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ABSTRACT 

This report inve$tiCates the particle motion in an accelerator having a . 

general magnetic field. For a wide class of machines, which includes the A. G. 

synchrotron, FFAG machines, and the fixed frequency cyclotron, a relatively 

simple solution of the equations of motion has been found. General expressions 

for the equilibrium orbit, and for the linear motion and tune are obtained. It is 

expected that the results should be good within an error of about 150/0 for pre­

sently considered machines. 
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I.INTI\ODUCTION 

In this report we Will- iJl"estiiate the motion of a particle in an accelerator 

havm, an arbitrary magne.tiQ. field. W. will find expressions for the equilibrium 
. . . . 

orbit,tbe linear tune and tbe linear motion. In a series of previous reports! we 

. carried thr~gh·this investiptionfor -the general spiral sector magnetic field 
. . 

. which is a scaling machine (t~tune remains the same for all energies and orbit 

radii of the particlel~Itw.8stated in these reports that the same methods could 

be applied with little ch~ to an arbitrary magnetic field. This report will apply 

. the methods of the previous reports to an arbitrary magnetic field. 

Tbe method we wUluse.employs two approximations which considerably 

T"\ 

• " . . r 

simplify the equations. Machines presently being considered are such that the use 

of these two appro~im.ation1Jlives an accuracy of 10 to lO" in the results. 
. . . 

The firstassumptionwewiUmakeis that. on the equilibrium orbit, y ::: y- IS) 

(-t .~~y' <.< I 
'Equation(l.l) saystbatthe·slope of the equilibrium orbit is small, or that the 

(1.1) 

'.' . 

. transverse componen~oftheparticle's velocity is small compared with the longi­

tudinal component of the velocity. 

The second assumption we will make is that 

fl H~.L ~< I 
H~ . 

where ./l.Hi, .is the change in the magnetic field over the radial extent of the 

equilibr~um orbit, and .H-t i.e the maximum value of the magnetic field on the 

(t.l) 

equUibrium orbit. 
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, The percentage variatiQn in H. over the radial ext~nt of the equilibrium 

orbit seeme to be about 10tA tor presently considered machines. The error in 

our calculations is usually of order (~I-/'i / Hi: ) ~ • Eq. (l. 1) is best 

fulfilled for machines with a large N, but even for machines having N = 4, we 

usually find that C1/ .. ) -- (d 'r/d s)-- is of the order of 10". I
 
The above two assumptions are the only restrictions we will put on the i
. 

I !-, magnetic field. We wUl assume that the magnetic field is given in the median !
 
plane ( z =0land we will write it as ! 

i
 
! 

) !(1. 3) 

.!where .~., 'C '.Vt '" • It is clear that the form of Eq. (1.3) is entirely general. 
. I; 

The functions G., (r)wUlin general be complex. We can write 

) (1.4) 

where 1-1" (y) and ·~h (~) are real. (S1'1 ('f') gives the spiralling of the 

magnets. 

u. SUMMARY OFBESULTS 
f 

In this secttonwe .will. summarize the more important results obtained.
 

The magnetic field in the median plane is written as I
 

(Z.la)I 

(Z.1b) 
3 

~
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H-~ (rl' and ~'~ (raJ being real. ' 

The average radius. R. of the equilibrium orbit depends on the momentum 

p of the particle. It ,is euierto find p as a function R and this relation is 

(2.2a) 

e(.= ··d-.2L iJ: [ RH:(I() 11,.(K )+ ~ H:CIl)] .
" ., "a. . (2. 2b) 

, . , 

EquatiolS(Z~ Z),gi"etber4tlation between the average radius of the equilib", 

rium orbit. R~ and the paTt~l. momentum, p. The equilibrium orbit r':: ~ (9) 

, is given by 

(2. 3a)' . 

(Z.3b) 

. The r-tune))~ ·wUldepe.1d on the momentum, p~ or it may be considered
 

~s a function 01 R. the, a,vetate radius of the equilibrium orbit. )/.... ( ~) is
 

given by
 

)J, ~ = e~ (r<. H~+·~Ho) - \ 
r pc. 

