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I ~ I NTRODUCT ION 

The author wishes to state at first that he makes no 

claim to the originality of the material included in this 

papero The problem is treated in many standard references, 

such as that of Whittaker and Wateon, "Modern Analysis", 

which is followed closely here+o In addition several papers 

by members of the MURA staff* have dealt with the probleme 

Work has been done on this problem by workers in several 

fields besides accelerator work**. 

This paper is written in the desire to invite attention 

to "the availability of algebraic methods of constructing 

solutions and approximate solutions of equations of the type 

y" + P(NEjy = 0 (n 

where 

(resolved into Fourier components). 

For simple cases,such as that of the Mathieu equation~ 

the formulas developed are quite easy to apply and give good 

accuracy" For more complicated cases (where t (N8) contains 

more harmonics) the application becomes more difficult. 

+ 1, page 413 et seq 

* Bibliography, particularly 4 

** 6, Page 8 
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Section II describes the general solutione Section III� 

describes the apprdximate solutions and their validity, and� 

includes as an example, the Mathieu equationo� 

(2)� 
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110� THE SOLUTION OF A HILLiS EQUATION 

A class of Hill's equations is of the form 

, N = 1,2,3'0"0 (1)+ 

where (NQ) may be expanded by a Fourier analysis to the form 

(2)~(NQl= ao + f an cos n NQ + r bl"l sin rlNQ 

n=l0=1 

where the series is to be absolutely and uniformly converg­

ent ~ and is periodic wi th period 21fIN. 
We derive a formal solution to (1) following the method 

of Hill as presented by Whittaker and Watsono* 

First, we introduce complex notation for the trigonometric 

functions in (2)0 Then 
IffP'O 

~ 

+� lS L.O<n* e
i n 

NQ + lS LO(ne- i n NQ (3) 

n=ln-l 

where 

According to Floquet's Theorem**, we know that (1) has a� 

solution of the form� 

(4)y = 

where ~(Q) is periodic" We substitute (4) into (1) and obtain 

* 1"� page 413-417 ** 1 page 412 
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(5 ) 

We assume that f may be written as 

where the q?m's are complex constantso The series is to be 

absolutely and uniformly convergent. 

Substitution of (6) in (5) leads to 

Since the series involved are absolutely convergent, 

we may change the orders of summation to obtain 

~n*.J)m n--rz- 'f' ­

Since the series (3) and (6) converge uniformly for both 

~(NQ) and ~(NQ), series (7) does also t and since the ei mNQ are 

linearly independent functions the coefficients of the e i mNQ in 

(7) must be zero& 

(4)� 
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Then we have the set of denurnerably infinite number of 

unknowns 

, ., 

l • \·.[o.,-I?...ZlJf]<f-~ ..~ ~j -+ ;.~.e. .. ~,(i + 5f+ f.. .. =0 

. ... . -+ i.' ~.f-z: ~ ~-f!.H#)lf.-, .. ~'fd" ~.. 11 + p~ .. 
\ , , 

4 ~/'-f .. " ~M- rf.-... [~-p ...]f, .. s« .. ~-;{ -+ , ~ 0I , 

I\.\ 

of ~~>- .. -if-I -t of <fa + ~-&-/{J]fl+ ~~ .. ''':.0 
(8) 

l \ l 

( 5)� 
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In (8), we divide through the equation in which ao-(~-mN)2 
appears by ao=m2N2 . Then this system of simultaneous linear e­

quations has a non-trivial solution if and only if the deter­

minant of the coefficients is zero: 

----*'--­

~l~ --­
-,,..-. .... ao.· ;tao 

jj (1/) = ~- (r.,Nj (X',_ = 0(9) 
~-N~ t~-,,1 

The exponent ~ has been arbitrary to this point. By 

choosing it to satisfy the necessary condition (9), we find 

part of the Floquet solution. 

Equation (9) is somewhat difficult to solve for P . How­

ever, the difficulties may be reduced somewhat by solving 

instead the equation 

(10) 

(6) 
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which follows from (9}*a 

We discuss now the convergence of Ll (0)0 It may be 

shown** that an infinite determinant converges if 

1) The product of the diagonal elements converges abso­

lutely, and 

2) the sum of the non-diagonal elements converges ab­

solutely" 

£1 (0) may be written explicitely as 

\, \. \ 

L. \.. I 

11 (0) =� (11) 

l� \.l l 
\. 

