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is described for the solution of a Hill's equation

whose periodic function may be of the type
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1. INTRODUCTION

The author wishes to state at first that he makes no

claim to the originality of the material included in this
paper. The problem is treated in many standard references,
such as that of Whittaker and Watson, "Modern Analysis",
which is followed closely heret. 1In addition several papers
by members of the MURA staff* have dealt with the problem.
Work has been done on this problem by workers in several
fields besides accelerator work¥¥.

This paper is written in the desire to invite attention
to the availability of algebraic methods of constructing

solutions and approximate solutions of equations of the type

yn + Févgy = 0 . (l)
where

fine) = ao+zanwsw1\/9 +§ bnsin nNO

(resolved into Fourier components).

For simple cases,such as that of the Mathieu equation,
- the formulas developed are quite easy to apply and give good
accuracy. For more complicated cases (where £ (M@ ) contains

more harmonics) the application becomes more difficult.

+ 1, page 413 et seq
¥ Bibliography, particularly 4
** 6, Page 8
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Section II describes the general solution. Section III
describes the approximate solutions and their validity, and

includes as an example, the Mathieu equation.
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1I. THE SOLUTION OF A HILL'S EQUATION

A class of Hill's equations is of the form

2
Py o Foey=o S N=1,2, 5. (1)
do

where p(NQ) may be expanded by a Fourier analysis to the form

P o,
F(NQ) = ag + :E: ap cos n N& + ;E: b, sin nNe (2)
n=1 n=1

where the series is to be absolutely and uniformly converg-
ent, and is periodic with period 2 TI/N.

We derive a formal solution to (1) following the method
of Hill as presented by Whittaker and Watson.*

First, we introdu¢e complex notation for the trigonometric

functions in (2). Then

o P
fine) = ap + %Zo(n* NN Ly Zo(ne-ln NO (3
n=1 n=1

where

«n = ay + ib, and 0(: = ap - ibp:

According to Floquet's Theorem#*, we know that (1) has a

solution of the form
y = e'iygf(g) (4)

where ¢(0) is periodic. We substitute (4) into (1) and obtain
* 1, page 413-417 *% 1 page 412

(3)
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‘d—g';f- 217"%?' + [f(Ng)-y]ch =0 . (5)

We assume that ¢ may be written as

4’:? cfﬂmeimNQ , (6)

where the 49m‘s are complex constants. The series is to be
absolutely and uniformly convergent.

Substitution of (6) in (5) leads to

=< PvZs o = acd
- Z(V-mN)QﬂneimNg-» {ao“' %Y K n*elnNe, é “ne-=1nNQ ‘_ﬁnelmNezo_
m=— vewr

= D
n= m

Since the series involved are absolutely convergent,

we may change the orders of summation to obtain

Z{[ - (- mN ]cfm+2 Anx o Z%{Lﬂmn} imNO=0. (7)

m= - oo

Since the series (3) and (6) converge uniformly for both
f(NG) and qﬁ(NG), series (7) does also, and since the eimN® ;re

linearly independent functions the coefficients of the eimN®@ in

(7) must be zero.
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Then we have the set of denumerably infinite number of

unknowns

o .+[ao{v+2N)741*%‘ﬁ'*g‘ﬂ*%@*%ﬁ* =20
e gt e e 2O

Ca 4_?:,_*4” gff*(g,,+[c.,~7/”]7‘f*%'q4*°-é%.+“"0 ()
v 4 %214%*%., _g;ﬁqu[c%{y—/v)jcﬁ%ﬁwmo
Ca 4%’% . %*74’ A f_:_/_f‘ =ﬁ+[c¢.~é/-lﬂf]ﬂ+,~ ~0

~ “ . -
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\ . ns 2
In (8), we divide through the equation in which ag-(#/-mN)

appears by a0=m2N2. Then this system of simultaneous linear e-
quations has a non-trivial solution if and only if the deter-

minant of the coefficients is zero:

ol
0w dN*  2laIN* zrao—4~‘> zla.-4~‘) Py 4~5

A 220 el OG-

T 2w m—‘z@w)zm-?ﬂww
¥+ - Y o o/} I
a3 = > 200 22,
— 77 TZ6e 20, Qs
‘ A = 0 (9)
A(V}Z‘- o * oF o M"_,O(__J—-—-_.-— =0
3 L

5 s T
=TT Zen) W ) dah?) @V 2l %,

* ol s¥ o* o)t Q,@d#?

e X e
-=" 27&%7/‘7 et HedN) 2atN’) oy -eN*

The exponent 3/ has been arbitrary to this point. By
choosing it to satisfy the necessary condition (9), we find
part of the Floquet solution.