~ ~(~~ )J. .~.~ f R" ~~II H.. + I 
I 

+~R ~~ H + , ,II
l1 (2.4) 

J
I
 

·4
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c 
InEq. (Z.4). the HI),1-1,/ I Hh" are to be evaluated at r = R. 

I 
~ 

Note also that p depends Qn ;RacC;Qrding .to Eq. (2. Z). 

The 2 - tune"Vr is ~v.n by 

t 
i 
~ 
I 

i 

~ 
I­
F 

(2.5) 

We maynote that both the r ...tune, '))1" a~d the average radius of the 

equilibrium orbit,' R, do not deptnd on the f.?.., (~.) which give the spiralling of the 

d*gnets. ! 
~ 
e 

In Section V, the above 'equations are applted to the special case of FFAG ~ 

scalil1g machines. 

results to the A. G. 

The procedure we wjllfollow in finding the equilibrium orbit for an accelerator 

baving an arbitrary mapetiefie!d. is very similar to that used in the report MURA­

, 258, where the equUibruim.orbitfor the general spiral sector magnetic field was 

found • 

. We will write the ~anetic field in the .median plane as 

I 
seParat~frepoJ"tsareplanned which will apply the above general I 

I 
i 

syo.clu'9tl"Qn Btnclto the constant frequency cyclotron. I­
I 
l­
I 

·1 

t 
i
 
!
 
I
 

H~ := ~ LG (r)., , (3.1). ~ 

where w",-= .., ,N . 
5 
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To find the equi1ii)r.lum or-bit, we must solve th~ equation 

(3. Z) 

Let us expand the motion about a circle of radius R, where R is chosen to 

make the motion about this circle as small as possible. The method of choosing 
. . 

R is given later on. It will turn out that a. is essentially the aver-agaradius of 

the equilibrium orbit. 

Let us then writ~ 

y= ~(l+'Y-) (3.3) 

Our two assumptions given by Eqs. (1.1) and (1.2) can then be 'written as 

(3.4a)(i.J~ y «« I I 

~~_ <<- I:t I (3.4b)
(,.1"\ 

where all quantities in Eqs. (3.4) are to be evaluated on the equilibrium orbit. 

Using Eqs. (3.3) and (3.4a), we can rewrite Eq. (3.2) in terms of x as 

XII - LI + -X) ..... -~(J'+ :x)~ H2o • (3.5) . f~ . 
To solve Eq. (3. 5) for the equilibrium orbit, w~ make use of the assumption 

that the magnetic f~eld does not vary very much over the radial extent of the orbit. 

We ~anthen expand ~~ in powers of x and we will keep up to linear. terms in x. 

(3.6) 

means 
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Putting this expanaion for H~ back into Eq. (3. 5) gives 

'1."_ (14'/.) -= 1ft D+X)'- ( H., + H,!'y 1< X" .. ) 

- ~: {ft.i; or" (R 14:', l'" + ~ 14,.) + ~ ) 

')..'1 + 'X [- el"~ LR H~, ",-I- J. t-f'l- ) - iJ 
(3.7) 

\ + ;: R »~. + I I I 

1""" 
In Eq. (3. 7), HT) t-I x; y ) are to be evaluated at r :::; R. 

Eq. (3. 7) can also be written as 

(3.8a) 

where 

E$-~(9J= (3.8b) 

f (9) = Hi! 1 (3.8c) 

and the Fourier components of .:~ f &) and ·f (9) are given by 

(3.9a) 

(3. 9b)-eRE -- + ­~ f"­
e tr
tv) - - (3.9c)

(\ f~ 

fo -­
. (3. 9d) 

7
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Note that the definition of f s is to make 'J 0 s: a • and. the d-1'1 and 

fn are defined by f (~) = 
, 

z: 
t1 

~ ~ e x rs i IN ~ ~) ) 

f~ = :2 f~ ~~ (t WI-! IT). 
lr1 

GI1Note also that the in Eqs. (3.9) are to be evaluated at r =R. , 

Now. following the procedure of MUItA-Z58, we solve Eq. (3.8) by expanding 

x in the Flocquet solutions, ).;(v l~) of the equation 

Ll It + (E: - ¢ (s) ) ,~l"';:; 0 (3.10) 

. which is just the left side of Eq. (3. 8 ), except that E is replaced by E' , and s 

~ may take on all values for which Eq. (3.10) has stable solutions. 

