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ABSTRACT 

The method presented in reports MURA-200 and MURA~217 for treating 

the non-linear resonances in alternating gradient accelerators is applied to 

the 2 Vy - )) x =0 coupled resonance. The results of the theory for the 

threshold amplitudes for the appearance of growth are compared with those 

of numerical calculations. 
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1.	 Introduction 

In two previous reports. MURA-200 and MURA-217. a method was presented 

for treating non~linear resonances. In MURA-217. coupled sum resonances 

were treated. In this paper. we will apply the methods used in MURA-217 to 

It has been pointed out by Hagedorn. 1 Moser and Sturrock that the 

coupled difference resonances. In particular we will treat the difference resonance 

2 V y - \)JI x 
::; 0 in detail. 

2 3 

2 VY - )} x=:O resonance does not cause instability. However. it has been 

found by Walkinshaw4• and Laslett and Sessler. 5 that when the amplitudes of 

motion exceeds certain limits. the motion is characterized by exceptional 

growth in the amplitude of the motion. We shall regard orbits which exhibit 

growth as "unstable, " and in this sense there exist stability limit amplitudes 

or threshold amplitudes for growth which will be found in this paper. 

Some properties of y-growth have been previously treated by Laslett and 

Sessler. 5 Work on this difference resonance has also been done by K. Symon 

using Moser I s method. 

II.	 Stability Limits of the 2 )I Y - ))x =0 Resonance 

We will treat the 2 Y y - V x =0 resonance in detail. Similar methods 

should apply to the higher order difference resonances. 

The procedure here is very similar to that used in MURA-217 for the sum 

resonances.	 and we will use the same notation. 

The equations of motion. up to quadratic terms. are given by 
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BIS))J ~ -t C (~) let ~. 
J (2. la) 

(2.1b) 

Proceeding as in MURA-217., we replace Eqs. (2) by an eigenvalue 

problem. We consider the more general equations 

t3' l&) A.•(1. + C (1)) (1 .... 
I (2.2a) 

(2.2b) 

and we will ask for what real values of Wand Wi do Eqs. (2.2) have stable 

solutions. 

As in MURA-21 7., we solve Eqs. (2.2) by expanding ,Lf and '( in the 

flocquet solutions of the linear equations corresponding to Eqs. (2.2). We 

expand ,it and 1"( as 

M= 
(2. 3a) 

. (2.3b)
\ 

and we find the equations for the II ~ and .b; 
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(2.4a) 

Z Dt'j ~ ~ 00- b.t2. 
(2.4b)

d-..e. 

J D~) ~ L and Cl>rf2., are defined in MURA-2;17. We 

proceed as in MURA-217 to solve our eigenvalue problem by a perturbation 

procedure. 

Consider the E -point ( E"~. e.:. I ) of the linear equations which has 

the tune ( \)j, Ks ). If the tune of this IE -point lies on the line 

Vs - ?';:$ -: 0 then the shift in this E -point due to the non-linear 

perturbation is given by Eqs. (2.18) in MURA-217. which gives 

j,"
oS 

I 

(2.5a) 

(2.5b) 

I.. '_ F iThe shift in the E" -point (/:;ol E I ) is given by W- E'.s , W _~ 
OI, .$ 

The magnitude of the shift is given by 

I bs~ I
Iw-£.s I -=- I ($, s S ) ­

I as J 
(2.6a) 

J\ ~I-E$') t D$ ~ s J Q$l, (2.6b) 
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We can show that ( W-.s )and (W I_S' )have the same sign. From 

Eqs. (2.5) we see that 

f h CVJ - 1:,: ) -::.- rh CS; $ S -t ~ fi - ~ I (2.7a) 

(2.7b) 

where f ~ means phase and f J, ~ = e<. Ph h =f ands 

~ h DsJ>t -::: - p~ C~; s oS • 

Thus 

(2.8) 

• ... I 

Since w- E'~ • and W'- f~ must be real. by the definition of Wand 

~. W' and EoS 

J 

• f~ ( w- fs ) and P~( IN '.. F.
-.$ 

I ) can only be 

zero Or' 7T . Thus if ph(W.. ~ ) =0. then P~( WI-r; , ) =o· if
I 

fh ( 'N - ES ) = 71' • P1-) ( W' - E.s' ) = -7T and ( W- IEs ). 
( rv ., have t .e same signs.I.~ '_ E/ ) h
 

Each ~ -point on the
 

2 'J - I< = 0 line is split 

into two points as shown in 

Fig. 1. 