Equation {9) is somewhat difficult to solve for 2/ . How-
ever, the difficulties may be reduced somewhat by solving

instead the equation

sin?(@» )=A(0) sin®(TVa,) (10)
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which follows from (9)*.

We discuss now the convergence of A (0). It may be
shown*¥* that an infinite determinant converges if

1) The product of the diagonal elements converges abso-

lutely, and
2) the sum of the non-diagonal elements converges ab-

solutely.
A (O) may be written explicitely as

' [y 1 1 " : 0 t

& O(‘_ o<3 SN _9.(.1:--— o b
Co | ) T T i)
- L K, o X3
san | @ 2w Tl
0 = o(‘“" #- &, NI-__ vel 11
A (0) I :zéa e (11)

2y 22

\ 0(3:*__. __.2{?:—-— __i‘é:-— ——'—T L
2 i) 2N 2ew) / 2(a,H"
+ * £

Ky oGt A
‘26@-4/&/’) 22 4M) 2o t) 206, W)

[

¥ 1, p. 415,416. This proof, since it does not depend on the

character of the numerators of the off-diagonal elements, but

only on the dependence of A on 2/ (WéW's ), follows just as
glven there and so is not reproduced hereé.
** 1, p. 36,37

(7)
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. Then /}(0) has singularities at
a°=m2N2 s [m , =

The singularity a, = O may be removed from (10) by a
limiting process, If mN is even, these may be removed from
(10) in a similar way. Assume that we do not approach any
of the singularities. Then the product of the diagonal ele-
ments of A (0) is one. That the sum of the non-diagonal ele-

ments converges absolutely follows also. For we may write this

217

L#J

sSum as
o0

(67 ) 2@.Jw‘) Z[ “l

.‘_,pa

The sum over i converges since the series for ¢ (NO)
is absolutely and uniformly convergent*. Call this limit I.

Then we have

Z{aqw* Z J'IZl -J"" *I /ao-;w*/

5-)’\ .v_(,.u) J‘"‘“ ( 12)

I:i/

If a, is negative, comparison with
2]
IS
)
J
shows that the series is absolutely convergent. If ay is

* 1, p. 158, Corollary
(8)
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positive, we pick n to be such that

[V - N |z 1. (13)

L d

Then the first sum, being a finite sum and having no sing-

ularities by definition of ag, converges. The third sum
o
a («F—N)(m+ N -JNJ
"VHO( ’-thl J ) )

But by (13), the terms of the sum on the right are less,

term by term, than the terms of the sum

oD ,
I
wltl

which 1is absolutely_convergent, Hence the third sum converges.
The second sum may be shown to converge in a similar manner.
Then the original sum converges absolutely.

Therefore A(0) converges for values of ap which are
not equal to m?N2, m = 0,1,2,+-+ . Equation {10) may be
used for computation whenever the singularities of A (0) may
be removed by a limiting process.

Thus, formally at least, we may find a 27 such that (10)
is satisfied. By construction of suitable cofactors of the de-
terminant of the coefficients of (9), we may multiply the re-
spective equations, add them and thus solve for the ratios of the
f%,sp If we have a criterion for normalizatidén, we may obtain
values for all the 70n’s. Then we must test to be sure that the

series (6) is absolutely and uniformly convergent as required.

(9)
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ITI. APPROXIMATE SOLUTIONS

1. In General

Since in practical work we could not calculate the A (0)
precisely, or all the ?Z , it is necessary to find ways of
approximating A (0) and # sufficiently closely for the
problem at hand.