Thus, as in MURA-Z58, we find the solution 

;[ ,UtI ff)) 
E-E (3.11) 

where Mh ( &) is the solution of Eq. (3. 10) corresponding to the f -value F 
~1 ~' n 

t1 

and having the tune )Jt) '::" h ~) h::: 0 I -:t j,; t ~.. . 

We now choose R so that the term in the expanston Eq. (3.11) which 

corresponds to ).In =e vanishes. This means that R is determined by the 

condition 
~ 

, (3.12) 

where.Mo (9) is the Flocquet solution of Eq. (3.10) having the tune )i:" o. 

The :FLocquet solution Ma (9) is given byZ; 

(3. 13)
 

where 
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andthe d" are given by Eq. (3. 9) as 

( R &-",' +.~ GrJ ) • (3. 14) 

Using this expression for ).Ie 19) and Eqs. (3.9) for f Iti) ~ Eq. (3.1Z) 

becomes 

(3. 15) 

Eq. (3.15) determines R, which will turn out to be the average orbit radius. We 

can also write this equation in terms of H~, ;3'.., 

( J _ 

VI') ­

(3.16) 

and 

c.. ~~ 

,since ~L n -:' ftYJ and ~-~ =~ f;YJ 

Thus the equation for R becomes 

r- eR Ho - ~(i.€~_)""'5 ~.1Cl:J' 7RtlLo ' Ua.. +:<Hy,QJ=a..(3.l7),
r~c:.:. 1" (. J ~ , -s, rr~, )./ 

- . I 
'It may be noted that f'r, (r') - . which gives the spiralling of the magnets. 

does not enter into the equation for the average orbit radius, R. 

Equation (3. l7) can be regarded as an equation which determines the average 

orbit radius R CiS a function of the particle momentum. p. The equation, however. 

~ : can be solved more easily for p as a function ofR. and we find that 

I No + JHp'- + 'f-< J 
(3. l8a) 

9
 



r. MURA';'397 

"" where 

0( -= ~ L ~~ [ lZ H~ H" -T .:1 11,,:>.1 ' 
(3. 18b)~'''' J 

The equilibrium orbit is now found from Eq, (3.11)1 following MURA..Z58# 

) (3. 19a) 

wnere 

(3. 19b) 
. ';l.. 

One can usually neglect E" compared with W n if )/y« N Y')r·1 1 

being the linear r ..tune. 

r-. The circumference factor C is given by the maximum value of the function 

l. (A) (see MURA..Z58)# where 

(3.Z0) 

where in Eq. (3.20) r is evaluated on the equilibrium orbit. 
I 

We can then write for the in Eq. (3. ZO)c; :(' )
 

(3. 21a). 
and 

(3.21b) 

10 
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The function C(9) given by Eq. (3. Zlb) must be maximized to find the 

circumference factor C. This is difficult to do for a general magnetic field; 

however. we can get a good estimate of C by assuming that the zeroth and. first 

harmonica dominate in +-IT: . and neglecting the second term in Eq. (3. Zlb). We 

find then that 

c (3.22) 

IV. THE LINEAR TUNE AND THE LIN~AR MOTION 

To treat the li.neaJ' motion, we will use essentially the same procedure as 

in MURA-Z73 where tDe linear motion was investigated for the general spiral sector 

magnetic field. 

First let us consider the radial oscillation. The equation of motion in the 

radial direction is given by 

.. ~ Y'" I .;,, _- ----- = ..