*� l~ p" 415,416. This proof, since it does not depend on the 
character of the numerators of the off-diagonal elements, but 
only on the dependence of I:J. on -;,J (W&WI.J,M.) J follows just as 
given there and so is not reproduced hereo

** 1, po 36,37 

( 7)� 
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, Then L!(O) has singularities at 

The singularity a~ = 0 may be removed from (10) by a� 

limiting process, If mN is even, these may be removed from� 

(10) in a similar way_ Assume that we do not approach any 

of the singularities. Then the product of the diagonal ele­

ments of t1 (0) is one. That the sum of the non-diagonal ele­

ments converges absolutely follows also. For we may write this 

sum as 

The sum over i converges since the series for t (NQ) 

is absolutely and uniformly convergent*. Call this limit I. 

Then we have 
V\ _.0 ~ 

~J;j.N~/·II~" ~ III~->?/TI)l~_~IN~1
 
•J j =- -)"\ 1: - til"") , ­,I . J-~';" ( 12) 
t;t.) 

If a o is negative, comparison with 

~ jl.. 
j 

shows that the series is absolutely convergent. If a iso 

* 1, p. 158, Corollary 

(8) 
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positive, we pick n to be such that 

(13) 
• 

Then the first sum, being a finite sum and having no sin~= 

ularities by definition of ao, converges" The third sum 
\ 

But by (13), the terms of the sum on the right are less, 

term by term, than the terms of the sum 
~I 

I. L-;;-.. 
which is absolutely convergent~ Hence the third sum converges. 

The second sum may be shown to converge in a similar manner. 

Then the original sum converges absolutely~ 

ThereforeLl(O) converges for values of aD which are 

Equation (10) may be 

used for computation whenever the singularities of ~ (0) may 

be removed by a limiting process& 

Thus, formally at least, we may find a 'Y such that (10) 

is satisfied. By construction of suitable cofactors of the de­

terminant of the coefficients of (9), we may multiply the re­

spective equations, add them and thus solve for the ratios of the 

fn' s , If we have a criterion for normalization, we may obtain 

values for all the fn "s , Then we must test to be sure that the 

series (6) is absolutely and uniformly convergent as required. 

(9 )� 
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lIT, APPROXIMATE SOLUTIONS 

10 In General 

Since in practical work we could not calculate the d (0) 

precIsely, or all the ~ , it is necessary to find ways of 

approximati.ng L1 (0) and I sufficiently closely for the 

problem at hando 

A way of approximati.ng Ll (0) which 1s immediately ob­

vi.ou s is to substitute for it in (10) the determinant LJJO) 

whi.ch is the central s ub-ide t ez-nrinarrt of !J. (0) such that A m 

has 2m+l rows and columnsG To estimate how good an approx­

imation this will be, we make use of a discussion on the 

convergence of infinite determinants*, making some small 

ch3nges in notation~ 

If we write L1 (0) as , 
\1-+ Q'I\ ~ ~ a.-II 0 a.-t , I . '­

!l (0) = . \ , ' .. , )Q.aj-I lot aOIQ ~\l 

... 
~l , Qlj-I 0..1 \ (1 ail' 

we see t.hat 
0<"'-4' 

a.~~ = 21~-i1101J.) 

;t K-j =,", ') 0where (~~ (14 )
;C J<-~ -=- 0 

o{K_L :.. 

:( K-~=V'l~O1~. 
\. 

* 1, p (J 37 
(10 ) 
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The product P is defined as 

(15) 

r::;#""D 

which converges since ,x.a.. I<. is convergent. 
t,.s""~ 

We also define I 

P,., = .IT (l +f 10.·1' I) , (16 )
Ii:-YtI. 

Then 

An inequality is derived: 
• 

1l1&~~ Ll (~)l ~ Pm"'p Pm ~ 
But since ~'Pm exists, given an 6 greater than zezo 

~".,.cJ 

there exists an N such that 

IPm+P-P f <. e for all ~7 N~m 

Then 

III m+p (0) - ~m(O) l~ ~ for all p '> N. 

Therefore ~ Ll m (0)' ,'exists ~ Taking the limit as p goes
~...J, , . ':',­

to infinity, we have 

ILl{o)- Llm(O)J ~ P-Pm (17) 

Examining P more closely, we have 

p= jL[/~.ft~~:N.I] •. 
Ii~ 

( 18) 

~ 

-'-"{il) 
, J"' •. 
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Since t (NQ) converges absolutely and uniformly, the 

18 ) If we call th.is sum Fa' we havesum in ( converges" 

(19 ) 

If we similarly define 
'M 

F~ ~ZIOiftl 
V\ ~ I 

we have 

( 20) 

From (17), (19) and (20), we obtain 

• (21) 

This inequality may be of help in estimating the error 

Lnvo Lv ed in approximating !J. (0) by ,1~( 0) if we can c a l cu­

l~te the infinite product with sufficient aCCUraCYa 

Having thus used Ll~ to calculate the ~ , we proceed to 

obtain an approximation to f ~ Since we desire to keep only 

'3 fini te number of terms for 1, we assume that the 1h 
converge sufficiently fast that above a certain n we may 

ignore thema Formally, we assume 

ef", =. 0 ;~ InL~ ~·tl (22) 

Then f will have 2p+l (p+ the constant term) components a 

Applying (22) to (8), we obtain an infinite set of 

equations in the 2p+l non-zer,o f"" 9 S ~Y\{~ p). We assume 

further that the ~,,(lw~c~) and the 0(.., and O(Il*are such 

.'" ~.'.~,~'-

(12 ) 
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that we can ignore all but the 2p+l central equations of this 

infinite set. Then we are left with 2p+l equations in 

2p+l unknownso We proceed to solve for the ratios of these 

unknowns 0 If we have a normalization condition, we can ap­

ply it to get a complete set of the /=> ). We must1n (I VI I ~ 

use this and the C'(t\ and O(~,* to be sure that the equations 

which we have ignored are satisfied sufficiently well that 

approximation has been justified. 

2 ~(NQ) With Only a Finite Number of Components0 

If the ~(Ng) in (1) has only a finite number of com­

ponents, it may be possible to find easier ways of finding 

the ct (tn, 6: ~ ) than by solving several (2p+l)- order deter­

minantso 

As an example of this, we consider an equation similar 

to the Mathieu equation*t 

;:~+ (ao+al cos NG + bl sin NG) y = O. ( 23) 

2)Then the equations (8) with the division by (a o-mN as 

discussed on page 5, become 
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\. =-0 

:..0 

l '- \. 

I.. .. I
I ~ 

"'-. ........ 

If we assume that the efn for rnJ~ 3 are zer o , then formally 

we would have that ~-l the ~n are zeroo We ignore this for the 

mornento If we make this assumption and consider only the cen­

tr~l five equations 9 we find that 

----_.------------------------­
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(25a) 

(25b)') 

If we consider fn= 0 if Inf~·4, and consider the seven 

central five equations of (8), we obtain 

(15 )� 
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(26c) 

If we consider the 2n+l central equations in (8), and 

are zero, we obtain
assume that tn+I,~n+2, 000 

-In '" _()(, 01t6. _/
f......: -0(", 12: ". I , 

.2.[4'., ~ ~- 'tI M)'"1
2.(«.-&,..,., N)'"1 

(16 ) 
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and so forth until we have reached f~l in terms Of1&G 
It. appears that if we would continue this 7 allowing n to become 

ever greater, we would find the continued fractions adding 

terms in a regular manner, and that we would obtain recursive 

formulas for the f~n~ 

(27a) 

(27b) 

(17 )� 
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To accept these as true, it would be necessary to es­

tablish them with some kind of proof. (This the author is 

unable to construct~ However~ neither is he able to foresee 

case in which the formulas (27) will not holdo) Since the 

= 'l7a o ' [1/ +nN)\. af)~ ~t{ 0+1) NJ2 , • e "� 

i,n (27 b) and the similar sequence in (27 a) diverges approx­�

imately sequence as m~, it is expected that the continued� 

fractions will converge~ 

To use the equations (27), it is necessary to find a 

value of ~~ We use equation (10) and approximate ~(O) 

by 6 m( 0) 0 In this case, /J. (0) is 

, .... 

, 0(, 
~ \. 

\. L \ o 0 0 . 
2tt4-4-N") 

cl
J
4J. ott I ( \"L \ ____ 0 0 

.i..~-Nt) I i.(~-}.r·') 

CC't.Jf l \", \., 
... .... , I 

oft 0 (28)0 ~ 2Q..u
!J(O) =­

()(,~ 
\. LI ~I , 

\. L. \. 0 0 l(C4-Na.l2/4,-N~) 

f>iI/" ' I , 
L l I I0 0 0 2 (ao-4Il-) 

(18)� 
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Expanding central sub-determinants of ( 28 ) leads to the 

sequence 

(29) 

Thus each approxi.ma tion to.6 (0) is equa 1 to the previ-

O~jS appr ox i.ma t i.orr plus or minus a small correction factor (de­

pending on ao)~ Eventually, when m is large enough, these cor­

rections will all be negative, and successively smaller. It 

can be seen that to achieve a given absolute accuracy, we 

will need to use higher approximations whenever l~tl or ao is 

.i.ncre as e d , 

It appears that we have a singularity at a o = O~ However, 

when the LlYf'\ is used in (10) and the lirni t taken as ao approacho, 

es zero, this offers no difficulty. FOT example ~ wi th 11 , LJ I ' 

( 10) becornes 

(30) 

( 19)� 
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(31 ) 

givesRemar k: if -V 

(32) 

Equation (32) agrees substantially with the nsmooth approx-

Some special examples of this case are of intereste Las­

lett and Sessler** have previously considered the equation 

y" .. (A+B cos 28 ) y = 0 0 (33) 

Their method differs somewhat in that coefficients of 

a trial solution are determined by harmonic balance of the 

trial solution in (33)0 The resulting coefficients are the 

same as (25), except for the algebraic form in which they 

are presented~ For a numerical comparison, equation (33) 

W3S integrated on the MURA IBM 704 computer and the results 

subjected to Fourier analysiso The agreement was found to 

he good 0 The c os '11,1 was also calculated for various val­

* 2; 7~ po 69 and bibliography
*.* 6 

(LJ) 
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ues of A and two values of Bo Table I below presents a 

comparis on of t.hese­ va lue s of cos,.,,11 '* wi.th cos '71V ca Leu­

lated using .6~ and 6 2 in ( to) . 

Table 10 

I ~ 

! e 1782 {~" 978291 -1000968 t ... 0 983939 -0968368 
I ---t 
j 01648 l., 940199 C-'" 970545 -" 945728 ! !0430 -.933312n 

!10411 -~898187 

1 
1

0368 -.811910 

I
!

0323 -,,711843 

-0505730 

.180 -0310618 

0092 +.,000066 

0017 0310321 +0306392 +.30944{ 

0499529 .,5022775 ~500261 +.501722 

I- Q,,699183 065 .698389 0698849 +.698751 

,,794928 to 086 .,806719 0808003 +0807010 
.-.__---*- ---;.-+c_-..~--~-_+_----....-.----_..f_+ 

The agreement of these values is good" The absolute 

error is nearly the same over the range ,2~~1/.1 .. We note 

there are two cases where the higher LlW\ ~ s must be used .. 
. .. 

The first. is when Ie os '1Tyl ::: 1 9 and the second when cosv1r = o. 
In each case, the estimated absolute error should be less than 

~ * 6 j po 9 9 by permission of Dr" A" M. Sessler 

!21) 
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the absolute difference of cos 11")/ and I or O~ as the case� 

may beo In the first case (since N=2~ ~;V=~*)9 we may in­�

correctly take a stable solution for one which is unstable,� 

or vice~versao In the second case, we may use the incorrect� 

sign of cos~v in further calculationso� 

As a second numerical example 9 we treat th~ case 

~~+(02+ cos 20 + sin ?Q) y = 00 (34 ) 

The n a 0 =2 a =: 1 ~ b = 1 9 N = 2 0 Subs tituting in th e� 

various formulas gives� 

11= 0861. 

1,= 047868 (I-i)� 

c(!., = 062741 ( 1+i ) (35)�0 

1{=- o049698i� 

cf-~= e 002286 i� 

where we ha ve norma lized so tha t e:p. =+10� 

Then a solution of (34) is of the form� 

y = e'086138 9 c(J� (36 ) 

where� 

4P= 1+o47868(1=i)e2iQ+(o062741)(1+i)e-2iQ_ .049698ie4 i Q +� 

+o002286ie-4iQ+o~o 

y may be separated into real and imaginary parts: 

Re(y)= coso86138Q+o47868(coslo13862Q+sinlo13862Q)+o062741X (37 a) 

~cos 2 086138Q sin 2.861389)+.049698 sin 3ol3862Q+o002286 sin 4.86138Q 

* N<T =2'1T'JI and the solution is unstable if ICOS(iI>~lfI 

(22) 
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~~(y)= _ sin .861389+.47868(-cos lo13862Q+ sin 1.13862g)+.062741~ 

~(cos 2086138G-sin 2086138G)- 0049698 cos 3.13862g+o002286~ . )(31b) 

x cos 4.861389 

Equation (34) has been integrated on the MURA IBM 704 in 

order to obtain a comparison with (37). This comparison is 

presented in figure 10 The agreement appears to be good. 

Substitution of (36) into (34) gives the result 

[ _.000555_.000002(1_i)el.13862iQ_.002287(1+i)e-2.86138iQ + 

+.000952ie-3.13862iQ+.009288ie-4.86138iQ+.024849(1+i)e5.l3862iQ_ 

.OO1l43(1_i)eT6.86138i~~0 ( 38) 

We do not discuss here the second condition for approx= 

imation stated on page (10) since it has not been used. For­

mulas (27), if correct, make this unnecessary. Since the~s~ 

are less in magnitude than ~(n-l) by a factor which is 

approximately 1/n2N2when nN is large, the series will converge 

absolutely. 

It can be seen that the remaining terms are small, and on 

the order of the terms of which have been neglected in (36). 

Tables* have heen set up to give values of ;/ for equa­

tions of the type 

y"+(A+B cos 2~ + C cos 3~ + D cos 4~ ) Y = o. 
.£ A'V 
~ =N has been computed for various values of Aand a for C 

or D not zero. 

* 9 

( 23) 
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I INDEPENDENT SOLUTIONS OF 
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To apply (10) to a more complicated case? we consider 

(39)j~+ (A + cos 2Q + ~ cos 4Q) y = 0 

l\ 0 is used in (10) to approximate ~ for various values 

of Ao The results of these calculations and a comparison with 

the tables is presented in Table 110 

Table 110 

i 

A 
cos'llJ} 

I ( 10) ,tl t 
-

tables 
A 

cos "'try 

( 10) t Ll , tables 
. 

~ 
1 

-,,12 10 97 i 932 0883897 +009 -.016223 -.081071 
j 

"'009 [ ,,808474 .. 723917 +.12 - .. 129570 -.191413 

~.O6 0652709 0571680 +.15 -.236595 -.295492 
-, 

- .. 03 I .. 504:>72 0426962 +020 - .. 401377 - .455560 

-.00 ! .. 36383 0289540 +.30 -.683268 -0728559 

+� .03 
i 

0230246 0159201 +.40 -0907054 -.944154 

+006 0103444 0035733 

The comparison between the calculated and tabulated values 

is not as good in Table II as in Table 10 However, we see 

that the absolute accuracy again improves as COS'1iY becomes 

smaller.. (Note that when cos '1T'pJ is near zero, the relative 

error may become-quite 'largeo) Similar conclusions to those 

reached before as suggested: better approximations must be 

used when cos~~is near one or zero; Ajis not likely to be more 

than roughly adequateo 
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Calculation of the components of ~ proceeds in a manner 

similar to that described aboveo* Algebraic expressions 

for the case of ~ (NQ) with two or more harmonics become 

rather involved and so no attempt is made to include them 

hereo 

* po 12 

(25)� 
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IVo OONCLUSIONS o 

It is possible to obtain a formal solution to a Hill's 

equation whose periodic coefficient may be Fourier-analysed. 

Approximations to the formal solutions may be obtain~do In 

the event that the periodic coefficient of the Hill's equa­

tion is simple, such as in the Mathieu case, these approxima­

tions take convenient forms for computation and become good 

rapidly. As the complexity of the periodic coefficient in­

creases, higher approximations are necessary to calculate Y. 

Also it is more convenient to calculate the magnitudes of the 

components in each special case than to try to apply general 

formulas. 

If the infinite product in equation (21) can be obtained 

in a closed form, then (21) will give a convenient way of 

telling how well L1~approximates l:! . 
Dr. A. M. Sessler has proposed recently that newer, 

more extensive tables pertaining to the solutions of Hill's 

equations be compiled. If this is done perhaps the alge­

braic methods described herein will be easier to program 

and allow faster computation than the methods previously 

usedo 

.: ..~. (26)~; 
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Table I on page 21 should have the following heading 

B=1.,5 
A 

cos?rV 
Computer 

i 

cosJ1r'V 
(10) A 1 

j 

cos1r-U 
(10),A2 

B=1 
A 

cos?f1) 
computer 

COS~ 
( 10) .1 

coser :J 
(lO)A 

Also 

page 

on page 24 - third line from the bottom of the 

should read as follows 

",",. 

reached before are suggested: 

not 

reached before as suggested: 