A way of approximating A (0) which is immediately ob-
vious is to substitute for it in (10) the determinant 4,(0)
which is the central sub-determinant of A (0) such that An
has 2m+1 rows and columns. To estimate how good an approx-
imation this will be, we make use of a discussion on the
convergence of infinite determinants*, making some small
changes in notation.

If we write A (0) as

[ l-ﬁa_.‘_; a"ho Q_"I N}
Z&(o) S O [4Gp0 Goyi oot )
[ U} a,l_' CL‘SU a‘,‘ [
we see that ol
a‘l:‘ = 2/&2‘[‘1”1)
where A b ki=n>0
4 (14)
O €L k=0
dlbl, -
o(fn f K‘L=V\LO
\
* 1, p. 37
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The product B is defined as

FSEa;Fi (|i§i!aad)
1= =2 brege—

which converges since
=
We also define

P.= ‘31;(1 2{“1”4>
Then
P- L B

An inequality is derived:

e - Al

But since

P4

—

P,

there exists an N such that

MURA-340

(15)

is convergent.

(16)

+p - En

JLMV ? exists, given an & greater than zero,

I?m-bp-fﬁm’ <& for all p>N.
Then
| lAm+p (0) -»Am(%O)]:‘.Aé  for all p> N.
Therefo:e;&ﬁ;.Zan(0)ié§}sts, Taking the limit as p goes
to infinity, we have :
|Ato)- An(o)] = 55, (17)
Examining P more closely, we have
P (1) bciwl ]
o2 L RN o
_77 [ ‘””(Z'“ ’] (18)

¢
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Since F(NQ) converges absolutely and uniformly, the

sum in (18) converges. If we call this sum F, we have

P T p (15

If we similarly define

F=S tol

I
we have -
B= TL \*Tas ‘N‘l] (20)

From (17), (19) and (20), we obtain
- o
‘A@)'A"‘(O)‘ﬁ;i[’*ﬁgmlv ‘ft [le] (21)

This inequality may be of help in estimating the erfor
involved in approximating Ao) by A.L(0) if we can calcu-
lste the infinite product with sufficient accuracy.

‘Having thus used Z&m to calculate the ¥ , we proceed to
obtain an approximation to 795 Since we desire to keep only
a finite number of terms for % , we assume that the zﬂ,
converge sufficiently fast that above a certain n we may
ignore them. Formally, we assume

cﬂ‘ ®) :Hnlziml (22)

Then %’will have 2p+1 (p+ the constant term) components.

iw

Applying (22) to (8), we obtain an infinite set of
equations in the 2p+l non-zero 1Q\”sﬁdﬁb). We assume

further that the ¢ (iwl2p) and the &X,and O *are such

Dt TR

(12)
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that we can ignore all but the 2p+l central equations of this
infinite set. Then we are left with 2p+l equations in

2p+1 unknowns. We proceed to solve for the ratios of these
unknowns. If we have a normalization condition, we can ap-
ply it to get a complete set of the 7{ (In| =-F ). We must
use this and the <X, and &, * to be sure that the equations
which we have ignored are satisfied sufficiently well that
approximation has been justified.

2. pLNQI_With Only a Finite Number of Components

If the F(NG) in (1) has only a finite number of com-
ponents, it may be possible to find easier ways of finding

the qQ\dhlé P ) than by solving several (2p+l)-order deter-

minants.

As an example of this, we consider an equation similar
to the Mathieu equation*,
0’:
Eﬁs4-(ao+al cos N@ + by sin NO) y = 0, (23)

Then the equations (8) with the division by (aoumNz) as

discussed on page 5, become

* 1, p.405

(13)
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- - - ~ - -

4o<\ 4{_0_{,0.& N __;O
<£ 40-(."‘ :’O

q@;ﬁﬂ)

, C!o‘(V‘l”) PRl N
e e 2(&'4/V')

Qo-@‘fﬂ ):)4) 0404111_ O

N Nl)éz, —-—"';')'-" / %Qu'/‘/

.zzczr
%-,q R

LSEN

\\\O‘.’

