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ABSTRACT
This report in_veStigafes the particle motion in an accelerétor having a -
general magneﬁc field. For a wide 6léss of machines, which includes the A, G.
'sy-nc_.hrotron, FFAG méch_inés, and the fixed frequency cyclotron, a relatively
simple solution of :the eqﬁatioﬁé of motion has been found. General expressions
‘for ’the equilibrium.pr;bit; ﬁ;nd for the. linear motion and tune are obtained. It is
expected that the resui,té should be good within an error of about 15% for pre-

sently considered machines.
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L _ INTRODUCTION
| ' In this report we will invevrstigate the motion of a particle in an acéelerator
" having an arbxtrary magnetic field We will fmd expressions for the equilibrium
.orb1t the lmear tune and the linear motion. Ina series of previous reports1 we
_ carned through’ th1s investigation for -the general spiral sector magnetlc field
 which is a scaling machme (the tune remains the same for all energies and orbit
/radu of the partzcle) It..wa.s stated in theee reports that the same methods could
- be applied with little chaxige to an arbitrary magnetic field. This report will apply
- the methods of the previous reports to an arbitrary magnetic field.

The method we will use. employs two approximations which considerably
‘simplify the equatmns. Machines presently being considered are such that the use

.of these two approximations gives an accuracy of 10 to 20% in the results.

The first. assumptlon we will make is that on the equilibrium orbit, | = ¥ (8)

| (I | ) << I | | w1

' "Equation 1.1) eayevthntf"the -_slope of the equilibrium orbit is small, or that the
’ transverse component of 'thévpa‘rticle s velocity is small compared with the longi-
tudinal component of tha velocity

The second assumption we will make is that

A Hz
< ' .
s «< | | 0.2
where A HE. is the change in the magnetlc f1e1d over the radial extent of the

-equilibnum» orbit, and .'H'?. is the maximum value of the magnetic field on the

equilibrium orbit.
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. - The percentage variation in H‘. " over the radial extent of the equilibrium

orbit seems to be about 10% for presently considered machines. The error in

~our calculations is usually of order (A H; / H x > . Eq.(1.1) is best

fulfilled fof machines with a large N, but even for machines hav_ing N = 4, we
usually find that (1/ >k (4 r/de) is of the order of 10%.

The above two assumptions are the only restrictions we will put on the

‘magnetic field. We will assume that the magnetic field is given in the median

plane ( z = 0) and we will write it as

. =,_ ~_ Z‘i_ Gn(” ez

he - / » (1.3)

w, &

where W, = 1 N . is clear that the form of Eq. (1, 3) is entirely génerall.l

The functions Gl v) will in genéral be complex, We can write

P - NON |
'Gh_(” - Hé (ro & TR (1.4)

where Hn(¥)  and Bn(¥) arereal. (B, (r) gives the spiralling of the

magnets.

II._SUMMARY OF RESULTS
| In this secti‘c.m‘ we will summarize the more important results obtained.
' - The magn'e_tic' field in the median plane is written as

U S Gy et n®
Hg_"' % g""(k) SO

o L (2.1a)

& where wlﬂ =’ n 'V and

o - B (¥
G = Hurne ”

3

(2. 1b)
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Hy,(ﬂ and lgn (") bemg real
The average radms, R of the equilibrium orbit depends on the momentum

p of the particle. It is easier to find p as a function R and this relation is

pe s [Mm o id |

a(- &Z_ [RH(K)HMHQH,,(R)j

Equatiom(z Z) give tbe relation between the average radius of the equilib-

(2.2p)

.~ rium orbit,v R, and..v»the pgrfticle momentum, p. The equilibrium orbit ¥ = 5 (8)

 is given by - o
| | B cw s
_eR < L G (R)e " |
%(97 Pe. ;;—o wy (2.3a)
~where ¥, is defined by | ”_
Y’(G) K(\+7‘5> : - (23b')-

- The r-tune vk w111 depend on the momentum, p, or it may be conszdered

 asa functlon of R, the average radius of the equihbnum orbit. yr ( P) is

glven by »
y\f = eK (R He + aH,) -\
N 4 : 1'_'“ -+ Rﬂ. Ht
+2(§—E) h2) : i o Hh h

(2.4)
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In Eq (2. 4), the H H H are to be evaluated at r = R.
Note also that p depends on R acc.ordmg to Eq. (2 2).
| The 2 - tune \/ is give‘,n by

o R > | _ | '
2("%‘:‘) Z H - f__'i RH@

nz l , P<
- ‘ oY !
-u( i iQR“HhB - 2RHH,
, nz, ._“ .

i 1 & H H (2. 5)

+R? H' - R*H.H.

