumference ;factor is lowered.
Such fields have, of course complications over more symmetfié fields, perhaps
the most notable being the existence of twice as many essential resonances.

The success of such an idea rests ultimately on the question of orbit stability.
In the present report we treat only the linear problem in scaling radial sector
accelerators. The one-way spiral sector accelerator is not in need of much help
in the matter of circumference factor. In a two-way accelerator spiral sectors are
not the striking refinement they are in the one-way case, for by the nature of the
two-way accelerator the negative magnets cannot be eliminated. Spiral sectors do
aid vertical focusing in the two-way accelerator, but at the expense of vgreater
complication in magnet construction.

It should be noted that a special case of a one-way spiral sector accelerator
has been treated by Ohkawas, The treatment of fields in the present investigation,

in particular the splitting of thie median plane field into vertical and radial parts,

derives from his work.
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The conclusion drawn from this work 1s somewhat negative. It appears that
the gain in the circumference factor of the two-way accelerator 1s achieved at the
expense of the already weak vertical focusing. It is planned to extend this work
to the non-scaling case in the hope thxt some ameliorat‘ion of this difficulty can be
found.

11, FIELDS AND POTENTIALS

Things begin in a conventional manner. The field components in cylindrical

coordinates (r, O, z) are expandable in powers of z/r. Thus

g - —rlt) B
,

P (% )*i' 8,16 é/

2 - to(?‘)ifg Z.0(})

5l

¥

(2. 1)

The coefficient is negative (B, > 0) tecause a downward field is required
to bend positively charged particles aroun? a circle in the increasing 0 direction.
The relevant Maxwell's equations - E=¢ and VAE =0 give
relations between the coefficients of (2.1!. Here (and throughout) total derivatives

with respect to 8 are denoted by primes.
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Two symmetries are eviden! from (2. 2). Rm and 8, of even (odd) m are
related only to R, and 8, ¥ even (odd) n and to Zp of odd {even) p. Further,

Rm even (odd) in 8 is equivaleni to Z,, - 1 even (odd) and to 8., odd (even)in ©.

Because of the first symmetry, the field can be split into two parts which
satisfy respectively on the median plane (z = 0) the conditions

BrEBe=0 (I?

and

B

, =0 (1.

Fields of type I are determined everywhere (barring convergence difficulties)
by specification of B, on the median plane, while fields of type II are determined
everywhere by specification of B, on the median plane, except for azimuthal fields
which are independent of 6. * Such fields are not governed by the Maxwellian
restrictions (2.2). They are nct of much interest in the present‘fvi'rorkj which is
directed toward two-way accelerators.

Since only fields periodic in 8 are of interest, the coefficients of (2. 1) can
be expanded in Fourier series.

A?m 2{ ?w,n ]“

OW» /7”1’ o (2'3)
2,77 T

where

ne
e, - € | (2. 4)

i
=—— — ———  ——— ]
*I am indebted ta Dr. L. C. Teng for cilhng this exception to my attention.
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For fields of type I a little fnanipulation gives the recursion relations
[71 ( ’ ”1) ] mw,n
ffm-}-;)‘n (m+/)(W*7~)
% -m

Sont ym M | (2. 5)

which show by repeated application that all the fields of type I can be expressed

in terms of the fo, .

For fields of type 1I,
_ L A e [ )] B
¥ 2. Gurd(m ) -

¢

Domn =~ Rk - m e (2. 6)

([ A Fons

jvm-/,m B (wm+  ferl-wm)

so that all ields of type II (except .or those of the f - rm ’7,”,/0 ) can be expr ssed
in terms of the ¥, 4 -
B can be derived from a vector potential A which is of direct interest be-

cause it appears in the Lagrangian. The vector potential components can be

expanded in a manner quite analogous to the. field expansion above. That is, we

define



The potential components are related to the field components

by

d W, 17}
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while from /- f\ e

(fra-m)Fumn T

=
..B Ny i

MURA-406

(2.7)

(froﬁ B - VxA )

= 7 /%/w woo- (m+1) 'y/w:-’}()':tl
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(2. 8)

SR

£ SU R NTRREYY SOTIA I
ni, 1 PR i

(2.9)

From (2. 8) and (2. 9) recursion relatibns can be derived:
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The r.h.s. of the third of Eqs. (2.1} is 1:ie:tically zero, :r-m the =.:ond

of Eqs. (2.2).