(24)

4 y—//f?g oz. S i<

Cos Q)+ O ‘2[ e

ao,{vzﬂj el s
Lo O+ 0 2,@.,4//'}% A[&-M‘)%
L% + a -+ 0 + .Z(@q'ut)¥2— © -O

If we assume that the fn for ﬂ'nﬂé 3 are zero, then formally
we would have that all the ¢, are zero. We ignore this for the

moment. If we make this assumption and consider only the cen-

tral five equations, we find that
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- O( o e — *%
* Zfao-é/"Nﬂ'_“’f_C——-—.—) @ 20astH ] - Ll (202)
2farb+24)7] 2a,-(-2)]
= -—dwﬂl — a = - & +C/l
# z[a,—(zﬂ?/‘/ﬁ ’ 7& 2fa,-(v-20"] (250)

If we consider7ﬁn= 0 if |nl££4, and consider the seven

central five equations of (8), we obtain

s B y #= Q('%

fie Lot M 1-bl” Zas4-8]- b l”

2far ol Saoy]-pa (%62
2[4.,-(7(&9” 1 2[e- o -3
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P ot y Ho = ’“‘*?4 (26b)
TRl ol 1™ -
Za, (3] ‘Z——“'—”‘_ -4

s____-—D(‘?”'_'u.b .)%zﬁﬁv’)q
o301 2~ /34 (26¢)

If we consider the 2n+l central equations in (8), and
assume that fn+/,‘iﬂ.n+2, ... are zero, we obtain

ﬁ = —O(«‘ﬁnu__ ; % = —9(;*%-/

" Z{@,*(V-m /\/)Ll 2'[%._ - "H)UZ

*
) R -di#(“'” \ et = - & #-;4__ X
f&‘ : 2{@9‘(7“5"“)/{‘)‘1‘ fotid” % 2{4,-(3’-1‘#!)/”]- (o] :
A (@l )j 2(G-v-r )

(16)
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and so forth until we have reached ¢l in terms off,
It appears that if we would continue this, allowing n to become
ever greater, we would find the continued fractions adding
terms in a regular manner, and that we would obtain recursive
formulas for the 4&n,

fe A e

2wt} - 1"
2 -t oI
o[-t} -~ (27a)

\

\
)

#h = 'O(I #é"”) —
2f o fprena} - 1%l : .
2fa-feroll] - (]
2farfrbIN] Y=l

U

(27b)

(17 )
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To accept these as true, it would be necessary to es-
tablish them with some kind of proof. (This the author is
unable to construct. However, neither is he able to foresee
3 case in which the formulas {27) will not hold.) Since the
ag~ [V+nNT Ly 2g- E};(n«rl)NJQ e
in (27 b) and the similar sequence in (27 a) diverges approx-
imately sequence as m?, it is expected that the continued
fractions will converge.

To use the equations (27), it is necessary to find a
value of #/, We use equation (10) and approximate /\ (0)
by Am(0). In this case, A(O) is

A Wy ey
¢ o O o
VY WY [ 2 o
o
. o ot I —_— O Lwn (28)
;15:" r Mo P

Al)=
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Expanding central sub-determinants of (28 ) leads to the
cequence
A 0]
log, 1

A.(O\=Ar2m

_ to(\
A,0)=4,- @,»N,Ya,, m)[A 20, (6N

\ log.l \ -_\fi!:—ﬂr]
AO=4, m{ ' M[A 4%(0.—“)}

Thus each approximation to /\A(0O) is equal to the previ-
ous approximatior plus or minus a small correction factor (de-
pending on a,). Eventually, when m is large enough, these cor-
rections will all be negative, and successively smaller. It
can be seen that to achieve a given absolute accuracy, we
will need to use higher approximations whenever 1&,} or ag is
increased,

It appears thaf we have a singularity at a, = 0. However,
when the A. is used in (10) and the limit taken as ap approach-
es zero, this offers no difficulty. For example, with A,

(10) becomes

N 1»[__ ‘ l.?{—
a.ao(aew) z

ks
- A Bl ,m?.vsw]
= 2fa-A) v, ‘

(19)
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Taking the limit,

%
Q' ,43“‘22 < ’1T’10(.|
a0 2~ SN*

Remark:if %/ and a, are both small, (30) gives
hel -
2ot el 7
(T2 =Te-mm =
o lod)* (32)

>4 0 e iy

Equation (32) agrees substantially with the "smooth approx-

imation"¥* result -
. le¢, |
> - 0‘°+'5WL'=_ .