We may note that both the r-tune, v, aqd the average radius of the -

equilibrium orbit,_ R, do,n__ot deppnd on the /5?,, (r ) which give the spiralling of the

megnets.

In Section V, tl'i_’ej above "eq'ﬁations are applied to the special case of FFAG

| scaling machinea.. ‘S"g'pa,,r'atgl reports are planned which will apply the above general

results to the A.G. 'v sym_';hrotrén' and to the constant frequency cyclotron.

II. THE g:gpmmnmm ORBIT

The procedure we will follow in finding the equilibrium orbit for an accelerator

having an arblt_rary magnetic -fml_d is very snmlar} to that used in the report MURA-

. 258, where the equilibruim_ c_irbit for the general spiral sector magnetic field was

, fou‘nd.

. We will write the ma@etic field in the median plane as

H-’} ;;Gﬂ(-r),e | A » (3.1)

3
where C\Jh n N.

I
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To find the equilibrium orbit, we _mixst solve the equation

43‘Y“ -—Y\—E)—H

(3.2)

| Let us expand the motion about a circle of radius R, where R. is chosen to
make the motion about this circle as small as pdssible. Thé method of choosing
R is given later on. It will turn out tﬁaf R is essentially the average fadius of
tﬁe equilibrium orbit. |

Let us then write |
v=KO+2) | -_ (3.3)

Our two a'ssuniptions given by Egs. (1.1) and (1. 2) can then be written as
dy \? ' B | »
- << | / | . (3. 4a)

r 6. R |
Ty << I -  (3.4p)
N

where all quantities in Eqs. (3. 4) are to be evaluated on the equilibrium orbit.

Using Eqs. (3.3) and (3. 4a), we can rewrité Eq. (3.2) in terms of x as

] | R 2 H
1! -Gy = e Grx) (3.5)
To solve Eq. (3.5) for the eqﬁilibrium orbit, we make use of the assumption
~ that the magnetic field does not vary very much over thé radial extent of the orbit.

We 'can'then expand HZ- in powers of x and we will keep up to linear terms in x.

~ e
He (rnod = By(roo + Ho b () kx + .0 .

where Hy .  means 3 H e/ Y.
. . 4 . 6
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Putting this expansion for H 2 back into Eq. (3. 5) gives

" ek RN
7( (14 %) -—-P%:CH-;C) CH, + Ha v Rx+ . )

——

_ ek o | ' .
?:{H%-\—X (RH.;,V'*' 3’41)*'""%/

| | (3.7
- \ + e R H% + Voo
. e
In Eq. (3.7), H:}) H Z,v ) are to be evaluated at r = R.
Eq. (3.7) can also be written as
!+ (’Es -9 (s)) = j('.{e—)l | (3. 8a)
where .
E, - 9(9)-— = €K (Rbh, o+ 2t )=, - G.8)
£ (o) = - eR -
| ) | T Ha / | (3. 8¢)
and the Fourier components of “} 6) and ‘%(®) are given by
Yo = if_ ( R&s + 264), | (3. 92)
E = + eR ( K L}al + 2 Cm) — | / (3. 9b)
$ ‘ T)
gn = %ZTB Cw‘” . ) (3. 9¢)
'Fo = |1*E X J'*’ . ‘ :
Fe - (3. 9d)




h

_ oy (e u*ten) Ftey
,. Y = _{:{; u,.,(\?) E-E ydl& AH(B) | g

where M p!B) is the solution of Eq. (3.10) corresponding to the E -vale F

condition
%
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Note that the definition of L, is to make 7.0 , andthe ;,,,"an'd
'Fn_ are defined by 3.(@) Z 9, € YP( [ W 9‘)
=2 o e (D Was.
Note also that the G.,, in Egs. (3.9) are to be evaluated at r = R.
Now, follOwing the procedure of MURA-ZSS, we solve Eq. (3. 8) by expanding

X in the Hocquet soluiions, M y (®) of the equation -

+ (& - ‘3’60)“ = | e

. which is Just the left side of Eq. (3. 8 ), except that E is replaced by E }, and

" E  may take on all values for which Eq. (3.10) has stable solutions.

