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ABSTRACT
This paper is a continuation of tiie reports MURA-258, MURA-273, and
MURA-362. This paper treats the problem of finding the stability limits due
to the yx + & V?‘ N coupling resonances and the threshold for y-growth due to
the \/,l -2 V»a = 0 resonance. The general spiral sector machine is treated in

detail. The results of the theory are compared with numerically computed

resultas.
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I. INTRODUCTION

This paper is a continuatior of reports MURA-258, MURA-273, and MURA-262.
In this paper we will treat the problem of finding the stabiiiry Iim.t<s due "o 1} e
coupled sum resonance }’1 + % ‘,A?': ' and the coupled difference resonarce

Vx“‘{

N

-

y,x’\ o in an accelerator having an arbitirary magnetic fieid.

We will limit ourselves to treating the generai spiral seator ma~hine. ‘Mark V
and Mark 1 machines.) However, we believe that the procedure given can be app.ied
with little change to any other magnetic field. Some of the results fo: the lun: 'ng
case of ;\L,.‘ o K and for small flutter have been previous.y found by Las.et

and Sessler! using the exparded equations of motion found by ¥. T. Cole. ¢

I1I. SUMMARY OF RESULTS

In this section we will simply list some of the results for the stability limits
due to the \V—x + A ')/,? =N and )’1 -2 )&3 =0 coupled resonances for ‘he
general spiral sector machine (Mark I and Mark V). The derivation is given in
Secticn III, where more detailed results are also given. For the sake of simpl:: v,
the most accurate results are not listed here.

The magnetic field for the general spiral sector machine is written as

H '-"-—H(_‘f_)K % L, e‘.wh(? | |
2 ¥ < " / (2. lay
—-%

where (J, = 1 N and

¢~ 6~ (%)

' (2.1b)



The yx + 4 ')/La =N Resonance

The x-stability limit amplitude A is given by

LY (_V_:L._u ”/
Iy

Ax._.__l_. “ N/

MURA- STy

N;‘ M / 2,2
where
/ N
Vo, = HIN= Vao
*S ' (2. 3
( Vx N V"a o ) is the linear small amplutude tune, and
. N \ . B
M = 5 h, ’\__j' /'W (2. 4)
4 N .
A is measured in units of R , the average radius of the equilibrium orbit (See

(s an b2 N
MURA-258 for a more accurate definition of K ). b‘i\‘ Lu o K/N -l“d} ; Hr),K/ /,

The y-stability limit amplitude is given hy

N

hA

-

o)

e
~ es
,,z

/

., =

|
ND»-

-] |
M

where V,,S# ay‘;s = N ) vy
'Z\j'N £ y’;s < J{ (’\/‘ v7‘>\)

(2. 5a}

uévw}iﬁ/\/

and (\/x“ Vy s D)

are so chosen as to give the largest value of Aa} . One usually finds that, A}

and Ay are roughly equal.
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/\\.
If (szo‘ vdg N 3 is very close to the resonance .ine, then one
finds that
I
b= e A
: (2. 51
5 \} yﬁ) ] > 2. 5b)
The .y;( - 4 )’l“j— Resonance
The threshold x-amplitude for y-growth which we will call A is given by
N~ SN N\
x T N> M o (2.¢)
P~
where
Vo, = & )
S - X o
L (2.7)
and we will give M  for the two cases, L = o (Mark 1) and -+ S? K
el A
(Mark V).
A = -
AN © , (Mark I, V’X - Qy"} =" ¢ Resonance)
b h K~
M = 0 N A (2.8)
X N7
Eq. (2.8) gives an infinite threshold amplitude A for the two-way machine
. which has l\, =0 . This is not truly 8o, as terms neglectedas being small

then become important. One may expect that the two-way machine for which

-4
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%o = O will have a threshold amplitude which is considerably larger than the

threshold amplitude of a similar one~way machine.

= 57K

(Mark V, v’“’ - 23:9 = © Resonance)

"
o
>
©

K" _ 31(_“ Lbh )1
=T v B e o

+2.L):{’53___L‘__}5h1 ]
N ek !

OI. DERIVATION OF THE STABILITY LIMITS

For the sake of simplicity we will treat the case of a generai spiral sector

machine whose median plane field is given by

Hz :'H(%) Z A E (3.1)

he -

where W, = n N and

Nz & - ;;f:;/fm( 8 3. 2)

i

We believe that any other magnetic field can be treated in the same way with
little change.