Some special examples of this case are of interest. Las-
lett and Sessler**_havé prévioﬁsly considered the equation
y" % (A+B cos 26 ) y = O. (33)
Their method differé.somewhat in that coefficients of
a trial solution are determined by harmonic balance of the
trial solution in (33). The resulting coefficients are the
came as (25), except for the algebraic form in which they
are presented. For a numerical comparison, equation (33)
was integrated on the MURA IBM 704 computer and the results
subjected to Fourier analysis. The agreement was found to

be good. The cos"?  was also calculated for various val-

* 23 7, p. 69 and bibliography
*% 6

(£3).
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(21)

—~
ues of A and two values of B. Table I below presents a
comparison of these values of cos ¥ * with cos?¥ calcu-
lated using 4, and A » in (10).

Table I.
|
j _ -
.1782 {-.978291 |-1.00968 {-.983939 .450 |~-.965918 |-~.9841945 [-.96836g
1648 '~-.940199 ~a970545 -.945728 430 | -.930942 |-.94869¢ |-.93331o
.1514 €f0900950 ~,930215 | -.906340 .411 | -.895869 |-.913133 |-.898187
. 1216 35,809434 -.836244 | ~.814517 . 368 | -.809637 [-.825795 |-.81191p
E.Q9O4‘%~0707l95 [~.731465 { -.712063 . 323 =0708788 -, 724597 |-.711843
.0327 §=°500067 i-°523887 -, 508957 .244 | -.,503814 |-.51627¢ |-.50573p
" 0352 im°224636 §~n237319 -,228117 .180 |-.309811" -.31923g |-.31061g
-.0850 +,OOO4918éw,OO7l62 -.002389 .092 | +.001299, w,00567o +.00006¢
~,1470 {,309801 .308848 | +.307787 .017 | .310321 |+.306397 | +.309447
-.1823 {.501004 .504065 -499529 4+.025 | .5022775 | .500267 [ +.501725
-,2170 597001005 . 707271 .699183 +.065 | .698389 698849 | +.69875;
-.2330 §°7959284 .804829 . 7194928 +.086 | .806719 .808003 | +.80701g
The agreement of these values is good. The absolute
error is nearly the same over the range 2£W#4%1. We note
there are two cases where the higheI.Awﬂs must be used.
The first is when ’cosmwd = 1, and the second when cos¥® = O.
In each case, the estimated absolute error should be less than
~— * 6, p. 9, by permission of Dr. A, M. Sessler




MURA-340

the absolute difference of cos ¥ and | or O, as the case
may be. In the first case (since N=2, 42/ =0%), we may in-
correctly take a stable solution for one which is unstable,
or vice-versa, In the second case, we may use the incorrect
cign of cos#¥Y in further calculations.

As a2 second numerical example, we treat the case

Y 4(.2+ cos 20 + sin 20) y = 0, (34)
fatet 20) v

Then ap=2 a =1, b =1, N = 2, Substituting in the

various formulas gives

7~ .86138

f = .47868 (1-i)

#y= .062741(1+1i) (35)
¢ =~.0496981

&= 0022861

where we have normalized so that Cﬂ=¢lo
Then a solution of (34) is of the form
y = o -86138 9?9 (36)
where
f= 1+.47868(1-1)e210+(,062741) (1+1)e~210. 0496981e416 .
+.0022861e" 4164
y may be separated into real and imaginary parts:

Re(y)= cos5861389+°47868(coslol38629+sinlo138629)+,062741X (37 a)
X(cos 2.861386 sin 2.861380)+.049698 sin 3.138626+,002286 sin 4.861380