We choose a gauge such that

f " )
’3"‘" (2. 11a)

Xo ~C

Then from (2. 1() or irom (2.8) and (2. 9°,

;p’r - 7""’
f“ ) ; (2.11b)

1 = “3W31%A%+i

[1@ ) 3“'”_/ g
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III. EQUATIONS OF MOTION

The equations of motion of a charged particle of momentum p in a static

magnetic field are derivable from the Lagrangian

l - Iz ; K 4 AN 'i!/'i“
L= e fimaeate g™ o g [2 A (e et

(3.1)

where the relative deviations x and y from a circle of radius r, in the median

plane are defined by

Ve Y (hE )
- (3. 2)
and ,
cN,
A = —.—
C
F 3. 3)

1

is the parameter first introduced by Ohkawa®. <% is a measure of the ci:rcle

about which the motion is expanded. It can have either sign; negative values of o<

correspond to £ley , N~ & . A change of sign of “* describes a particle

of opposite sign in the same field, a particle of the same charge in a field of

¥

opposite sign or a particle of the same charge in the same field circulating in the
opposite sense of rotation. *

Different circles of expansion r  and r; corresponding to . and <

of the same sign are related for a scaling field by

X _ :
o, (ro (3.4)
£ o

since for a given field [ 2 Yy Thus a motion of a given sense of

circulation can be expanded about any radius.

@ . .
It was first pointed out by Parzen that changing the sign of - is equivalent to choosing

the opposite sign of the radical in (3.1), which is equivalent to motion in the opposite
direction. 8 :
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The magnitudé of ¢ depends on the units in which the magnetic field is
given, since the fi:id always occurs in the equations of motion mu'tiplied by *
If a new scale is chosen for the magretic field such that B —> a8
then ~ ~—> /¢

x is als: reiated to the circumference factor

Fode
= X . )
C ///’0 e] / (3. 5)

where r, (0} is the radius of the _juilibrium orbit of a particle of given momentum

and f (8; 1s the radius of curvature of that eduilibrium orbit, both ai azimuth 8.

Now c ]t)

P elBree )

Suppose that the maximum of (3.5} cccurs at 8 = 8, Choose o¢ =X¢ such that

» [ B (re(e,), 6., 3e%))

(3..5)

This is a generalization of the usual fc;rmula to include fields of type II. Note
that r_, is the radius in cylindrical coordinates. The height-of the orbit-above e
median plane enters ;)nly in the calculatidr; of the field.

The equations of r .tion follow1ng from (3. 1) are

/
14z

g r _ e
oy I W L be_j

{

| : (3.7
J \/ o ‘
| ) = = |y B, — (1) B, |
/7/ IR e /J‘ L.

S AR Lol .
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In a two-way accelerator Eqs. (3.7) = ¢t be invariant under th: combined
transformation oL —> — x . 6 —z - . This can be accomplished
by constructing B, so that it is odd about some point 8. Then, from Maxwell's
equations, B, is also odd and Bg is even about 91.

1V, THE EQUILIBRIUM ORBIT

The first task of an analytic development is the seeking of a periodic solution
of (3.7), the equilibrium orbit. In order to proceed it is necessary to expand the
equations of motion in powers of x, y, x' and y'. It should be noted that expansion
of the equations of motion can produce equations which differ from those derived
from an expanded Lagrangian, because it is easy to transform the equations in such
a manncr as to losc their Lagrangian properties. The solutions will, of course,
also differ.

We expand tae Lagrangian (3. 1)
T s i
L n /.,.;gf;’- (X -/-j/ /x-j_ﬂ//é, /_y,:)

o
ol g 3 /
X v A+ 1rT) A + YA
rA, r J 5 (4. 1)

where the square bracket is symbolic of the expanded vector potentials from (3.11).