1= 
'$ F 

Fig. 1 
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A gap appears around 
[' 

the 2 Y - J< ~ 0 line. as 

shown in Fig. 2. The size 

of the gap depends on the 

amplitudes of motion a5 

and b,$ . 

Eco E 

Fig. 2 

The stability limit amplitudes 4s » h.:; to drive the tune of the 

motion to ( V~ I Kj ) which lies on the resonance line 2 Y - k =0 is 

given by 

(2.9a) 

(2.9b) 

One should note that the. 

tun,e Q(iU l:>e driyen only to th.e part of E' 
the resonance line shown in Fig. 3. 

E' o 

Fig. 3-6­
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t= \1 1.. E I =- J<. 4.­
In formulas (2. 9) it is often adequate to put ~s = ~ »-S $ J 

I K'"and Eb =- Y,,'- » ct> = 0 . In calculating C!tc" s,So • one 

must usually be more careful than in the ~um. resonance case where one can 

use plane waves for the flocquet functions. We can then write Eqs. (2.9) as 

--
(2. lOa) 

--L­
(2. lOb)\ 6, 1'-1 

where \ c1 = Ic5" S $ ) and the dependence of C.s,$ S" ci.n the tune 

) can be neglected if one is near the resonance line. 

We can use Eqs. (2.10) to plot Ib,. J .against I q$ J . Such a plot is 

\bI is plotted against Ia I 

in Fig. 4. There are two 

branches to this curve. One 

branch corresponds to driving the lb\ 
tune to points on the upper part 

of the resonance line. This is 

branch 1 in Fig. 4. The other 

branch corresponds to tunes on 

the lower part of the resonance 

line. This is branch 2. 
Fig. 4 
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Branch 1 is given by the equation 

b (2.11) 

where 

\!< ~J- _ (-} x')1­

L.~ -ti ...<"_.... <.,,'_.,.,._~...- " (2.12)
?1c.1 

The factor 2.8 comes from 2 Jy,> I /C~ • and 

near the resonance line. 

Branch 2 is given by 

~\-----~,,<~._.-

'J (2.13) 

One can get an idea of the iliape of stability surface from Fig. 4. The 

surface is not closed. The stable region inside the surface is the unshaded 

region. 

We have not said yet what is meant by instability here. From the point 

of view of this theory. instability means that the motion has a character which 

is very different from the linear motion; or to put it mathematically. the 

motion cannot be described by. a linear combination of flocquet functions whose 

tunes do not differ much from the small amplitude tune. Instability here does 

not necessarily imply that the amplitude will grow very large. 

-8~ 



We find" experimentally" that the unstable region below branch 1 in Fig. 4 

is charaeterized by (r -growth. The unstable region above branch 2 is 

characterized by ~ - growth 0 These two kinds of motion, It -growth and 

'X -growth, will be discussed in the next sections. 

Orbits where growth takes place may not be unstable for an accelerator J 

since the growth may not be so large as to take the particle outside the vacuum 

chamber and for small initial amplitude. the growth is also small. The results 

of Moser> Hagedorn and Sturrock which say that the)) - 2).1 = 0 resonance x y 

causes no instability are correct since motions for sufficiently small initial 

amplitude will continue to have small amplitudes. 

However" there is some evidence due to Laslett and Sessler that an orbit 

showing growth may be particularly susceptible to bumps. 

III. ~ - growth 

It has been found experimentally that the stability limit amplitudes given 

by Eqs. (2.9) and Eqs. (2.10), which correspond to driving the tune to the 

upper part of the resonance line and which correspond to branch 1 in Fig. 4. 

are really threshold amplitudes for ~ - growth. Motions having amplitudes 

larger than the stability limit amplitudes will not. in general. grow exceed­

ingly large; but if the motion is started with a small ~ -amplitude. the 

'0" -amplitude will grow until it is about 2 or 3 times the ,y.. ~amp1itude. 

For motions having amplitudes smaller than the stability limit amplitudes, 

the 1'" -amplitude will remain small if it is started at a small value. 

Eqs. (2.9) for the stability limit amplitudes can be converted into thres­

hold values of /~ and '0 for l' -growth] by using the result for the stability 
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limit orbits, 

(3.1a) 

b-:; "&.s + (3.1b) 

where V$ - )...j\5 =0 and ( )~ J I\~ ) lie on the upper part of the resonance 

line as shown in Fig. 3. 

To illustrate the threshold values of).A and "t ' let us consider the 

case where J.I Ie) = ~-1.1 &) 

Then the flocquet functions are J"ust plane waves, and C"
~I $' 5 = Co . We 

assume that Co is positive. 

Eqs. (3.1) then become 

2. 10\ ufQ (»Q -i-o( J 
I 

(3.2a) 

~ I b\ (3.2b) 

eX. and ($ are not independent. 

According to Eq. (2. 6). ~ and f are related by 

(3.3a) 

on the upper part of the resonance line. 

(3.3b) 
-10­
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'0 / 

Isurface which have ,M i =U 

, Iand which ,
correspond to tunes on the upper 

resonance line are given by , 
\ 

has points for -,AI\, when.J.A I : 'C) ': c>, \ 
Fig. 5 

as shown in Fig. 5, the stability region 

for ~ -growth does have a boundary on the right side shown by the dashed 
.. 

curve. The points on the dashed curve lie inside the stability surface. 

If we start with some initial value of "t ' we can then vary ).;1 coming 

in from - 00 to find the threshold for '1'. -growth. The threshold values 

of ,..u. and If are related by Eq. (2.11). Thus they are related by 

d ~,"6 J1}.( I (1M \ - M~) (3.4)I 

where 

KL (~ ))Q)1 I -hi-tf - b 

'" 
(3.5)

Co 
'11­
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Eq. (3.4) has been tested by numerical calculation. In Table I, the thres­

hold M for growth is gi.ven as a function of the initial 0-- as determined 

numerically and theoretically for a case where )/0 = . 23, /(0 =.105, 

Co / /'II( =.04, CI / IV ¥ =.075. )Ii and ~ are given in units 

of 1/N"l- . 

The threshold for l' -growth is somewhat ambiguous to determine 

numerically. We have arbitrarily assumed that a run has no growth if the 

~ -motion increases by less than. 02 in units of IIN~ for this problem. 

We would like to point out that both the formulae in Eq. (2.9) and in 

Eq. (3.4) start to break down when the tune change caused by the increasing 

amplitude becomes too large. Too large in this case means a tune change much 

larger than J 2. K", - ))~) When the tune change becomes too large, 

other resonances, like the 2 K+ )) = N resonance, affect the motion. 

TABLE I 

),{ +hre~ holJ"tIYlltlal 

Theory N"umerical 

.0001 .0525 .05 

.1347 .0788 .074 

.2200 .105 .095 

.3812 .158 .09 

IV. X -growth 

It has been found experimentally that the stability limit amplitude:; given 

by Eq. (2. 9) and Eq. (2.10) which correspond to driving the tune to the lower 

part of the res:nance line, and which correspond to branch 2 in Fig. 4, are 
-12­
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really threshold amplitudes for 'X.- -growth. The tX. -growth is not as marked 

as the "X- -growth., but it is in many ways a similar phenomenom and the thres­

hold value of ~ and "'d for rX -growth can be found as was done for '1- growth 

in section III. 

For the case when d I &') =- ~ ... (&") -: 0 • the threshold valuesI 

of }A and d for tX - growth are related 

\

d := d.,'g ) J,MI (1M) + Met. ') (3. 5) 

In Table II, the threshold 1- for 'X: -growth is given as a function of the 

initial ,M.. as determined numerically and theoretically for the same numerical 

example treated in section III. 

In determining the threshold values for ty. -growth, we have arbitrarily 

assumed that a run has no growth if the 't -motion increases by less than 

.005 in units of I / f\J 4- for this problem. 

TABLE n 

'1 +hr~~hdc.t)A tYlI tl'o.l 

Theory Numerical 

0 0 .07 

.0262 .1347 . 127 

.0525 ,22 .17 

,105 .38 .24 
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V.	 Turnover point for "'t -growth 

If the motions showing '0 -growth may be considered as stable, then 

an important question is how far will -a grow for a given initial /LA 

We will treat the case where Similar 

arguments can be used if they are not zero. In this case, the threshold values 

of,~A and If for /~ -growth are given by Eq. (3.4). It seems at least 

qualitatively plausible, that if one starts with an initial M , the ~ should 

not grow past the 'd' for which the initial M is the threshold value. Thus 

we would guess that the '0 -turnover point for an initial ).\ is given by 

(5. 1) 

Eq. (5.1) is only a plausible guess; however, numerical computations 

show that it holds quite well. 

In Table III the theoretical and numerical"') -turnover points are compared 

for the numerical example given in Section III. 

One can present a similar argument for motions having J{ -growth. The 

Q( -turnover point for an initial ') is given through the relation 

\ 

J	 iU ( .() + )J~) (5.2) 

In Table IV, the theoretical and numerical 'i -turnover points are com­

pared for the numerical example given in Section III. 
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Initial"t ::: . 0001 

Initial -turnover'i" 
,.(A Numerical 

. 016 · 30 

.08 .12 

.06 · 058 

.052 · 0007 

.04 · 0001 

.02 · 0001 

Initial 

"U. 

.18 

.14 

.12 

.105 

.09 

007 

MURA~365 

TABLE III 

Initial !'It ~ . 135 

Initial -turnover~ 
Theory M Numerical Theory 

. 38 . 11 .23 .235 

.135 .09 .19 .18 

.06 .0788 .167 .135 

.0001 .07 .150 .135 

.0001 .05 .135 .135 

. 0001 

Initial t( ~ 220 

-turnoverIVy 

Numerical Theory 

· 6 · 45 

• 35 • 32 

.32 · 27
 

· 26 · 22
 

• 23 • 22 

· 22 · 22 
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TABLE IV 

Initial...u :: 0 Initial M :::.026 

Initial ,tA =turnover Initial M -turnover 

~ 
Numerical Theory "T Numerical Theory 

.2 .06 .045 . 25 .09 .065 

.08 .02 .015 .17 .045 · 038 

.05 0003 .003 .15 · 038 · 030 

.135 · 033 · 026 

.12 • 029 • 026 

.10 .026 · 026 

Initial M =. 0525 

Initial AA -turnover 
/ 

( 
Numerical Theory 

.40 .23 .11 

.26 . 10 .065 

.24 .09 .06 

.22 .08 .0525 

.20 .07 .0525 

.18 .06 .0525 

.16 .056 .0525 

.14 .0525 .0525 
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VI. The Stability Limits 

The difference resonance 2 'V y - )) x =0 does not give rise to instability. 

Nevertheless, for sufficiently large amplitudes the motion will become un­

stable. These stability limits do not vary very much when the tune is varied 

across the resonance line 2 V y - V x =O. It is reasonable to assume that 

the stability limits are due to the other resonance lines present like the 

or 2 Y
y 

+)) 
x 

:: N resonances. 

It is difficult to calculate the stability limits with accuracy as the linear 

tune is usually far from the resonance line causing the instability. We can 

estimate the stability limits by the following procedure. We consider all the 

resonance lines which are near by, and calculate the -X and /)- stability 

limits due to each resonance by assuming it is present all alone. We then 

take the smallest stability limits so found as the actual stability limits, and 

the resonance line which gives rise to the smallest stability limits is the 

"closest" and the dominant reSCtBnce line. It has been found in a number of 

numerical examples that this procedure gives the stability limits within a 

factor of 2 or 3. Usually the procedure gives too large a stability limit by a 

factor of 2 or 3. 

For the numerical example defined in Section III, the closest resonance 

is found to be the y x =0 coupling resonance (The theory of this resonance 

will be presented in a future report. We will assume the results here.). For 

the Y = 0 resonance, the If. -stability limit is given for this example by
x 

A 
(6. 1) 

-17­



MURA-365 

The 0- -stability amplitude is given by 

(6.2) 

We� find the following comparison of theory and the numerical calculation 

27 Theory 
A= 

[. 25 Numerical 

75 Theory 
B= 

[ . 45 Numerical 
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