(~9 Vy~ + 'r I \, +i' "'- J r1.+ ~/"+ 'i;"! (4.1a) 

where 

-- (4.1b) 

<,r; -:. R( I + Xj) • then x, is given by Eq. (3.19) as 
-

..f ~.,. G.. 00 e ~ W. & , 
(4.2)

'" t-o 101 

Expanding about the equilibrium orbit will be simpler if we first make use of 

our assumption· that Cd r/J9)"/~'1 <<. to simplify Eq. (4, la).• 
11 
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(4.3) 

Now let us introduce the variable f which will give the radial displace­

ment relative ~o the equilibrium orbit. f is defined by 

y ~ ~ , U T F, (4.4) 

We now 'expand Eq. (4.~) in powers of r keeping only up to terms which 

are linear in f 
) 

~ 11- r + f (/- ? 
_L 

~ .. /v -+ f)
r,c.., l ' (4.5) 

or 

o 

I: 

In Eq. (4.5)" tic and H, v are to be evaluated at r = ~ (&) . In
-J ' 

obtaining. Eq. (4. 5) we used the result that Y/, c J satisfies the equation 

v ." _ y- e
y ~ :5 ' ­ (4.6) 

We introduce the dimensionless variable A.A I 

I (.::;)M r: 'f[ / (4. 7)I 

where R is the average radius of the equilibrium .orbit" and write Eq. (4. 5) as 

)All -+ n, (()))) =. 0/ 
(4.8a) 

where 

! 

, 

(4.8b) 

12
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In tbe expression for nX (9) , It?- and I{ .,.are to be evaluated at 

r;:: VSIt;).· 'To do this we write VS z: ~ (I +xs ) and then expand g and 

.H", about r = R. Thus
"51 y . 

H-2- (~I s ) 4- 1-1 i, ,_ ( \'?; 9) R"".s -+ f I ) 
-c- r ) (4. 9a) 

(4.9b) 

and we can write n?( (~) as 

nylp ) z: - ;: (1+ ')Is) ['W +~) C1-1., r + fj ~J r:'" ~~.r •. )
 

-I- ~ (1-1-:; -r Hi, Y' /'. y ~ .,)")J -J
 
) (4.10a) 

R ~~ yo + ,. W
I 

. + '):s rr<" Hs, • 

T 

r +4 r< H~J..... -+ :dj '?J1 I)
(4. lOb) 

. wbere in Eq. .(4~ lOb), H1 and U1., 'V' are now to be evaluated at r = R. 

For finding the tune, it is more convenient to write Eq. (4.8) as 

·A' 'f + (E6 · · ~ (Q) M :. 0 J 
r (4.lla) 

where . 

cc -= ef'~ Cite 6=-,' + ;1 ~ ) 

t(TfZ. ~;. {~'- (;1<,"-+ '1C-~' + :JG... )
 
J 

) 

(4. lIb) 

13 

." 



MURA-397..., 

or 

_ - te R) ( RG.,' + ') &I? ) 
. t f'- _(~)~ L.. G'~-~ CR'1. "n:' ..,. LJ (( 6h. 4- ~~). (4.11c) 

~ ~'t" ...... 
The d are the coefficients in the expansion ~ f 19) :: ~ j ~ e>tJO (ll4J", 9),

k 

and Ee> is so defined that '} 0 = G • In Eqs. (4.11), the Go..., are to be 

evaluated at r =R. 

E.qs. (4.11) are the equations giving the linear radial motion. They can be 

solved to give the r-motion and thr r-tune. The second ter-m-In Eq. (4.11c) for. . 

~ ~ can usually be neglected. 

Let us find the tune of the radial motion, ~ . The r -tune V.... depends 

on Eo and; 5., according to the relation 

(4.12) 

If we substitute for' Eo and J~ the expressions given in Eqs. (4.11), 

we find for the r -tune 

),12.. )r	 - e",~ CR G(j I + a Go -,
 

-+ Ie ~ )~2. -t~ ~ G-\N\ (R'a.6~' + L./R G~ + ~ (i.~)
 
LpG h1-:fro .., L 

-+ I RG~ + ~ 6..., t.... ~. 
(4.13) 

14
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~ 
We can write Eq•. (4.13) in terms of 1-/h and f?n ,by using	 , 

L/: = II -('·is", 

I	 

I-

~ 

~~ H~ ~. I f 

(;~ -= 'e'( ~y, (/-1,,/ -, tI~ f3~/) 
I
I 

I 
I 

J I 

I 
IG","-= e -,(f"(H,," -.. ,,1/,,' (3.' - i II. Ph - II" t/ ), (4.14) 

and J./", - H. "1 . fly, -= - (3-YJ
I 

We find that 

Vy' = ~ (R Hc'+ ~H/))-l 
'f(.
 

t l. ( f!)~ 1. -t~ ~ R'4. ~Vn f.I~i - R'" /-/n,4. t; "
 
~~.	 ~ l 

,." '2 I	 ~ 

+ 4 RHl'nH~ of '). HYH 

-t (R H~ + "If""Y+ r< '2.ft~l- H:' 5,
I (4.15) 

or 

(4.16) 

It may be noticed that the magnet spiralling which is given by f?Vi ( V ) 

does not contribute to the r-vtune, 

To complete the treatment of the linear r-motion, we should find the 

Flocquet solutions of Eq. (4.11). The r-motion is given by a linear combination 
~ 

of ,A))) and,LI 'V ' and)...l)l is given by (see MURA-273) 

15 
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e	 I u,	 ~ 
I 

~ 
i 

(4. 16a) t 
L 

~ 
~wbere the .~" are given byEq. (4. lIe).	 I 
I 
! 

The linear ~ -motion can be treated in the same ,way~ The equation of 
~ 

motion in the t:- -dn-ection is	 \
I 

r 
-- F~	 

I
t 

)	 (4. 17a) .~ ...	 E 

i 
~ 

where 

(4.17b) I 
Before expanding Eq. (4.11)inpQwers of ~ .~; we.useour assumption, that ~ 

I
L'1 .I' 
i(,J r / J eo>1.. / yo ':4 ~ <: J ,to~·Sim;i.ir~th~~qu~tib~, .. and:we .get 

• . "	 . • _ ·,t .~. ~_ lj __. - \, I 
-:f IrS.,	 ,..i..,\ ." 

F	 
l-
I 

. ...., " Ir 
~ == f .~	 (4.18) I 

I 

.The expapion for ~ up to linear terms is (see MURA-"Z73) \
'.. r 

I 
I 

f 
I 

I (4.19) j 
where ~tl P	 are to be evaluated on the' equilibriwn orbit where. 

";:;~~,,,'~,(' .t: ~ '9) 
}

? :. O. 

The elCpansionfor r+;. is then 

r F·f --, 

" Y' F:t -­
(4.20) .

'16· 
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f"". Eq. (".18) expanded up to linear terms in r is then given by 

?" - ·~[~/:C~ It!,~ - rs Ii",1-)1 = 0 . 
. s (4.21) 

We introduce the variable 

(4.22) 

and write Eq. (4.21) as 

(4.23a)~/ 4- YI') (9)~ -== 0 J 

h";\", .,,-. e.r~ ( '~.Pi', 9 - r; H" r ) . (4.23b) 
s 

In. the expression for n") 19), H~I 9 and It~ r are to be evaluated at 
I 

("'. 'r :. V; I IJ). To do this. we write 'r = R C\+ 'Xs ) and then expands 

}4- i,'r andH~11) aboutr ;:R. Thus 

H -= HiJ~ (WI~) + Hi J er (~, ()) R~.s 
) 

(4. 24a)+ I ••
i t 5l 

(4. 24b) 

(4.25a) 

n) ID) :. -~: [ 'X/ lIr-, _ - r< fl s, ~
 

,X.. [~' FJ~, lor + '2 f? H.,I-J, 1
 (4.2Sb) 
1 

where in Eq.(4.25b). ~"J 9 • H~J ~ and H'il r""" are now to be evaluated at r =R. 

17
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It is more convenient to write Eq. (4.23) as 

(4.26a) 

where 

Eo' :c L~ t L I ~'" l~ - ~)R Go' 
hi to 

~t~~)~.2 ~; f ~LG~' + 21?&~ L 
ntt () 

or 

- e~
(4.26c) -pc::.. 

The f Hot are the coefficients in the expansion f- It;) =.2.- 'f~ t=iCr' (t IAJtJ &) 
n., I 

. and 1:1>' is so defined that fo::~ • In Eqs. (4.26), the c;.~ are evaluated at 

r ;R, and in finding the -t~ we have dropped the terms which are linear in 1(s 

in Eq. (4.25b). 

Eqs. (4.26) are the equations giving the linear ~ -motion, They can be 

solved to give the ~ -motion and the ~ -tune. 