The approximate equations of motion derived from (4.1) are

s

p3 v
" i 7 - ot
‘1 = 7 * l 4 J I‘I o .\'j‘

’ [}/Jrz,)"f“g" ) J (HU Z o (}u) /

Ty

}(’: z/ +x;" /Zf.r”:frjigl/". J/ (Hz) AJ%I

10
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i+ 1% and i

1/5 for any FFAG accelerator.
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In any reasonable accelerator the X, and y, are small compared to unity.

A system of succesgiv- approximations based ou this smallness is not difficult to

construct. We will Suootitute the i‘* approximation in the r.h.s. of (4. 4) to
determine the (i + I)St' |

Such solutions oan be calcula:ed using any_volu; of & . It is interesting to
choose x. = 0 and calcul:te &¢ frof (4.4). In this way all the possible values of
can be found. This met:.od, whioh was used by: Ohkavfal, has also the advantage_'
tha: all the contr1butions of x, to (4.4) vanish, which speeds the convergence of the
system of successive approximations. With X, = 0, ‘the differeﬁce betwcen the |
ith approximations relative to th- ith is of order o ’é r/ “5
wzere ; is the size of the largesthf.ield harmonic. Tms quantity has a value about

L

The sums in vKa. (4.4) all run from -« to <o, ¢ jg calculated from

6”’

the first of (4. 4) w1th n=0. The second of (4. 4) is used to calculate yo Inan

- zccelzrator where Yo =0 (e.g., atwo-way accelerator) the second of (4. 4) is just

“w

‘a statement of th_e fact that the r.h. s. of the sec >nd of Eqs. (4. 2) has zero mean on

the equilibrium orbit.

We take as our initial solution x) = y{% 2 0. Then, from (4.4),

Sem
(%) = == :
| a . _ e ;c,”
;« =z - (4. 5)

(4. 5) may have an error of abou: 30%. A relatively simple solution with an
error not much larger than 10% can be found by choosing the largest terms of

x,(,lz) and yx(12) . Such a solution is

12
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N-m)2

ob/ jo,ﬁ - K (Eti) —%’L&‘"_’"’-
. mEY
[’ é‘""m/" 7’.’-7;01m5n-/

n-m .
+ K i:; W(é+l) Soym g‘?"'m }

The non-lmear terms of (4. 4) make no contmbution in this approa:imation

because the x, and y, are 8o small

| Cleafly, if the process of succeesive app‘r;oxir;xétions..is continued, higher
- and higher powers of P enter the selutio’n\.‘ " "I‘hex_ii:he equation determining  ig
in our approximetion a polynomial 6f 'infinjfe degree.( There are therefore an
infinite number of roote, 1 e., values ef .°< . To each real value of % there
corresponds an" equilibrium orbit, so we should not be surpfised at the occurrence
of multiple eguilibrium orbits. However, most of theee do not appear to be of |
practical interest, since /«/ >>/ and consequently the c1rcumference factor
is very large. Examinatlon of the order of successive terms shows that only a
few roots are of order unity. In addition, it is doubtful that the oscillations about
maﬁy of these large < orbij:s -are stable, which probably accounts for the fact
that they have not been found. o |

The equation determihing' & g

13

E‘m#o,n (”" m);l
iy '{Iﬁm}‘an -m ('é*’);"/’" 3“Orn-m . _‘
gm = - 54{50,11 — Km.*z,: . (Mm-m)* : (4.6) |
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(4.7)

where
2' l‘o‘ W ‘roJ - : ) o

M.i.0 . ' .
(4.8)

The direction of the vertical field enters only in the calculation of & If

the sign of the vertical field is in the wrong direction for particles to circulate about
the accelerator, the sign of every term of (4. 7) changes and there are no real roots

~
In the mteresting special case of a two-way accelerator, the ccefficients of all odd

-powers of o vanish. To very good accuracy,
= 2
oo 2[theg)&rG)]

Since the two roots are equal and opposite, a particle has the same dynamical

properties in either direction. It may be noted also that there are no real roots for

k € 0, so that it is impossible to construct a two-way accelerator with negative

momentum compaction. _
V. LINEAR OSCILLATIONS ABOUT THE EQUILIBRIUM ORBIT

It is not difficult to introduce axes moving with the equilibrium orbit? as in

the conventional case. However, for gimplicity we expaiid in a less elegant manner

following earlier work® on the spiral sector accelerator. We introduce new variables

/‘\ |
u,v by
14
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(5.1)

where x© (6) and y® (8) are the solutions of the equilibrium orbit equations.

Linear equations of motion follow from a Lagrangian containing only quadratic

terms (terms independent of u, V", u' and v’

give no contributions to the equations

of motion and terms linear in these variables vanish because the equilibrium orbit

is a solution of the equations of motion).

2 //._/
£ - dautem e 0y

Then

uu 7 Ly uv'+ a’é“"v

4
; - L a v
¢a7vﬁv-',« il_a.eu. $ A4q &7 3 T T
where _
| _ 9 cnx) eyt
[ = 5 — O ©
) ?L S /4, 1
O A = j‘"‘i ,'{:?{F, = :r —-#—-z ’ ‘A-
ar Zboo twie 2"
. Yy L~Z
= _;_ié = ' I(’ il) + e QAV
a3’ T —'?——' P oy
. s ’ [/ .
}' a. = 2_4 - ‘(I{X) " £ 9/4‘9
% T Gy T 3 ch Ik
. 7 L £
Nwrdho- 22
e
a_ = s=— = £ aAJ
7 ?ﬂ;ﬁ’ c/: a

L 7 K

G'S:,g%:;._ u+cf[/971w+_((/+1)/\) g—;—?&j

- = ;’A JA N }
JI)Jl C’b azgr ((H” #e) *d 9;97:

/ A ’/
%_'.4,"+ (1+2) ]f + 4 QA;]
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(5.2)

(5.3)
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' and

Loz of (1+2)*+ ey,

(5.4)
All quantities appearing in the a; are to be evaluated at the équilibrium orbit.

The linear equations following from (5. 2) are

I/ / / ’ » / . 4
d,“’fﬂ,U" - - a, u + (45..4‘_4‘/)0’_,_ (43 -al/)u - (A,,- a‘.)u-

"

' = / (%~ 2, )V
au fagu-’ = (a,-4. -a)u’ - a’ vi s (49~ % Jut %y .

(5. 5)

, Thg coefficients appearing 1n. (5. 5) can be evaluated in terms of the median

~ plane fields by use of (2.11). These coéfficients are again essentialiy expansions
in powers of “kr/ n* . We expand only througﬁ first order" in this quantity.
This means that we need only the crudést Approximation (4. 5) for the equilibrium
orbits, since more accurate expressions are of higher order in « £r / n“

We define Fourier coefficients of the a; by

o . .
- .oe ‘
e T Z Lin T ~ (5. 6)
’n‘—“ . 3
Then
F J‘ "O(fo” + 3 2 n"”‘ o u-M " L“lé ?0;144‘;0,1.1'-1«
= - — 2 o -
2, 7o e 2 WZ*DM m(n-m) 2 o W(in-M)
3 Tc‘o%\ Eo.'n-wa
= « é ————
a%n wmlv-m)
’ "w#o,-n

= ar"o_— “_To"" 4 -‘0(;2‘ ‘Ya:”‘ ‘r"/”"‘“ ia’("i' S‘W—-—-—-—-go’ﬂ’m
d—"n’ n* 2 A $0,9 M (-] + Mt n Wl )
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If we specialize to the case of a large accelerator (k >> 1), many terms

" of (5. 5) may be neglected. For example

o T ,
=l v 43"/ ~ T ~/n\/'£ y

a” ~ a"rvaj,/ ~ f%—: ’

so that

/5,7 ¢ 7 /! /! v/ s
@ u ~ Qzuuq,&'trfvad‘t)'m '\/Z

where vV is the betatron oscillation wavelength. Such terms are of order unity,

while the leading terms are of order k. In the same way

/
(as‘ - CL‘.)'U" N VN
{‘Q;f'a”{)u :éz

To good accuracy, the equations of motion are

w' = Ku+ Lv

U” - Mu +N1/—) ' (5.8)
- where
. [~ 4
K= a,-a =£ Kn En
m;;ao
. L: a,- aé,"—'ié‘ne” .
N -0 . .
oA (5.9)
/\1: a_q..as/ =£.M1.€n .
e -0
‘/ “
N= G- 27 55 N En
. Ne -%

Floquet's theorem applies to (5.8). That is, there is a solution of the form

18
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71V8 co , | !
= €& 5 U, Exn ‘
he Py ”
VO
v = € Vp Em- ‘ |
R (5. 10)
If we substitute (5. 10) into (5. 8) and equate coefficients of e, we find

—(vEm) U, = Z/K“, Wy * LM_W"%)

(5. 11)

St (M ).
. : e

Eqgs. (5.11) are exact. If we now assume that u, and U, are large compared

[ !'O)
to the other Fourier coefficients and substitute ”U,,) = gm u, U;, = 4, v,

on the r.h.s. of (5. 11) we find

W = (/\/““*L V)
" (\)fo)

(5.12)
. — (// Ug +1, U’)
vlo V,Jl
and, from Egqs. (5. 11) with n = 0,
@ Kot Ny (Ko=N) s LM | - |
( ) { ' / o= N.) (5.13)

Substitution of (5.12) in the r.h.s, of (5.11) gives in the same way a second

approximation for V,

(q) s) } ot K Ko # 2 Lo M 'F/V'.'Z_/_V_!L' - K, = V.
W#( (u‘”f w )

ity Vo kethat
+ ,]/ N N Ko Ko +4fL; bl M me
- ( No wmio (W# le») w:n (\) + wm )1 ! wie ('\)” W)‘ 5" 14)
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| V0 co |
a : : u = € 5‘ U, En
| 2062 -
- . % 6’" »
v= € MZ.-.., " (5. 10)

If we substitute (5.10) into (5. 8) and equate coefficients of e, we find

_(vEn) U, = Z//(.M " 'M-w'%)

(5.11)

. . 2 .

G NI () T Mot
| =

Eqgs. (5.11) are exact. If we now assume that u

o and U, are large compared.
to the other Fourier coefficients and substitute

U= £ o &,,O v,
on the r.h.s. of (5. 11), we find
N
- (/\/MM+L v)
w," (V ")
| (5.12)
v, = — (/"/,,uc +L,, v,,)7 |
(\)“”*w)” ' .

and, from Eqs. (5.11) with n =0,

()" - {/w/\/. ¢ ;/(m, V) mM/

- (5.13) -

Substitution of (5.12) in the r.h.s. of (5.11) gives in the same way a second
approximation for J,

YL Ko Ko # 2 Lot Nsbos 1 p/ :
("\) ) W‘Z*A (‘\)49)* w );, /(O'

-t (\) +W)1 woty (\)“’-ﬁm

- L NQ’ ] kMMm f/ /V
Mo M K“‘A/' +4 ’M M; g /
l//‘° N"Momf Lbf 5.14)
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m (5.14) iseqisiv&lent to the usual smooth app'roxim__ationf’ éxCept that we have
) .
~ not neglected 4 compared to m in the denominators. In this way it is akin to,
though presumably not as accurate as Vogt-Nilsen's treatment. 7

'In our approximation, where 1/k is neglected compared to unity

K == Moy NETRTS

from |
?—-BJ‘ = ?‘.BY )
X 9# :
and
L= Mo
from
¥ ‘¢ :
~ N ‘
since < %f°> =0
' Then (5. 14) reduces to
+ Lm M’
( .u)) 2‘ K K- ”‘“’ '™ a ‘L[/(o"Nu “/(/( No + 4M
' oo (Ve ) (5.15)
VI, THE TWO-WAY’ ACCELERATOR
For the case of a two-way accelerator With k >>1, we have
4 -/
x == — 6.1)
ﬁ

defining the average radius of the equilibrium orbit and, from (5. 7),

20
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(ko = -«*£(6°+6)
Kom = _Nn = - d'gfom
N, = «*R(6°G7) - «*(F**R7)
2 2 X ‘
Lo Moo= -atfy | | (6. 2)
‘ | 162* ntoo
Ln = X *é ;°a‘"
M = « gQW >
whére G; and G, are defined in (4. 8) and
F/-z = 2: To,w 0, M
m#o
F> = = Fom Joom 6.3)
w e '
/‘/"15 2 ;o,-vn Fo,-w
2 3o

V' ’6*2_2 c—=+c+“ 1/2:5 eh&- ]f‘/(ﬁ(é*é))

(6. 4)

In the case where ? om -0 , this reduces to the well-known result

2 Aé = bv)fl
Vo= L ET e (6. 5)
& 4 -
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m In the case where J 5) g =0 (purely radial field in the median plane)
- LA
’\) 2 - Qi é a_iz.
: ‘ * ' (6. 6)
o

y

80 'ihé,t there is no stability for one mode of oscillation and it is impossiblé to
construct a two-way aécelgrator with purely radial median plane fields.
| Let us consider for simplicity a field with a single harrﬁonic and even

symmetry. That is, we take

'\gom = é;(SM‘N’L Sm-/‘./)

Lo (S # & | | 6.7
Eo,n = 37 (";:\/ o N)' . |
Then |
8 .2 2 2
/ = :lféz 3 /.0 : }Lf’
. 2 _ 4 / £
2 , -
6:‘ :.—é %2— /2 jl.
. ‘/_2/_!:
.4 ;0 X = el L+9® ,
= tF (197

Field maxima occur at the centers of positive magnets, i.e., at 8 = 2Tp/N

(p integral). We calculate the maximum value of the field to first order in <k /N'M
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2 .{ g R
: BCEOL
By wmayx
‘ ’\M—(ﬁ'“) i F .
"é'“w.rn W Owm S0, %-w
— 1 2, g*
= < | R + -
fr[Rtrs)- 4]
| B } z I.ch fa«-w S ’g
= = o(‘ﬁ ot Luiltis Kt =~ - o(% o Som-w o,m-m
}Bu wax, g om ’ 1«-‘211 »(M " Wg (el
~ |
Then, using (3.6) and (6.1), we find
C =\/3-”7 [F+(5:(F)- £+ 3=
é ’ o 'fzfgl
From (6. 4)
» 2 2 2 L _ s 1-.
= b XL/FG r./_/\./////—"lf)#—é/wﬁ) .
| 2% \ 73452 2 7z N Firg®
In the following table we give C and the values of V for k = ZOO and
') k/N° = 0.04 as functions of glf. |
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glf C - | )
0 9.07 20 | 5.00
0.5 8.80 19.9 : 4 40
1 8. 47 19.7 3.41
2 8.02 19.5 2.10
o© 7.28 13.7 0

It is apparent from the taBle that the expected gain in circumference factor
is accompanied by a weakening of vertical focusihg.. The same discouragement
can be achieved by inspection of (6. 4).

The radial motion has a focusing average terr@ arising from the equilibrium
orbit scalloping. ﬁe vertical motion has this same average term with the opposite
(defoc‘usbing) sign and Thomas focusing terms also arising from orbit scalloping
(these last are the same as edge focusing). The alternating gradient terms add
focusing in both dimensions, caﬁcelling the effect of the defocusing vertical average
term, but the Thomas focusing which arises from vertical orbit scalloping has a
defocusing effect on the vertical motion, weakening the already small Thoinas
focusing. The term in (6. 4) containing F;, is alsoa Thomas term .and is always
small compared to the k term also under the radical.

It appears that radial median plane fields offer little practical advantage
for the two-way -acceierator. The vértical scalloping can be used to reduce beam-

beam interaction, 2 put only at the expense of vertical focusing.
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