The equations of motion can be written as (See MURA-273)
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in orcder fto investigate tne quadratic coupled non-lirear resonances, we
: < . - . .. . . L N .\
must expand Egs. (3. 3) abceut the equilibrium orbii = s (& ) and keep
up e guadratic terms,

The expansion of I up to quadratic terms 15 given n Appendix A of
- h

MURAZ73.

J
w
-3
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In Eq. (3.6), f' is defined by ¢ = rs (&) v _and the . near
S Wik Al Y
terms have been omitied, and e . The
cm"l" - ’v:’
ccefficients of 7 , p¥ and 2 2’/ are to be evaiuzted on the equi .brium

orbit.

=
The expansion of 'z i3 given by

I 4] - L —_
o= g T E (o =t = e -1y, T p2

| o (3. 8)
M J}: Hz,e r Z4 g :
The expansion of L is?
, o | ) *
L= ... +4+b,r2 +~ b e (3.9)

where we have kept only the terms which contribute to the quadrati. coupling

terms.

; 3
= - Y
b-, /L ) (3. 9a)

b ::-.r‘/f'

g 3. 9Db)

The coefficients L_’ and L? are to be evaluated on the equilibrium orbit

which means we put " < o) , F'= g'/&) , 28 =0

-7
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Using the results of MURA-273 and MURA~362 for the (inear and radia!l

quadratic parts, Egq. (3. 3a) becomes

P+ 40 (a4, = e

/
where {27‘
- T = r !
C fe ;—'(HTJVY-"JF}“Q;/\/
/ (3.11a)
)
("= -2 pr 1
Fe 2 N%»’S@ ) (3. 11b)
Q)
C - ~f_Rk* L /./? 5
Fe r SR (3.11¢)
C@) — Rl L
b S
' (3. 114d)
CN} = R (J_ boo— L
- a Py T3 L7)
(3.11e)
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Eq. (3.3b) becomes

:;,{{o‘f -,-J‘ 2 = & / i ;?x L T iy \) Py
Foo Lo ) '
v / il )
r p» 3‘*(»(
le\[UT Dl o+ D 7 13.12)
/3] - <
—.’L ‘/ g ! ) \"'J} i i - -’/'I
L A4 U M+ /iy
' :L\ “:7*
DY e D)
W / .
where
L BT TR ) |
. e | H, el Hy oy~ N Lo
P< L Yy Y S NR sy T ey :3. 13a)
J oy
n e R+ r' /
- £ oy 24U A
D Pe v Fesr v~ '1'12;5 - {3. 13b}
Q) 2
D hong Q R“ » i
Fc Y }7213 ) ¥3.13
(3)-—. 2 [/ | N
D R “ E(’ + l’?) )
{3.134d)
&) — &) 2
D D° = K by
23.12es
k) — w2 ! |
= BT
{3.13f;
"= R
D 7
{3.13g)
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Vit A

Egs. (3.10) and (3. 13) will held for any magnetic fieid. We w... ntw spe..a 1ze
to the general spiral sector field given by Eq. (3.1). The dominar: quadra .z zoup’ing
terms are the Cie) 2& term in Eq. (3.10) and the };‘ (& 2 term in Eg. ‘3.712:,
All the other terms give contributions to the stability limits which ge smal. fer urge
N like ' /N® . These |\ /N2 terms may be significant, however, for sma!]
machines ( /N 4 1 A ). We will drop the |/N™ terms here. Their effec: may
be calculated as was done in MURA-362 for the ¥ = —%; /v resonan-:e. Dropping ‘he
| /N® terms means that our results may be off by a factor of two for small
machines ( V< | & ).

Let us now find the coefficients < (§) and |: ' » ) for the spiral sector

magnetic field. It is convenient to write the magnetic field as

K & - s 1 W, &
- - /,k..\ ' K L oI (3
Hg"“ H Sy ) Z (l"f‘k) . ( 3. 14)
[
/
where
[ o Fap
L’n- %HGYP S A /éh (V’,)j ‘ 3 15

We will find C@) and note that |/ () = = C %) . Thber as

Ce)= -(eR*/pe) (riay] He v =& 5 M -
we see from MURA-362 that

Cle)y=z - 3(6) (3.16)

~10-
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We can then write for the equations of motion up ‘o quadra ¢ (erms
1° L F - aie] 0y
S +4- E P 3!9) X . = B(&) /(,4' ~t- Cllg) /‘3 - 3 17a®
46" / | |
a d 1

e -fmly T Do)ty
| Jor
where 15(8)z - C/G) , Dig) = alis) and

B (9) — é gh 2xp ( ¢ Wy, &") ) where the 8,., are given by
b
(See MURA-362)

B, - _ b K(k+t)