Thus, as in MURA-258, w= find the solution

h (3.11) -

n

" and having the tune )fh:- hN h= 0, l):tD...-

We now choose R so that the term in the expansion Eq. (3.11) which

corresponds to \/h = 0 vanishes. This means that R is determined by the

(a5 uZio) £5) =0

, (3.12)
where Mo ( 9) is tt;e Flocquet solution of Eq. (3. 10) having the tune v-'-' o,
The Flocquet solution M. (6) is given byz-‘ |
o U, (0) = l‘ Z zha" 64(4)"9) ‘ s
h $o " .
whére g(a)‘: >3 304 W(,w 9)

Py
¢ '8
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andvthe 3 , are 'g‘iven by Eq. (3.9) as
a4 o - @R [p, ' | |
9 = - 28 (R +26.) . (3.14)
. . Fe A
Using this expression for: A, /e) ‘and Egs. (3.9) for )( /b) ., Eq. (3.12)
becomes
: | *’“l.’m:‘,‘a . A - | | ! - v ‘- ‘ .
J-er o, =Y T L Gy, {rzc—,. +2G,8=0 |
P \ o 4 nFo h (3.15)

Eq. (3.15) determines R, which will turn out to be the average orbit radius. We

can also write this equation in terms of H !5»; where 6-,4 = HH %( - 8,_,).

| G e -
-~ T - | - . (3.16)
| .Gw‘h b = H Ha o /-/n ﬁh. )

~since H,, = Hn and f., = — /gn .

Thus the equation for R becomes

/

and

, ‘ ._ ) | _ | | 2 .

- e - F S : ——— [ — A

‘ ' ‘TL H° 2 gﬁ‘) Z W, ?an H’n +2H"’ %"".(3.17) ‘
e Ve 4 ho) "
It may be noted that /Kh ¢ r) ~ , which gives the spiralling of the magnets,

does not enter into the equation for the average orbit radius, R.
Equation (3. 17) can be régarded as an equation which deterniines the average
orbit radius R as a function of the particle momentum, p. The equation, however,

. can be solved more easily for p as a function of R, énd we find that

~ | o
L pe sk [Her e ]

- {(3.18a)
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7 vwheré
R H, + 2HE]
A= 235 2] RH , |
n
v ey | (3.18b)
The e.quilibrium orbit is now found from Eq. (3.11), following MURA-258,
¥ = ©F = C (k) ©°

S s 2 / (3.19a)
iu < ?o* (24 wn E )

where | |
E, = €% (RC— v 25 =, .
- e - (3.19b)
One can“usuvally neglect E; compgred with Wj if V << W )/1,
being the linear r-tune.
X | The circumference factor C is given by the maxirnum value of the function

Clo) (see MURA-258), where

Cle, = exr H%-;

o

o L W & (3. 20)
C(@):if- é(V)C’L |
o= /
where in Eq. (3. 20), r is evaluated on the equilibrium orbit.
We can then write for the (;’n ‘r ) in Eq. (3.20)
Gnlr) = G. (k) + G, (K) R +-1  G.21a)
and , : |
' = €K C P W, B
C (o) 7’—(.2 iGn(R’) +U‘n‘(R) ij
~ | . o
(3. 21b)

10
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The function C/8) given by Eq. (3.21b) must be maximized to find the

" circumference factor C. This is difficult to do for a general magnetic field;

however, we can get a good estimate of C by assuming that the ze_roth_ and first
harmoni¢cs dominate in HJ_, _and neglecting the second term in Eq. (3.21b). We |

find then that

o - ef?'%l_}(;@—)—l”“@} .22

IV. THE LINEAR TUNE AND THE LINEAR MOTION

To treat the linear motion, we will use essentially the same procedure as

in MURA-2173 where tlie linear motion was investigated for the general spiral sector

magnetic field.
First let us consider the radial oscillation. The equation of motion in the

radial direction is given by

| e X - F -
~ gy , r
Ao Vyigyraz S I ) . 12)

where | _
,‘»‘Fr = “f:‘( rHe = & HD) -

We wish to expand this equation about the equilibrium orbit. Let r = (87

(4. 1b)

represent the equilibrium orbit. t; (®) has been found in Section III. Let

[ = R(1+ X;) . then xgis given by Eq. (3.19) as.
| | _ eR =
X, - ‘0:,." 4/-—* °‘ G (R) @ : 4. 2)
h#o |

Expanding about the equilibrium orbit will be simpler if we first make use of

_our assumption that (¢ ¥/ 16/ r*<< | to simplify Eq. (4. 1a).

11
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Eq (4. ié,) can 'then be written as - _ . _ .
r"—yr =rF | , (4.3)
Now let us introduce the variable f) ﬁhich will give the radial displace-
ment reiative to the equilibrium orbit. F is deﬁned by |
= Vs + /O’ , (4.4
We now expand Eq. (4. F”) in powers of /o keeping only up to terms which

are linear in ,0
}

Y;/L__ }, _+ F//"" F
e (Fe e D

e

Fo : (4. 5)

or

| P”-‘FFf";‘;@'(ﬁf’/?,r"*’z"’*}—nz_o’ |

In Eq. (4.5), i, and Hz v are to be evaluated.at = V; /&) . In
z ) : .

obtaining Eq. (4.5) we used the result that Y,;i - ¢ s satisfies the equation

24

o - (4. 6)

7

v, - -

Y

&
=
Fc.

We introduce the dimensionless variable AA ,

1<

- e . '
M = < o | (4.7)

where R is the average radius of the equilibrium orbit, and write Eq. (4.5) as
M —+ V)’x (OOU = 0, (4. 8a)

where

(4. 8b)

e = TS5 (r H;,,,+2“?>‘T‘“ |

12
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Inthe expression for nx/!?) , ﬁ‘? andv /% ,are to be evaluated at
Y V!’b} To do this we write YV = R(I+"X,) and then expand /—é and B
-H”v about r = R. Thus
He (00 < Ha(Ro6) + He, (K 6 Rt (4. 9a)
s - 7 y K &M "X +"’l
Ha, v (5,00 = Ha,, (R,9) + A2 rv (k6) K% ) e
and we can write Nx(e) as
Ny 1) = = €8 (14x) | RO+%) (Hy o+ Hajme R% )
| + 2 (H? -+ Ha,r K Xs ')‘1 "’/
o _ ' ) (4.10a)
7 J = "e
| x(e) T{KHQY-"?H%
+xS[K H?VV‘+4RHev-+QHil§ "
A (4 10b)
- where in Eq. (4.10b), H'i and Hglr are now to be evaluated at r =R. |
For fmdmg the tune, it is more cbnvenient to write Eq. (4.8) as
. .Y_M;,.’_’_‘ (‘L:a (.’»G) o) M = °, 1imy
where - |
. = EP__ (K@, +;@ )
(e R\*= G“' C. '+ 49 ¢+
f(p,«.) g o (K G & Dé”’) =

| @)

13
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m
q.
I}

gL (RH +aH) -

2h T (R M R HE A

m2|
+LIRH...Hn+1H»'}

g, = eR)(Ré,,+7Cn,) o
" (8ay Z, 2 (R 4 RGh 36wt

The 3" are the coefficients in the expansien 9(6) = A 9, exp i b, 9)

and E. is so defined that ‘)o =o . InEgs. (4.11), the (&, are to be
evaluated at r = R.

Egs. (4.11) are the equations giving the linear radial motion. They can be
so‘h{ed to éi_ve the f-motion and thr r-tune. The second term in Eq. (4.11c¢) for
| 3.,. can usualiy be neglected.

Let us find the tune of the radial motion, ){ . The r-tune Y, depends
on £, and 3” according to the relation |

2 — , ' 3»

Y, =F,+ %0 o - (4.12)
it In/N?<<| and (Yp)<<|

If we substitute for ‘£, and j » the expressions given in Eqs. (4.11),

we find for the r-tune

VYL'= eR CRG'&"‘RG‘o)"’
)5 w“iG-vn (R*Gwm + HRGn +25m>

+ IRGA + 26, ) 3
(4.13)

14
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f\ - We can write Eq. (4.13) in terms of Hh and }?h , by using
Gy =H, e H
G .e;{’g”(,u ¢ H Eh}

Gnu__. '-:ﬂn(y " cal B -l A —-//H/fh >, | (4.14)
and H,- H-, = | | |

We find that

AVY'Z: %i:: CR Ho"\-QH;)—]
Ta(er Q\Z iK }"’Vh ‘n. R H E
P/ 2

29

/\ | ‘\'QRHMH’;-’DQH”’»
+(RH“’:+:{H"'>1+ R’L,”" H':.S (4.15)
2 - ek / — |
Y, ?:[RH,,+QH°>
@R)Z {R&H H,,,,'f'RZ -
Yh2 a
SIR i H b Ha b
(4.16)

It may be noticed that the magnet spiralling which is given by B;f, (v /
does not contribute to the r-tune.
f\. | To complete the treatment of the linear r-motibn, we should find fhe
Flocquet solutions of Eq. (4.11). The r-motion is given by a linear combination

x .
of AU y and /UV , and M y is given by (see MURA-273)
15
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) ‘\ .‘: . ! ) 67
? b Lo Y
U, = | ‘f;o VWIS 5

(4.16a)

where the %.\ aré given by ‘Eq. (4.11c).

The linear Z -motion can be treated in the same way. - Thé'equation of

motion in the 2 -direction is |
48 Ursayp™ye™ ). (4.17a)

where

il

3 %_(}'Hr— VHJ,

Before expanding Eq. (4.17) in powers of 2 , we, use -our assumpt1on that
TSR "re) -» oy

4. 17b)

(Je/4 93 /<< l to simphfy the equatlon, and we get
. - R . Q’ 5 N el - ‘ PR
3" = ¢ F, S e (4.18)

.The expansion for F; up to linear terms is (see MURA-273)

e ﬁ Y 7 i
where H, ¢ and H 2, v are to be evaluated on the equ111br1um orbit where
Y=Y, i5) , Z2=o0. | ' ’i*
The expansion. for Y F; is then, :
= en /%y —rH, ) e
Yh= S ( —-\f_—-—— He,é R sz P %w'& )
c . o C

(4.20)
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) S Eq (4 18) expanded up to linear terms in z is then given by

'—?E- ( Hz& H-?r-)l:o

We 1'introduce the variable /\3,,

(4.21)

— 1 = | | (4.22)
E | .
and write Eq. (4.21) as

G + {'n,}le)r\? - O/ ' (4.23a)

h . F<- (‘ H% o = I H*/*’) . | (4.23b)

“In the expressmn for nn} ID) H; 8 and 2, v are to be evaluated at

A_Y‘-.\Glb) . To do this, we write ¥, = R (1 + %s ) and then expand
H'ZY‘ andH-‘._\a aboutr R. Thus |
. ? - .
H“ = Ha, (K, 9)+H23,,(R ) R %, (4.24a)

/

H% v H%r(R $) + ng(Rs) R?t; ooy (4.24b)

and we can write h?’b) as

h\io) = - eR(I+’¥:) [ % Hes
-R(\“‘:)( gy + Hey R:{«"’w)]/ (4.25a)

O, 10 = "eR {7( Hep — R Hg,
M

1

17

- X,[R H?, b + 2 RH?,\,} 3 (4.25b)
/

where in Eq. (4.25b), HQ' > H-‘e v and H%, ¥V are now to be evaluated at r = R.
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) It is more convenient to write Eq. (4-23) as
./} LY (‘Eo, - ‘p (6) )'\? = 0) | (4.26a)
where |
eR G ek YR G’
t ) m¥o l m (f )
R é; by :
_ v %52‘ m#u—zé— leém T ARG }/
or S .
S R YO L L
M2 | B
] L L B —K B2 R A
1(?,:) % {Rm = CN n,}l
~ o ’
_‘?».. - = 35_ RGw | ‘(4.26c)

The jcm are the coefficients in the expansion ¥ (&) = Z ‘F exp (¢ Wn 5)
f'a.nd E is so defmed that 'F =6 ., In Eqs. (4.26), the én are evaluated at
r = R, and in finding the "S:m we have dropped the terms which are linear in ‘15
in Eq. (4.25b). |
Eqgs. (4.26) are the equations giving the linear 2 -motidn. They can be
golved to give the 2 -motion and the -2 -tune.

The 32 -tune depends on E,,' ~and -‘:,,. according to the relation

"

y;. °.‘ 4 2 e '7&;/1

h¥o
(4.27)

18
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| \ | X
£ B N <<l aa (M) <<
If we substitute for Eo' and <, the expressions given in Eqs. (4.26),

we find for the 2. -tune

V% = (.S.K 2 el T ek ke

mAFo

) Z w* g'kG"l

hpyo |
— G, LR 6w+ 2 REA 3}

(4.28)
We can write Eq. (4.28) in terms of H. and B, as
- e = (£ R 4,
v ( )%) (SL) R #
S
| +a2 (=X & H —H(‘H
(%72 AL ';
"CK B " =R /‘h«,/g
+ 2R HMH»L) }I .20
e (ETI M - ()RR
4+ [eRY 1 $ade R*Bn
(Pc)%l w,‘}{ e -
+ R* Ha ‘R' ™
— 2 g Hy Ha .5
~ (4.30)

The Flocquet solutions of Eqs. (4.26) may be found from Eq. (4.16a) by

simply repla.cing the 5» by the ';h given in Eq. (4.26c).
19
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V. APPLICATION TO FFAG MACHINES

 In this section we will ﬂlﬁstrﬁte thé generai results derived in Section III
and v by applying them to a particular machine We will apply them t§ the
scaling FFAG machine ‘The results for the scaling FFAG machine have been
extenaively checked by numerical calculations and have been found tq be good
within an errcr of about 15%. |

‘ &WFFAG‘ Machine

~ For this'magchine, | theaimgné‘tic field in the median plane is given by

e ’ ,:’ -# G%)K; b, et

v , _ (5.1a)
. where . _.t.
N o . _,,<¥9 :; 6; "/“Frv ijv o
| S | (5.1b)
Thus for this field the @n ( *) are
, ~‘.£L 94, (Y/r)
@,,m —HU) ki e ,
/ (5.2a)‘
‘and |
’ : v i<
Ha(r) = (:h) | h. ' |
neo (5.2b)
R _ _ g kA | |
Baly) = T 2 ﬂ"h ~+ " N (5.2¢)
| where o i N
o , ~ 6 X

(5.2d)

20
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We will now find the tune Y, and Y, for the machme using Eqs. (4.16)

and (4. 30). The first step is to find

'f’/ R) | the connection between the momentum

p and the average radi}?xs. of the equilibrium orbit, R. This is given by Eq. (3.18),

i 'RJ [ Ho g

Thus we find . f
: bV (
oA = a"H"(_R_ PN o s T L)
& h2 h |

and

(5. 3a)

(5. 3b)

(5. 4a)

)r,-:: eHn (__,) H +ﬂ +yz e e (f«sf:")].

The tuné V. is given by
Y = €8 (rHs raH.) —|
y<
ra(efY 2 & {

737|

We note that

R.Hh' = K Hn}

fy = K (k)

“H He + R*H ™

+32 e = E A Y

\H‘h

21

(5. 4b)

(5.5)

(5. 6a)

" (5. 6b)
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f\
and that - K
eri _ | (R)T
- v
P ) (5.7a)
where
b = |
ho + U ?§ L |h,* T  (5.7D)

| We find then for y\p
b ho CK+7) -1
a2 s L h )P DKk + K pere]
-+ b% wr / /

| (S.Qa)
7~ or ' |
Y = Lhe (K+2) =l
+ar 5 Hv | [ak* +75+073
_ h?)
(S.Bb)
The tune V;, is given by
° (
Vo= o=k 75 Hy' P‘ kH.
taER)Z & {"‘R - b
+ R*H#," =R Hn }

- | | (5.9)
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V2= 23 < |h)* —bhK
? o he .
2 n
+1\?-2 Ty b {2 s 2K
, h1‘| , - R P b 'S
(5.lOa)

'TEJS'“"K'

M,_-'LN'L ,

we 2t g s

(5.10b)
- The above results are essentmlly the same results found in reports

MURA—258 a.nd MURA 273 for the scaling FFAG machme
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