The ~ -tune depends on E',/ .and ..fa,. according to the relation 

)f¥1) ~ 
I 

(4.27) 

18 
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and ~i. IN)£.<c:. l 

If· we· substitute for Eo I and fl-'l the expresslo1l$given in Eqs. (4.26), 

we find for the ~ -tune 

Y,t := l~ Y.2 Ie... I~ - e.1"~ ~ 6-: 
f'c.",,+o 

t (do):I 2. -d;a. ~ IK c-v.: 1:1­
I" h,"1.' ..., 

- C_ ... L~' &..."+~ ti'G-~ ~ 1· 
(4.28) 

We can write Eq. (4.28) in terms of Hh and ~ ... as 

){l. _ (~)~ 2: li~ - res! ~) Y< 11/'1 

ht2) \:f 

-t ~ (~)~2. 
11111 

(4.29) 

or 

{tl)t<Hc/
~t:-

{2.~; R"'~..'''' 
,1", 'C,.11 . H •• 

t- r(l.. H~ - ~ rrn-. kt 

- ~ ~ tI~ I..J.~ 1. 
(*"\ (4.30) 

The Flocquet solutions of Eqs. (4.26) may be found from Eq. (4.16a) by 

simply replacing the 5.. by the ~ given in Eq. (4.2Gc). 
19 l 
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V. APPLICATION TO FFAGMACBlNES 

In this section we will illustrate the general results derived in Secticmm 

and IV by applying them toaparttcular m,aehine. We will apply them to the 

scalingFFAG machine. The results for the scaling FFAG machine have been 

extensively checked by ~umerical calculations~and have been found tq be good 

within an error of about 15'-• 

.Sc!!¥!l FFAG Machtne . 

Porthismachine1the,magneticfield in the median plane is given by' 

H -::. - tl (~)K.Lh ~e ~ W#t -e 
i' I .• . l1.. . 

(5.1a) 

where _ _. .~ _-:!=·.~I . IL.· ~,c.p C? ~,.,,.Ih r I 

(5.1 b) 

Tbusfor this field the G... b") are 

(5.2a)) 

and 

(5.2b) 

(5.2c) 
I 

where 

(5.2d) 

20
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We will now find the tune V... and ~ for the machine using Eqs. (4.16) 

and (4.30). The first s!ep~i8 to find f 0 <. ) • the connection between the momentum 
. to 

p and the average radius of the equilibrium orbit. R. This is given by Eq. (3.18),
"t 

f ~ ~~ [,Lf& -+ l} J-L' + ~~- J) 
(5.3a) 

11' . 
"1 <,.-L [ I 11 I-J 'l. J 

'OZ. f ~ 5t' w">. 1\ -/1-" tr.; +;> " .• 
(5.3b) 

'J 

Thus we find :. 
, .,:;~" 

0< -= ~.IW /1...\.~ ~~2. 
~, Cf) h2 (5.4a) 

f 
and t 

(5.4b) 

+ 2 ''( t+.,»~ + h H;' j. 
(5. 5) 

We note that 

II 1_R rt~ - J-< Hn ) 
(5.6a) ., 

I~ (k-J) Hi') 
(5.6b) 

21
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and that 

(5.7a) 

where 

(5.7b) 

We find then for 

'J~1.. -= b hoC k' +-""l.) - I
+ ~b2. 2- -t- I h. 1'1. r j( ( k~ I) + 1(1+i I<'+(.1

.,! I I 

(5.8a) 

r or
)I",". ~ 'b. h0 ()( + ~) - , 

+ '-1~.L ~ Ih"j'" T'- /(~ +7K+ (,1 .
. nIl ~ 

(5.8b) 

The, tune )4. is given by 

(5.9) I
 
.

22 
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Thus 

V~4. ~ .~'b4~ lh~)4 - b h. J< 
112., 

+ll,'2. .Li:T..l kt'l I~f '2 ~... - ~ k 
~ . 

I1ll + 1<'- -1« J< -I)) 

J 

(S.10a) 

The above results are essentially the same results found in reports 

l\CURA-258 and MURA-273 for the sClUing FFAG machine . 

(5.10b) 
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