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I. INTRODUCTION 

I 
Though most of the orbit problems connected with accelerators are 

Hamiltonian in nature, !there are certain problems where more general systems 

come into consideration. Two prominent examples are the effects of radiation 

on motion and gas scattering. Consideration of these problems has led the writer 

to some generalizations of the transformation theory of Hamiltonian systems 

usually given in classical mechanics. No general theory comparable in scope 

to Hamiltonian transforrna tion theory has been developed, but particular results 

which might be of some interest are given below. There are many questions 

(and corresponding answers) about a general theory which are net clear to the 

writer. One of the most interesting of these questions is the relation of this 

method to the Lie theory of differential equations. 

II. NOTATION 

Consider a dynamical system with f degrees of freedom. The equations 

of motion of this system can be written 

(1) 

where dots denote total time derivatives and xi and Yi are some set of variables, 

not in general canonical. 

Let us first introduce a unified notation. Following Corben and Stehle,1 

we define ;</ -dimensional vectors f s and r by 
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}C/ ) (a(. =J' ::. I; J) ''') f) ) 

ti) (0< =if f :; f 1-1) fr"). J ." ) ~ f) ) 

!i )(a< =-/':: I~;l.) ''') f))� 

- z/ ) (P( =J'f f ::. rH) f. +:l. J )..11-) j (2)�,., 

( ..,( =d' ::. IJ:l.) , o. J 1) J� 

l ( 0< =j'of} =f + I ) t f-:l) '" I ;2 t ).� 

Greek indices run from 1 to 2 f and the summation convention for repeated 

'" 
is the usual Kronecker delta symbol ( f = 0 ) (eX tf!) ) ).1( 

0< 
The r and ~O( are of course not independent; they are related by 

(4)I"' = G~ t I, 
where ~;6 is the appropriate element of the ~f -rank matrix 

G ~ (_; :), (5) 

I being the unit matrix of rank f . We have also 

<;«(3
50< = (6)

Q. /13'
/l~

where CJ is the element of the .:l. f <r-ank matrix 

-J)
G 

/ 
= 

0 

(7) 
( I oJ' 
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the transpose of G. The relations 

(8) 

follow from (5) and (7). 

In this notation Poisson Brackets have the form 

(9) 

The equations of motion U) become 

(10) 

III. TRANSFORMATIONS 
g( 

We wish to discuss transformations from the variables ;' to some other 
..c: _ 

set;; . A set lie<. "conjugate" to ;a 0< in the same sense that If'( is 

"conjugatel'to J ;:I( 

can be defined by 

(11) 

The transformation equations must have the general form 

(Jot':: »:« ~~T;), (i z) 

giving the ;--< as functions of the ~~ and t. If the Jacobian of this transformation 

is different from zero. U2) can be inverted to give 

0( f "1:( (3; L) (13)J = /)T;.. 
This Jacobian 

(14)� 
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is a determinant of rank a.t whose (17<,(3) element is 

d 0(

!jr£ 
J satisfies 

rT(F/"i)� '= I 
== (T( f//) )-1T( fl r) 

= T(;I w) T( vJl F) ,T (;/ ';)� (15) 

where w is some third set of coordinates. This last relation enables us to 

consider only the simpler case where one set of coordinates is constant, since 

the Jacobian of any transformation can be found from this case by (15). 

Call for;,(.. the initial value cf ..rQ(and consider the Jacobian :r (FI.so) 

Its time derivative j ( f/ Eo) is a sum of :;1 determinants, each of which 

has one row differentiated. Now 

so that each of the Jf determinants of j is itself a sum of .;zf determinants. 

If the o(tb row is differentiated, the 'i-til determinant has the coefficient 

'JjO< 
J J i" 

and the (o<,)(3) element 
~Sl' 
ii~ . 

o 

Unless Y = 0<, , the determinant vanishes because two rows are identical. 

If 1:: 0<. ,the determinant is jU$ J. Thus 

(16) 
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which may be immediately integrated to give 

. ~ )�
:TC'S'lf.) ; ,e«/' (f, #= d~ 

(17) 

Eq. (16) is stated without proof in reference 1 (p. 294). It is also clearly 

related to a theorem of Symon. Lichtenberg and Stehle, 2 according to which the 

time rate of change of a volume V of phase space occupied by a system obeying 

(1) is 

(18) 

/-10(
(18) can be derived from (16), since (choosing the s as canonical variables) 

and therefore 

v -
The time dependence of any Jacobian can now be found from (15) and (1 7). 

Thus -t 

Tefl» = J(f,I ... )ex~H(1j··-~·t=ytr 
(19) 

j(fls) can be expanded in minors of any row or column, i. e., 

q<.+ /!J ~,o~. (3 
= (-I) ~~])r><, (N. S. on oc or N. S. on ~ ), 

(20) 

(J 
where J)g( is the minor of . Define t1 by 

(N. S. on O<)f ). (21) 
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Then the f: satisfy 

(22) 

by substituting (21) in (20), These relations are identically satisfied by 

'Jf<>< 
(23)~r 

because of the assumption of (3), 

IV ° TRANSFORMED EQUATIONS OF MOTION 

at
The transformed equations of motion in ;a can now be found from 

the original equations of motion (10), Now 

0..c: ....?.J<1<1(3 of" ss"J = ::: 
<;~,8 ~t r 

or 
'JfrJ{ .~ 

J!,~ r = Cf 
e><: 

-
d§o(- .;>r 

(24) 

This set of linear equations in the 
",4 

t can be solved for the "I" 
/" J 

since 

the coefficients are just the elements of Tr rlf), Thus 
rXt(3 (J 

; 
";9 = (-/) ])0#. 

.Trt0J 
( 

(P 
I 

Q( 
-
~J~ 
~t 

(N, S, on A 
~ 

) 

q <>< - ~: (r~ ;!) 
= ¥. I (u; ~_ !.fP<), 

(25) 

JJ'''' f ~t 

where (21) and (23) have been used. Note that the right hand side of (25) can 

be expressed in terms of the f 0< 

by use of the transformation equation (13). 
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These same equations can also be derived by differentiation and manipulation 

of (12) and «13). We note that 

J~ : ~;3 jo(t­
( ()So( 

from (12). Then 

3:'P­
dt ­

= (26) 

If (26) is substituted in the equation for I 
.~ 

' (25) results. 

Eqs. (25) are a set of equations of motion in the new variables r' f1 

Thus the problem originally defined by UO) can be discussed in any coordinate 

system, provided only that the Jacobian of the transformation of coordinates is 

different from zero. 

In particular» a system can always be found in which the Jacobian is unity 

for all t. Let us calculate )-t

c1( d§c-)
Jt ~!l'(1 

From. (2~ and (23), 

d r:; Y 'J To ,,4 

~r.,r ;;r IX = 

Differentiate to get 
dji JJ:;-t� 

d 3.1-'- ;);:;. -I­
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or 

Use of (22) and (23) gives 

(27) 

Now we calculate 

by using (27). The sums on the right hand side collapse to give 

(28) 

We may interchange (,),& and 0<. and add to find 

Suppose that t: . 

[ ~f;3Jt = ;;f T( t:), 
c dS (1 

where f is the number of degrees of freedom. Choose the transformation 

~ I(= T (t;) co( 

.s e ~ 

Then a short calculation shows that 

~(J 
~fS = 0 

and Jrflfo) =I for all t , 
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V. VARIATION OF CONSTANTS 

A special case of great interest is the theory of the variation of constants. 

This is a generalization of the theory of the variation of canonical constants for 

Hamiltonian systems and of the elementary method of treating inhomogeneous 

linear differential equations. 

Suppose that 

(30) 

and that the solution of the problem 
-IX. (;0( r = fe; 

is known. This solution has the form 

,fo(~ }"~'( s: ~ t ) 
(31) 

~o<:	 • 0< II( "" 
We now view this 5 as a solution of the complete problem r = f" + ft 

with the now taken as functions of t, (31) is then the transformation 

equation of the form (13). Now 
"'JC" ..<.......::2. _ 

~t ­

r:'.,1� '" for every set of values J c since r was a solution of that problem. 

Then we find in eqs. (25) 

i:~ :. 
= 

(32) 

where the right hand side is to be expressed in terms of the ~rS by use of (31). 

VI. HAMILTONIAN SYSTEMS 

The� usual Hamiltonian theory is a special case of the above, with 
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(33) 

in the notation of eq, (1) or 

(34) 

in the notation of (10). 

Let us begin with the following theorem: A necessary and sufficient 

condition that the equations of motion (10) be derivable from a Hamiltonian H 

according to (34) is 1hat 
d jt?< 

=q1-r (35) 

The necessity is obvious, for if a Hamiltonian exists 

To prove the sufficiency, note from (35) and (10) that 

'#~ se r'
~/y - if,,- : 0, 

-< 
which is the well known integrability condition. 3 Then the form Cf ely ~ 

is an exact differential and the function H:=- H(/0() t) exists and is given by 

/I :0 [r 0<);0< 

The conditions (35) imply that� 
•�-oSg( 0 

{}JO< : 

for a Hamiltonian system, for 

(ji~
 
~", - 0::.�/: ~1/" 
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by using (8). But also. from (35) 

() -ir d'"M
~! - • G-7 1' :!.;J == 

a1/' -» 
Thus :T(~ ts.) = I for all Hamiltonian system. Of course. the 

conditions (35) are more restrictive, so hat not all systems with J( JI Fe) =: I 

are Hamiltonian, except where f ::;/ ,where J and the Poisson bracket are 

identical. 

In the Hamiltonian case eqs. (22) are just the Pdsson and LaGrange 

brackets and are satisfied by 

(36) 

One can prove the theorem: 

A necessary and sufficient condition that a system be 

Hamiltonian is that 

= 

(37) 

The necessity is a trivial consequence of (36). For the proof of sufficiency, 

note that 

~il ~#d (~Y) = G-~dt il?)otJ. d;/o" 9"1001. 

and 
~ G: of;d ?:!;d (~ro) = ;oY - ;.3� 

rlt (J$1' f)'7~ -;)1 0 -".� 

vYaJ'~ 
Multiply both of these by G- d [0 '" . Then 

-12=� 



J MURA-380 

which is just ~35), implying the existence of a Hamiltonian. Since (37) is 

equivalent to the Poisson bracket expressions 

d~f.;;J"11- (p
--� =-to ::- o,f '7-s:� d'?'?jo� ell. 

these� expressions are themselves equivalent to the existence of a Hamiltonian. 

In the Hamiltonian case. with both s" and ;'& canonical coordinates..­ the transformation can be derived from a generating function S:: S ('t J-<7~) t) 

by the relations 

~s-() t cI. 

(38);IS ,� 
()rr;~ 

(where half the equations are redundant because of the notation). Now 

from� (26). The transformed equations of motion can now be written as 

which� was only to be expected. 
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VII. INCONCLUSIVE REMARKS 

It might be well to point out that amid all the verbiage. the important 

results of this report are eqs , «19). giving the time dependence of the Jacobian 

of the transformation. «25}, the transformed equations of motion and (32). the 

variation of constants differential equations. (19) differs from well-known 

results only by trivial steps, but (25) and (32) certainly do not seem to be 

familiar in the literature. The variation of constants has been developed 

previously only for the Hamiltonian case4 and for one-dimensional non-Hamiltonian 

equat iIOns 0 f. moto.i.on, 5 
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