A NY °

-1 S5 hal® KL= -3mywr2] @080
n2, h~ INE /
B, I
= — b (K-L_Q.\(}Hl—-ﬁ_!l.)
- /
N* - = = %" 3. 18b)

N‘f

Now that we have the equations of motion expanded out *o quadra.: ‘erms we

Vs
can apply the results of previous report, MURA-217 an4 MURA-3b6%, "0 calculate

the stability limits of the coupling resonances Y, v + 2 V»p = 1Y and
'vy - R V/a = 0O . We will tr;elalt‘the sum resonance V,,,. + V,é: A
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N N/
first and then the differen:e resonance ‘/;( -4 }/,; = 0O

The 2 v$l+ YV = ' Resonance

According to the results of the report MURA~217, tr.e~e 15 -0 jus' one
stability limit orbit but many stability limit orbits depending cn wr::: 1une or
the resonance line 2 V«a + )/, = /v the motion is driven 10. Every stab. )

limit orbit has a tune ( Vx ) which lies on the resorance iine 2 V} N oY/

Ve .
and this tune depends on the initial conditions.
The stability limit orbits having the tune ( )}, . )/, ., }. .yingon the
v ¢ -
resonance line 2 V?f + \’y_ﬁ — A . are given by

— * N\ Q 10.-
Mmo= 4 M, 18) + a, ,(,/s*(@) (3.19a)

/

I R e AR STy

(3.19L
where /u., (e) and /\é c (6) are the flocquet soiutions having the
tune V,, and Ns o where 2 Vi <+ y—,; =N and wh:ch are

f ound by solving the linear equations of motion when ( Ec,/ F ,}’ ; are re-
¢
placed by ( Es Ejl ), ( Eg E‘ ) being so chosen as Lo give the tune
/ I

The amplitudes qs and L_s are given by

Q| = 1;5: - E;’/

ID";;) ’ (3. 20a)
- e
\b ):— __IEQ’Esi IE& - EAslIl -
3 (3. 201}
I€a 221 1D, 5] /

-
- o
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where AT
7
/7 — N * /t/ 3
s = = 8) L (6 _ (8 M __ (@
A ar | 4% Ay (8 )/? 5 ¢-s ) 13.23;
/]
and phase d = o\ and phase b = B are related by
N (3. 22}
0("":/6: Fhas*f C§,§; — F}'“¢ (EOWE-S) \
Note that ,D,,;;!‘-: 2 le,{?’.
The E,, and E,’ , and M, () and ,Ags ,’3;) , may be :g&lci ated

by Eqs. (3.20) and (8. 21) of MURA-362. M, and Ay s WRIST we wil need to

calculate C‘/ 3 are then given by

_ » , LB
Mg - 8 ’ { ' '—"— \:\‘“ ——l——:‘ ('\3
I+ 24, > (3. 23}
2

-+ 'bf \ - ‘Vp
el AR 75
where '75‘ /

Y, = - dn

n w; | (3. 24a)
[ ]
% ~ bh # = N ar
-—-—-"1 = H’“ £K ) s (3. 24b)
N N>
VYo & .
W= C | + ¥ J G(NO
b+ 1\/-\)_5//\/
;o -<Ne
sl f = 2 Vas /N C < § (3. 25)
-18-
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where
\, ] ( / :)
- . & -
y,,. - ' h / (/\")ﬁ R I
‘{"\ —_— 'b ,nn K - }’?/w
‘7\,;\ N > 3. 260
/ 7~ )
, , : ¢
One may note that th ~ _Th , ., T - D o af
we assume K D7/
We now calculate the matrix element Cg/ S avd find th.
C... = C
5155 - i
[ S S
—— \
L ; i - . o
N \(" \ | - 2 \/yJ— /,./\,‘ I~z \/\35 SN = 3. 27,

. ( | _ 2 N -
! —— )
I+ 2V75 //V - ":‘)V‘);‘: /7y / o

’

In calculating (5/ sS , we have assumed *ha’ 3’, ~ - Dl

H

and have kept only up to terms which are linear in ‘5’, since we expe . ¢ *hat

?r, ’..\.’] (o, C': are defined by Cloy = gc"e‘Whg
According to Egs. (3.20), we have many stabilivy iim:t amplitudes ‘ns'e, g

of just one. We can get a good measure of the stabiiity .:mits by f.nd:ng 'he

maximum x-amplitude and y~amplitude allowed by Eqs. “3.206, wh: r we w1 <a

a"\dx and b Mane . We will call A’x': 2 1 0na, | , ‘he x-stab ity

limit amplitude and A‘?’ = 2 , bna~ ) the y-stabiity iimi* ampl:tude.
According to MURA-217, d, takes on {15 max:mum va ue whren ‘he 'une

V«S: qu and V*as '2-’14‘:“' (’V- V10> , where



ViR S

N \)’7 >, P2 © ,) 18 the linear sma,. ampatude tune, Tros trow oo 53,2000 «

find for Ay the x-stzbiiity amplitude
!

v |

where
/V) = L /CS,.;{-/ = - /? }:x ;,/ 3 ¢
N* N R
and

/
y‘;s = J;-: (N" v'XO) . 3,30

According to MURA-217, A} , the y-s8t<hluty .:m * amplrude 18 given v

P Ve .3, 31
A‘&“ \/l“_"‘ Af)(,

Eq. (3. 31) for A» holds only if ( Wy o VB - Pig o 0%€e io the

resonance line @ V‘? + ]))( = ’V . If one 18 ratker fa~ from tre resonan =
line, one shouid go back and use Eq. (3. 20b’ for A/> and f'nd tte 'une

% -

For the spiral sector magnetic field, we see frcm Eqs. (3.27. ana .3.18 ‘r.

( y'ysl' y«' S ) that gives the larges: vaiue of A«,

Cs’ ;.5. - C—' 3.32

-15-
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to a good approximation. Thus M ig given by

7%
(9%
3
-~

N:"L'b% K'l..‘...i/w'l (3,
& o
NH-
We assumed K’ﬁ K +) in getting Eq. (3. 33).

The 2 )Y, — Vx = © Resonance

In this case, the instability is not of the sort met in the 2 yl\a + Vx =
or the Vx = 45 /& resonances. 'Pere is, however, a threshold x-amplitude ior
the onset of y-growth. This threshold x-amplitude wil depend on the initia,
y-amplitude. Thus there will be many threshold orbits which give the limits on
the x and y amplitudes for motion having no y-growth. Eash threshold crbit has
a tune ( ), ) V,)_ ) which lies on the rescnance line 23 y? -V, = ©
and this tune depends on the initial conditions.

The results of theory for the 2 Vv) -~ ));,, ¥ 0 regonance, which
will be used in the following, are given in MURA~-365.

The threshold orbits, having the tune ( \’/’*’s ) )/.\9 s ) lying on the
resonance line 2 Vys - ',” — o0 , are given by results very similar o
those for the % y«g + ))’ = /}/ resonance,

These orbits are given by

¥ N
M= d, dgrey + A UT (8D (3. 32a)

Ve
™= by ~y.r6) + b 45 e (3. 32b)

-16~
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The amplitudes as and E§ are given by

. |E°'_E/J
4] = ‘l ‘ / 3. 33
le,s(‘ I
-
e fesiee] 28
3 § | . A i
} DS ra JC»,H | J\ | 13.33b-
where
2
n
- N - . ‘
Cs,ss T O A% Uj*/a\) 6/9) Moo /}_{/9// +3. 330,

and phase 4 = « and phase } = /8 are related by

X -2 = F)\ase (gs; - F)’“‘ (EQ,E_-‘){B.UM

Note that le,sf) = 2 ) (s,ss )
The ( E“ Ej' ) and u, fo) and ‘&95 /6) may be cas.u.ated a8 in

the case of the 2 V«’ + Y. =/ resonance.

We can now calculate the matrix element C and find tha!
,

Cs,ss = G

Y
'1' ( —_ 4 \ (
b~ 2V /N [+ 8 Yy IN J ==

-+<w

—— - T
I3V _ /ry ‘ >C.
X = 2%y

-17-
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In calculating C 5,5 % , we have assumed that ¥ 2 - ¥ ' and
have kept cnly up to terms linear in \3”

A good measure cf the threshoid x-amplitude for y~growtr .s the nmunimum
x-amplitude allowed by Eqs. (3.33) whieh we wili ca’. 8,.', . We w:llcall

A = R l A o in ) the threshold x-amplitude for y-growth,

as takes on its minimum value when )/, = Vo and
y’? c = =V , where ( V,, Vb , ) is the linear sma’.

amplitude tune. Thus, from Eq. (333a) we find for 4 , the thresho.d x-ampli-ude,

pe o Al - (2
M i3. 36}

where
M = ;;; /C,‘«,s) = }-\/L; /‘:t;' Di,ss / . a3
and
)/,” = J:I v'xa . (3. 38)

We would like to find the explicit {orm of M for the spiral sector field.

We will treat the two cases, //o~ = o , Mark] and L 5% Kk , Mark V.
M
\/ar 06 , MarkI{ A Y~ ~Vx ® O Resonance)

If we assume that the h,. are rea!l aud !'h = h.) , then Y‘ is real
and 'b", =Y., . e C, = (., . From Egs. (3.35) and Eqs. (8.18), we
find that

-18-
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("5,55 -

bhe Kik<1) .3. 39,

‘ W
|

and
KCic+1)
M = Jj: ); Ao " (3,40
One might note that for the two-way machine, 3 the mairix e.emen' van sr.es.
M = ¢ since \‘\o = 0 . This does not mean the threshold amplitude A becomes

infinite, because the terms which have been neglected in the calculation as sma.
should now be considered. Nevertheless, one would expec’ the two-way ma-:hine
to have an exceptionally large threshold amplitude as compared to @ simiiar one-
way machine. Some numerical results comparing the thresho.ds for these two
machines are given in Section IV.

'i_r D7K , Mark V, ( '17»;’—)))( T O Resonance)

If we assume that H, is pure imaginary, 1\, S “’M \ ., tren

}(' is real and positive, CI is pure imaginary and C_‘ = - (_,,
(Note we again make the angle transformation & —8'= 6 - ({ /wN) g J-;-
—— i

explained in MURA-362 which replaces |, by h, inour formul.:

We find for the matrix element

-19-
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LC = Lo Vo o C
5,528 v b e —_—
N N N N
"Lq isiss = Lt bhy gixv)
N 2 ‘
N‘I
-3k 05 \_é_ﬁz, - (3. 41)
N 3, Lwn?
‘+ i‘i—-‘ Xz.} ;El')/ 3
\b‘“l‘ /\/ (NN'\

and

N = J/V‘" ‘(5,$.s) (3. 42)

For small flutter machines L l’), << | , the third term in
Eq. (3.41) becomes dominant, and our result for A then becomes similar to that

previously found by Laslett and Sessler. !

IVv. COMPARISON WITH NUMERICAL RESULTS

We will compare the theory with numerical results for the two resonances

treated in Section III.

Case I, yx + & VQ = N Resonance

The quantities which are found numerically using the IBM 704 gre  AL(¢0 )
and Ay (o) which are the largest values of Ad and r at 8= 0 which
give rise to stable orbits; A1) and ¥ ‘{0) are put equal to zero.

In Table I, & comparison i8 made between the theoretical and numerical

results for two machines. The agreement is somewhat better for Machine B
-20-



wiich bas a larger N.

TARLE | f’x "“»‘L‘, i '\"/ ¥ = N Dagonance
[ ;. IR AL 30 & ¢ e Akl fhokn e A : - l » __.}.... [P <. Ere T ? “—";—.. . - 4-1_.—-..“.-..;;—_-_.»:73
e B, ;;' R ! | N L ; N ." 4 by +
Machine K i AN i s"‘-a ! ‘"slg : \/}’ //\)’ y y"h o Y T
{ T i
; | |
! | |
' I
A 7.5% o |18 ] 9 4.46 | .29i4 L3613 | 1,014 i
B 96 25241 40 | 1 .25 . 3036 3571 1.018 |

/Vil/(( ,fyz /2’_

Machire | Theo. Numerical |Theo. Numerical

A 5.9 2.4 2.5 2.}
)
!
B |07 1] to.012 015
| H

W ~ N o
Case II. Y, = # V‘g = C  Regonance

For this resonance the guantity that is found numerically using the tbM 704
is the threshold value of AL at & = ¢ ror y-grewth., The motion 18 started
with A'(c) = ~'lo) = O and with a very small y.

In Table i1, a compariscn is made between the theoretical and numeriazal
resulte for three machines. One may notice that agreement is much better for
Machine B where N = 16 than for Machine A where N = 8. Thuis i3 mostly due
to the larger N for Machine B, The error dus to neglected small machine
terms should decrease like | /N . Machine C is & two-way machine

L\o = 0 , for which the theory gives an infinite threchold to first approx-
imation. The threshold — 44 for Machine C is much :iarger than iheat for

21w
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Machine B although they are both about the same distance from the resonance
line. The threshold — M- found for Machine C is quite close to the stability
limit and it is possible that the threshold measuredisnot due to the & V,> = v‘k’ =9

but to some other nearby resonance,

TABLELL 2 ), - Vx =0 Resonance
Machine K J—Mf N L)o T ;’/ Z,?f l’r% 4 '\;/3' B },&‘—
A 3.36 0 8 1 1.6 . 32438 .1635 .0022
B 9.3 0 16 1 3.89 .268 .1438 .02
C 90 0 | 64 0 4.78 . 2266 .1043 .018
k3
Machine NI
Theo. Numerical
A . 36 .15
B 3.4 3.6
C Ve o) 18.5
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