* N@ =27», and the solution is unstable if |cos.d‘|>.1

(22)
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=9W4y)= - sin .861380+.47868(-cos 1.138620+ sin 1.138620)+.062741%
%(cos 2.861380-sin 2.861380)- .049698 cos 3.138620+.002286X - /(37b)
x cos 4.861386 /
| Equation (34) has been integrated on the MURA IBM 704 in
order to obtain a comparison with (37). This comparison is
presented in figure 1. The agreement appears to be good.
Substitution of (36) into (34) gives the result
{ _.000555-.000002( 1-3 )et+ 1386218 00p0g7(1+1)e~2-8613816

+.000952ie~3+1386218, 0090881 e4-8613818, 0r4849(141)e 1386216,
.001143(1—i)e*6-8613819}é 0 (38)

We do not discuss here the second condition for approx-
imation stated on page (10) since it has not been used. For-
mulas (27), if correct, make this unnecessary. Since theq&m
are less in magnitude than ¢&(n-l) by a factor which is
approximately l/n2N2when nN is large, the series will convefge
absolutely.

It can be seen that the remaining terms are small, and on
the order of the terms of which have been neglected in (36).

Tables* have heen set up to give values of 2/ for equa-
tions of the type

| y“+(A+B cos 2T + C cos 3T + D cos 4t ) y = O.

,-;: :‘zn? has been computed for various values of Aand B for C

or D not zero.

* 9

'(;23‘)
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To apply (10) to a more complicated case, we consider
déi+ (A + cos 20 + % cos 48) y =0 (39)
d

Aa is used in (10) to approximate[& for various values
of A. The results of these calculations and a comparison with

the tables is presented in Table II.

Table II.
, _cosy/ - cos gy

A (10),4, | tables A (10), A, tables

-.12 [.971932 . | .883897 _+.09 [-.016223 | -.081071

m,09'”58084§4“f . 723917 +.12 |-.129570 -.191413
- .06 ,652709-;, .571680 | +.15 [-.236595 | -.295492
-.03 |.504572 | .426962 +.20 [-.401377 | -.455560
-.00 |.36383 | .289540 +.30 |-.683268 | -.728559
+ .03 |.230246 . 159201 +.40 | -.907054 | -.944154
+.06 |.103444 .035733

The comparison between the calculated and tabulated values
is not as good in Téble II as in Table I. However, we see
that the absolute accuracy again improves as cos%¥ becomes
smaller. (Notevihat when cos 2/ is near zero, the relative
error may become quite Iarge.) Similar conclusions to those
reached before as suggested: better approximations must be
used when cosqi¥/ 1s near one Or zero; A,is not likely to be more
than roughly adequate.

+ (24)
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Calculation of the components of ‘f proceeds in a manner
similar to that described above.¥ Algebraic expressions
for the case of F (NO) with two or more harmonics become

rather involved and so no attempt is made to include them

here,

* p, 12
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IV. CONCLUSIONS.

It is possible to obtain a formal solution to a Hill's
equation whose periodic coefficient may be Fourier-analysed.
Approximations to the formal solutions may be obtained. 1In
the event that the periodic coefficient of the Hill's equa-
tion is simple, such as in the Mathieu case, these approxima-
tions take convenient forms for computation and become good
rapidly. As the complexity of the periodic coefficient in-
creases, higher approximations are necessary to calculate 7.
Also it is more convenient to calculate the magnitudes of the
components in each special case than to try to apply general
formulas.

If the infinite product in equation (21) can be obtained
in a closed form, then (21) will give a convenient way of
telling how well A.\.approximates A .

Dr. A. M. Sessler has proposed recently that newer,
more extensive tables pertaining to the solutions of Hill's
equations be compiled. If this is done perhaps the alge-
braic methods described herein will be easier to program
and allow faster computation than the methods previously

used.

¥ h ( 26,-‘);
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Table I on page 21 should have the following heading
B=1.5 cosmy coswy cosrV || B=1 cosy cosr cosm )
A Computer (lO)‘A__1 (.10),A2 computer | (10) (10), 2\
Also on page 24 - third line from the bottom of the
page should read as follows
reached before are suggested:

not

reached before as suggested:




