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INTRODUCTION

The possible need of a three-dimentional Laplace program in
future work of MURA necessitates the examination of the rapidity
of convergence of such a program and an estimation of the machine
time required for a Laplace problem.

Frankel* has calculated convergence rates of the Richardson
and Liebmann algorithms for two-dimentional ILaplace problems for
which the potential is specified cn a rectangle. This is slightly
different from the type 6f boundry value problem encountered in
MURA work. In our problemsthe'potential might be specified along
the top and bottem edges of a rectangular region but not along the
sides of the region. We would, instead, require the potential to be
periodic in one direction with period equal to the bottom edge of the
rectangle. Such boundxy conditions will be referred to as "periodic
boundxry conditions®™ to be distinguished from the "fixed boundry
conditidns® of the type discussed by Frankel.

This report extends Frankel's work to three dimensions and
includes the consideration of the potential periodic in one
direction. These extensions are really quite simple but it seems
worthwhile embodying them in a MURA report if only to fill in
some of the gaps in Frankel's account of his work. In order to
provide motivation for steps taken in the consideration of two-

and three-dimen$ional problems,the one-dimen$ional problem is

thoroughly discussed for both the Richardson and the Liebmann algorithms.

* S.P,Frankel, Mathematical Tables and Other Aids to Computation,
4, 65(1950).
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1. Richardson Algorithm: Cne-dimensional Problem.
Consider the mesh shown in Figure 1. e e e e voe e .
() jro b A - uot N
Let 9, 3='---N" ,denote the calculated
3 Figo .1.
potential at point j after m iterations,the

potential at the end points, S= o  and Y.N ,being fixed. The
d

initial loading of the mesh is given by 9( p= 1N The
3 3 L
Richardson algorithm is as follows:
(m+1) (w3 {0 (l)
. - «L C ‘ Y ) iz Cee -
Cg\ 2 (YL?‘)..J - Qﬁ)_’“ ; 5 N ;N b

That is in each iteration the value of the potential at each point
of the mesh is taken as the average of the potential values at the
neighboring points for the previous iteration. This process
converges to the solution of the one-dimensional Laplace equation,

%;g ) ,satisfying the boundary conditions. Our question is how
rapidly the process converges to this solution,

Rather than work with the potential itself,it is more convenient

to work with the error of the potential,that is the deviation of the
potential from its limiting value., Suppose that ¢S is the limiting

(-y\)

value at point 5 of the potential yielded by the algorithm. Let€33

: .
be the error in the potential at point 3 after theAiteration,
[P0 () ¢ .
& = -
' s 3 \

Since the iteration equations are linear,it is clear that these same

(M' (M7
equations hold for the €, with the boundary condition that 63 is
zero at the end points, y>- and j=nN .

Thus

(na V) {w> (w) N -
€ = Ji (t')—l < e’s-n ) ' 3‘\7“' N ! ’

(2)
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Equation (2) can conveniently be written in matrix form,

ST =
ol S e
|‘ .
= ' (3)
4 .
e('y'wl) N = )
N—\J L © k m>
b .J éw-a)

or

" (e
Ei& 3 o L~ Ei > (4)

where the E 's and the matrix |_ are shown explicitly in Eq.(3).
w)

If is the vector whose components are the errors in the potential

at the initial loading of the mesh, then

) (> E(" >

£ - L (5)

Let us suppose that L_ has a complete set of eigenvectors*
\(|)X7_’~-- .»5(

)
If we expand Ef> in this set, so that

R
E = Z"“JXL 9 (6)
e

with corresponding eigenvalues .

)

then Eq.(5) becomes

tr Nel o (7)
Eo- Z s ')L XA..
bz

If'hxﬁm is the eigenvalue of greatest magnitude and is simple, then

E(m: N .xmo(‘ X‘ (8)

for large m

* That | has a complete set of eigenvectors in this simple case
is a necessary consequence of the symmetry of the matrix. In the
discussion of the Liebmann algorithm we shall encounter matrices
that do not have complete sets of elgenvectors.
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Thue after a large number ofiiterations the rate of approach to the
solutioﬁ of the differential equation is determined by the largest
(in magnitude} eigenvalue of L. ., If this eigenvalue is degenerate,
or if L. has another eigenvalue of the same magnitude but opposite
sign, Ehﬂ will still be proportional to \”xwwvwc

The lapse rate, }& , in decades per iteration is given by

).A B - }0% \'/\,ml (9)

o

The problem has become one of determining the largest eigenvalue

of L. . The secular equation for is
S %
SR
\ \
D= | N N =0
- N
A : (10)
N
\\ \\ *
y -7
the determinant .DN_‘ having N-i rows and columns., The determinant

can be expanded as follows. If we expand along the first row we obtain

the recurrence relation

D, =~ =>Dy.a - £ Dus (1)

N=)

where D,_, and 13@,5 are determinants having the same form as
but with N=% rows and N-3 rows, respectively. Eq.(1ll) is a
linear differance equation with constant coefficients and can be

solved by the same means used for linear differential equations with

constant coefficients, Put
N

DN = 9 (12)
substitution of Eq,(12) into Eq.(ll) yields

91=-\V-# (13)
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Thus b }
O %
v & {-2x 1) .. (14)
Eq.(14) and the egquations to follow assume a particuarly simple
form if we put (15)
5
= coa O ,
for then
V= 4 {mewozlsieo)
. (16
N 18 )
= - T&
The general solution of Eq.(ll) is therefore
"N N ~iNG |
D= AGY) e 4R () e | (17)
Dy must,however,satisfy the "initial conditions"
- % " (18)
and these conditions will determine A and B .
Thus,with N=1 , 2 in Eq.(17) we obtain
O 8
‘%A‘ —{EG =Atm%
119 --2\9_ 9
LAe +lpe’ o gt -4
u 4 4 (19)
The solution of these equations is )
v O L&
€ <
- 5 —B - - ——-""—"‘" &
2.0 e
2 (20)

21 sow O
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and so Eq.(17) becomes
| N S (DU |
‘ 21
Dy= -4y T ()

The roots of the secular equation,Eq.(l0), are now easily determined.
We have

-1 e NG
Do o= %) 3

(22)
and so the roots are given by )
Yewewd &, , Qe= T, C=i o NA L (29)
The root of largest magnitude is
M= I’XN.\\ T e
-k (T (24)

and the lapse rate, in decades per iteration, is therefore

x.&”::- }b% (Quﬂ I&)

‘ L (T (25)
¥ I 10 “ (:D

°

It is instructive to obtain the eigenvectors of

I .
The equations satisfied by the components of the eigenvector belonging
to the eigenvalue Py are
'\;_'7"‘1 = TWN%

Vo * L Yy, 3 N X

. . (26)
“.;"-N—L S W P .
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By introducing an Y, and an  X.. we can write these equations

as follows:
12“‘”«*‘5_7'«*\"‘73.\9 Mo by o s N-‘\ .

"Q"’ lN :0 °

(Thls technique of LntIOdUClng additional variables satisfying
boundary conditions in order to put the equations into a more
symmetrical form will be used repeatedly in the later sections.)
Eqsi{27) constitute a linear difference equation with constant
coefficients which is easily solved., It isamusing,however, to

make the substitution
o~
,)(m = (“1) Law

for then Eq.(27) assumes the form

P)k\'b.,\ = - Vkmu = t\a*-t

which is identical with Eq.(ll), the difference equation satisfied
by the determimants T>~b . We have already obtained the general
solution of this difference equation which, with a convenient
normalization,yields
Yo ,,(}.kﬁm Som M & , AT Q.QQ'E{/
satisfying the boundary conditions. Thus
Y = MM&\, “‘-e ™= con &r

These (b«~\ ) eigenvectors form a complete set.

(28)

(29)

(30)

(31)
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2, Richardson Algorithm: Two-dimensional Problem, Fixed Boundary

Conditions

This is the case treated by Frankel, but we can briefly retrace
his steps with the insight and motovation provided by our discussion
of the one-dimensional problem.

Consider a rectanglar mesh of points distinguished by a pair
of coordinates, [ and x s where L takes on integral values
from © to N, and S takes on integral values from © to ”2 .
The algorithm then yields for the errors in the potential, corresponding

to Eq.(2) in the one-dimensional case,

(en+1) (&%) Cn> (n> ™)
e“‘) = 'o!t"(e""‘,'\ + ei,'y—n + ei,-n,‘) -+ é(,s-u) 5 (32)
@)D (™ () )
6-“, =( elﬂz_ = C'ol\ = eﬂ,s = © J Q—“ n
m) )
If we think of the ¢ S for the interior point of the mesh as

()]
forming the components of a vector,‘E

, in an (N.-l):(er)-

dimen$lonal space, then Eq.{(32) can be written as

{rra0 G

= L E (33)
where | is a matrix whose 55:;3;2216 are all either o or -# .
One can, if one wishes, write down the matrix l_ if one chooses some
convenient way of ordering the rows and columns. This,however, is
not very illuminating, as is usually the case for problems referring
to more than one dimension,

The general discussion contained in the paragraph following
Eq.(5) applies to the two~ and three-dimensianal cases as well as to
the one-dimensdional case. Thus what is desired is the eigenvalue of

L of largest magnitude, »m , the lapse rate being given by Eq.(9).
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The easiest way to solve this problem is to use the
experience gained in the treatment of the one-dimensional case in
order to make an informed "guess" of the eigenvectors of L_ .

The equations to be satisfied are

These equations correspond to Eqs.(27) in the one-dimensional case.

Taking our cue from Eq.(31) we try as the solution of these equations

X\S = 5&.,&8\%%87_ (35)
where, in order that the boundary conditions at =N, . and i =N,
be satisfied
, 19\ = ¢ &1 = TS . (36)
N d N,

These vectors form a complete set in the space of (Nh,,).(m,-,)
dimensions. The substitution of Eq.(35) into Eq.(834) yields, after

some manipulation,

(37)
R (ccn&. v aee @) |
The eigenvalue of largest magnitude is
R = g (o W oo ) (38)

) - KLY @&

and the lapse rate in decades per iteration is

Y‘a “'}#25 { = Cw ﬁ}* &rsg; i

t =N g
:m : "\,_""[—( N,}* (%ﬂ)] . (39)
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3, Richardson Algorithm: Three-dimensional Problem;Fixed Boundary
Conditions
The three-dimensional problem leads to no special difficulties.
The analysis proceeds in a manner exactly parallel to the two-

dimensional case and leads to the result
Nmary = L_(.agj—- + Qe f} +'L¢ﬁ,‘qa>

= "J[C N +(51) + _“73)‘3

where N&\, Na+\ , N;+| are the dimensions of mesh including the

(40)

rectangular parallelepipedal boundary. The corresponding lapse rate

is

b= = oy [5( 0B w0 Bin em 2DF

o L[ G- w

4.Ri¢h§%§s§h Algbiithm: Two-dimensional Problem; Periodic Boundary
Conditions |

We consider a rectangular mesh of points distinguished by a
pair of coordinates [ and 5 where ( takes on integral values
from ~° to N\ and A takes on integral values from © to N, o
-This mesh is to be thought of as being wrapped arocund a cylinder whose
axis is in the direction of increasing & . The coordinate L can
then assﬁme all integral values but we must understand that points with
the same value of & whose L-coordinates differ by a multiple
of Nr are identical. In short,we seek solutions of Laplace’s equation
for which the potential is periodic in one direction with period N,.
The: potential is given at thesurfaces 5 = - ond \: N

The Richardson Algorithm then yields
‘ FVH\‘)

cg‘ (Cﬁ_, 3 m) ir:: ch B (42)

)-\
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subject to the boundary conditions
(%) ((7\)
Q‘S)Le = 75()“‘15"0) p) 50;#1. :¢(¥:£’j:N“))
(a0 (m) . (43)
(P-;S = Soz-m,)b ) all V and M,

where ?[@5) and %ﬂﬁ@are the prescribed boundary values of the
potential. The -equations and boundary conditions satisfied by the
deviations of the calculated potential at the mesh points from the

limiting values yielded by the algorithm are

(o> () 3 i (v L=t N
- Lfe " " ‘3 FTL N, (44)
N - e - * v 4’ » £ .B* [
6,,5 ),,\( ¥ "3 et,j" e\,.u,) eh)-r\ ')-»l,-"Nx"')
fo () ten? (M) : :
. = - v L o
ew = c"tw» = Q@ , ei’,s - 61-N\, 9 all 9 3 y N

These equations can be written in the form of Eq. (5) in which L‘ is
a matrix with N“(Ngﬂ) rows and columns. Once again we want to find
the eigenvalue of L of largest magnitude, and again the easiest

~approach is to guess at a complete set of solutions of the equations

)

vy Ny

R :
'\‘V\ - q(h-c,‘> M X’L,'&-! + 7-1,4\," “ \"'\')'\*\)

',.-,-]..
’5 )

No-1, (49)
*io T XLN,'*O 3 7‘;‘5 = (;\{L*N.)'s °

Note that except for the equations referring to points on the boundary

of the mesh, t=\ and v= N, , Eqs.(45) are identical with Eqs. (34) .
It must then follow that any solutionsof Eq. (34) that satisfy the
boundary conditions coni@wéd s~ Eqs. (45) will be solutions of Eqs. (45) .
Eqs. (35) and (36) provide such solutions for those values of (§ for

which Y is even. These solutions are

tyow &@La\ﬁk"xgx ) : .
3 N2 £ N, 15 even

b =3 i B %N.-\ dN s edd (46)

@1:N,, > ST Ly )N"'-1 .
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There are

(= _
220,

such solutions if '% is even,and (gggl(u;d)

of them if N. is odd. The corresponding eigenvalues are

= (i b+t )

One can surmise what the remaining solutions must be by noting that
the solutions given by Eqs.(46) are all antisymmetrical about the
center of the mesh. They are sinusoids whose periods in the ‘-
direction are integral sub-multiples of the basic period /% .

We are therefore led to try
x\s = & ta\ &...3&7_ (47)
= Ty e -M SN . o Ny is even
TN, > A L)l{» %\
‘ N=1 f N, is odd , (48)
9’1_=3'§05 J S = ' ’9') “’N:|°

Substitution of Eq.(47) intoEqs.(45) shows that these are indeed
“solutions provided that
,}\ = ’L (Qﬂh/ ®|*a0’301> ? (49)

2
as before. There are(Nﬁ')(N‘”) such solutions if N, is even,

and CN"H) (N "‘D such solutions if f\/ is odd. These solutions
and the antisymmetrical ones given by Eq.(46) are linearly independent
of each other(they are,infact,orthogonal) and their total number
is just N, (N,-\) so that they form a complete set. It may be
noted that aside fro@ accidential degeneracies(occuring, for example,
when N.'liz_) the eigenvalues are-two-fold degenerate except for
those having = and O =T~ (the latter occurring only when
M. is even).

That eigenvalue is a maximum for which &= o and 8, a-%&; .

Thus e
Nmaw = 5 (o T

-5 (Y

(50)
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and the lapse rate in decades per sector is
=V (51)

r:-ﬁo«h{‘i(‘*t""%g\! ]:‘TS%F No / >

independent of N\ . If N, is even then & =, &= -HE(N;-') yields
a negative eilgenvalue of the same magnitude as T%~AN,L o If hﬂ
much greater than TQ; there is very little difference between this
result and the lapse rate for the case of fixed boundary conditions,
I1f,however, hh is about as large as N;, then the convergence

of the algorithm for the periodic problem will be about half as swift
as the convergence for the problem with fixed boundary conditions,
This dependence of the lapse rate on only one dimension of the mesh
‘resembles a phenomenon observed in calculations performed at Los
'Alamas‘ There a Laplace problem was solved for a rectangular region

8 fgrfﬁhich the potential was specified on one pair of sides and the
znorﬁéi”derivative of the potential was specified on the other pair
of sides. It was found that when the potential was specified on the
shorter sides the lapse rate was much lower than it was for a problem
with the potential specified on the long sides. It is shown in
Appendix I that this problem is equivalent to one with periocdic

boundary conditions and the phenomenon seems to be accounted for

by our results.
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5, Richardson Algorithm: Three-dimensional Problem; Periodic
Boundary Conditions
It is fairly obvious what the result of this calculation must
be, We consider a mesh of points defined by the coordinates Lk,
where L assumes integral values from © to N,g s assumes integral
values from o to N,_ and Y. assumes integral values from © to N3 .

If the sought for solution of Laplace's equation is to be periodic in

one direction,say the L -direction,then the lapcse rate is given by
= L. L=y, (= (52)
R (AR AR

If the sought for solution is to be periodic in two directions,the (- and

3 -directions,let us say,then the lapse rate is given by

r. = ;:l—\-o_ . _i_ (:’_:3)2' ‘ (53)
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6. Liebmann Algorithm: One-dimensional Problem,

We consider a mesh of points, X-=3 where y=op\)k.,,,ﬂ 5

with ¢  and g% fixed

initially loaded with potential values gf”
)

by the boundary conditions of the problem. The Liebmann algorithm

differs from the Richardson algorithm in that in a given iteration

it makes use of values already computed in the course of that iteration.

The algorithm is given by

frawd (ensr) (") ‘
€0 s 3 (9.+ 9) SRR
(md [m) A (54)
Ya ,¢@___9} , 72] - gf/,xg Af) for all =,

where<¥09 and f&pare the prescribed boundary values, for the deviations

of the potential from the limiting values yielded by the algorithm
one has

6*“) tar? D
e‘r - 'l" < ‘ ”~
3 1 e-"' +e'\_‘_\> . X:Igp.tnjﬁ‘-)s
Gn? (> (55)
g. = €y =o for all ™",
(’Vt-rl)
If each of these equations is solved in turn for €:& and
substituted into the succeeding equation one obtains
(e (m?
s e
() L ) \ &
Gz = i € w * 3 €’5
‘ (56)
(ne)) ‘ M‘%{ w-3 o~ L (>
Cva = (2) €2t ) Gar o TS
fa+1) R CY ML s (m)>
Cyr = (%) (—: +(‘; €, + - + L &
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(412 Cm?
or - =
E =LE |
(57)
where
(o -*5_ ° o ;- - ° o
¢ '}} 3 ° y— 7 ° ®
o % -}? )77 °‘ °
- { N
| / | ’.\\\ ~ { !
-] b TN N\ \
! [ \ ) \\. |"‘ \
i "Nz N3 N-d S Ny
o (B (B By %
Nt A= M3
L By @B e % 4

1f L has a complete set of eigenvectors then the argument following

Eq.(5) holds and the lapse rate is calculated from the eigenvalue

of largest magnitude. Here,unlike the case of the Richardson algorithm,.

[. is not a symmetric matrix and the completeness of its eigenvectors

is by no means assured. We will find,in fact,that the eigenvectors

of L do not form a complete set,a circumstance necessitating a
supplementation of the argument following Eq.(5).

We want to solve the problem

L X~ = i% )< B9 )

where L_ is given by Eq,(8 ). There seems to be no convenient way

to handle this problem directly because L_ has a fairly complicated
form. Suppose we had a non-singular matrix S  such that SL had

a simple form. We could then find the eigenvalues of L. by multiplying
Eq.(59) by § ,yielding

(SL= ") X =0  (e0)

and solving the secular equation



=17~ MURA-327
Internal

o = \ SL.-—”)»S1
IETINIIELY N (61)

The solutions of this secular equation are precisely the eigenvalues
of L_ . Futhermore the solutions, )( ,0f Eq.{60)are the same as the
solutions of Eq.(59),again as a consequence of the non-singularity

of S '+ For ES choose

2 )
~ & O
«l &
YN
N N
S = N
. \\ N\ (62)
Q ~ %
-\
N
N=l
which is obviously non-singular,having determinant 2 R
Then \
(o )
S |
LN 0
R
NN
S = AN
5 O\ (63)
AN
N
\ ®

and
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A ‘7.) ’ [+
LN \
AR \
S RN
SL-"N NN (64 )
N AN A
¢ ~ N {
N
~ "2.')1 .

We want the solution of

Q,mM= ISL-2sl=o

; (65)
and can obtain these solutions by the same sort of procedure
that was used to solve Eq.(10). If the determinant (QN_\ is expanded
along its first row one obtains

Quo, = =22 QN--; - N\ Qw-z (66)
where QN__L and QN_3 are determinants of the same form as Q. but
having N-3 and N-3 rows respectively. Equ(éé)constitutes a second-

order difference equation for the {) ‘s subject to the initial

conditions
a, :l-z‘)( T - 1..’) ,
a O ) (67)
A NN B 47 - -
Put
N
Then substitution of Eq.(gg) into Eq.(66) yields
v+ 220V +™\ = o
which has the solutions
i .
VAR N e SN (69)
If we put
(70)

N = c«ﬂz(}
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then these sclutions become .
1 L® (71)
V= cen @ T .
The general solution of Eq.(66) is therefore
N N ,, WNO ~tNE
W,y =) en b {A‘c <+ B e . (72)

The coefficients, & and 3 ,are determined by the initial

conditions Eqs.(67),and one obtains after some simple algebra

e’ e
Ae =— %—m : (73)
whence
Q. = D e & iﬂf (74)

The distinct solutions of Eq.(65) are given by

w
=Z¢
v N %%,p if N is even
RS -‘;'J:v . TR hE ey | el
‘A2l if N is oad
z
9 = 5 an .Ni.,-fold roct if I\] is even, (75)
- an N=l -fold root if h’ is odd.
}\ <0 2

It has already been pointed out that the eigenvectors of L_ are
the solutions of Eq.(60). With SL-NS ae given by Eq.{64),Eq.(60)
can be written

'}mm-‘u'lu""m-l TUhy =0 "= 2.,-~-)N)
(76)
X-a s K NT 2

o

This equation bears a marked resemblance to Eq.(66). In fact,if we
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substitute |
= (0 Q) (77)
into Eq. (76) we obtain
Ny + 2R ¥ Ry =2 . (78)

which is identical with Eq. (66) . We have already obtained a special
solution of Eq. (66) , namely Eq. (74) . Futhermore this special
solution when used in Eq. (77) yields a solution of Eq. (76) satisfying
the boundary conditions appended to Eq. (76) since CQ?FZO and (:lhﬁti)= (>
by virtue of the fact that ‘M  satisfies Eq. (65) .

The solutions given by Eq. (77) form a set of linearly independent
eigenvectors of |_ belonging to the non-zero eigemvalues of L_ .
‘What of the highly multiple root \Xt © ? ©Bxamination of Eq. (76)
makes it clear that corresponding to Z\:=o there is only one
eigenvector, namely,

x|‘¥0 ) ,X'V\:a .‘1’ %.#{

L]

Consequently | does not have a complete set of eigenvectors and

the argument following Eq. (5) breaks down, |_  has, infact, just

:%— eigenvectors if N is even, and J%? eigenvectors if N is
(o

.odd. If the initial set of errors in the potential, E: , were

expandable in eigenvectors of L. then the general argument would

apply, but if E(b) has a non-vanishing projection into that part of

the GV~f) ~-dimensional vector space that is not spanned by eigenvectors
of L_‘)we do not know that Eq. (9) is correct. This situation is

met by the following theorem which is proved in Appendix II, *

-y

* It has been pointed out by Homer Meier that this theorem is a trivial
consequence of the theorem that every matrix can be transformed into
the Jordan canonical form. The self-contained proof presented in
Appendix II is included in the report anyway in the event that the
reader is as unfamiliar with this aspect of matrix theory as the
authors were.
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Theorem;-r’is an nxm matrix with linearly independent eigenvectors
)(,)"‘)K, (\’<7Qand corresponding eigenvalues '),J“» ’,\)\( (not necessarily
distinct and not necessarily non-zero). In addition to these eigenvalues
the secular equation of ~\ has a rost Z=0 of multiplicity W-¥ .

If Z is a vector orthogonal to A+ K, then T"‘JZW.

An example illustrating the above theorem is given by the matrix

¢ !
?

) o
LA
T = AR
©
A\
m
whose secular equation is (%Q = ¢© . This matrix has only one eigenvector,
[X}_ = x,g,. ,80 that only for this vector 1s it true that TX=6 .
%
a4t
But for an arbitrary vector )’ it 1s readily ceen that T Y-: o .
The significance of this theorem for our work is that although
Lo?
the initial set of errors, E_ ,do nnt conform to the conditions
@)
necessary for the applicability of our general argument (E. expandable
in eigenvectors of L__ ), a finite number of iterations cuffice to
produce a set of errors that do confoim to cur requirements. The
number of iterations necessary is one {ess thap themultiplicity of the
root W =e¢ (one less because there ic cne eigenvector belonging
to this root)., The muitiplicity of this woot is given in Eq.{75).
Since under ordinary circumstances the number of iterations used
in any given problem will be much larger than 14 ,the incompleteness
of the eigenvectors of L produces no delay in the convergence of
the algorithm and the lapse rate is correctly given by Eq.(9).
According to Eq.(75)

w\fw\oﬁ

el
re
J

1z
1
N 4
P

(79)
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and so
]A'; -&b%(t!ﬁz "EN:)
2,
= S\f\%. Cﬁ) (80)

This is just twice the result obtained for the Richardson algorithm,
Eq.(25). Thus the Liebmann algorithm converges just twice as fast as
the Richardson algorithm--- that is, half as many iterations are

necessary to obtain a given accuracy.
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7. Liebmann Al gorithm; Two-dimensional Problem, Fixed boundary
Conditions
This problem is discussed by Frankel, We shall briefly
summarize the treatment. The mesh is the same as that considered in

Section 2; but replacing Eq.(32) we now have

o e o o
—‘+(V' S TIRAL R LAY

Lyer s Nyl 5 ) = , No-

‘v

(‘) (”0 (ﬂO ‘/ﬂ’

by = c.N.\ s €, = &y, =° for all W ,

These equations can be written in the form

.(f'\"'“‘ i\’v\,

E - LE (82)

but it is scarcely worth our while to give ’ ). explicitly. The

eigenvalue problem for L. can be obtained from Eqs.(8l) by replacement
L L) (>

'éf G\;, by €., . The resulting equations are
. o = ‘) &qm{,s ”?‘\;-\)‘\ "x\, s-‘}' - i4\,;3 -~ 'xi’;\*\, tl‘l)... Nl") S:]'-'N‘",
(83)
o Y, = ey T Ay T O
On the basis of our experience with the one-dimensional problem,

we make the following "guess® at the solution of Eqs.(83):
1+

L‘ =A %.mls‘ %\ &'Zi 9
0= RY - 8,:T s s C2)Npl ) §el N[ (84)

These solutions satisfy the boundary conditions of the problem. If
Eq.(84) is substituted into Eqs.(83) one obtains after some simple

lgebra
T (At o) = A (und s s )] G lh WJ@

+ (W -p )@o(@ S.w-x\s‘ -, + wu&\tmsﬁ S o“») (89)

The two terms of the right side of this equation must separately be

zero (as can readily be shown by multiplication of the equations by
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&btﬁ‘tu&91_ followed by summation over t and } ) . Hence
2
™ = A (86)

and

k= -‘g_(tn&\ + e §y) or O | (87)
Let us count the number of independent eigenvectors that we
have actually found in Eq. (84) . Note that according to Eg. (87)
if we replace S, by -0  and Bl by Tﬂ-Bi then A  changes
sign though N is unaffected. This same change in Eq. (84) leaves
i unchanged. Thus the solutions given by Eq. (84) do not, as
may appear to be the case at first sight, form a complete set of
eigenvectors. 1In order that these vectors be truly independent it
is necessary to impose the additional condition
5+, € (88)
' so that Eq. (84) vields about half the number of eigenvectors required
for a complete set. These are, however, all the eigenvectors that -
has., This statement can be verified by refemal to Frankel's paper.
Frankel considers a more general form of the algorithm involving a
parameter ™ . Replacing Eq. (83) he has
N = g X (\A ety * Xia, | XL TR ™ 4% (89)
which reduces to Eq. (83) when o(;-‘l;. . For o¢ different from ;,’;
these equations yield a complete set of eigenvectors of the form of
Eq. (84) belonging to distinct eigenvalues. As o approaches L
number of the eigenvalues approach the value zero and their corresponding
eigenvectors also approach zern, Those eigenvectors and eigenvalues
that do not vanish in the limit of = #‘ are just the ones we have
found. The situation is therefore identical with the one we faced

in the one-dimensional case and the theorem proved in the Appendix

applies.
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The largest eigenvalue of L. is 2
»\W"“ 14' [QW:E + %E\ (90)
N>
~ - £ B ()]
and the lapse rate is

"= K\LTE T [(%—\)i* (:\E':JCX ) (91)

just twice that obtained for the Richardson algorithm.

8. Liebmann Algorithm; Three-dimensional Problem: Fixed Boundary
Conditions
The procedure is identical with that in the preceding section

and yields the results .
A\ t
'\M=-a-{c,n ﬁ-l +(‘,m“§‘-\' *ﬁm%} ~ l-—-é-[(-%\hk (v)"’(\%g)] 5 (92)

poe g 3 LE- (R 6] i

where Nt 5 Ny, Q3+| are the extents of the mesh (including

the boundary points) in the i’x}krdirections respectively.

9. Liebmann Algorithm: Two-dimensional Problem: Periodic
Boundary Conditions
The mesh and boundary conditions are described in Section 5.
The effect of the periodic boundary conditions in the present case
is much the same as with the Richardson Algorithm. The results of
the calculation are

T
'>\: 1 C,m&g* Lm@») )
"( (94)

1 ‘ - . -
O\t}fr > &1«:—‘-\:'& ) ('o)""JN‘—l) §= 0y, Ma '}

G+ 8. €T
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so that , (8
- ping
Sz k(14 e R (95)
= L Y
and (96)

| 1 (=N
R Ay S I
Once again the lapse rate is independent of the period of the

mesh,N|°

10. Liebmann Algorithm: Three-dimensional Problem; Periodic
Boundary Conditions
The problem is that stated in Section 5. For the mesh periodic

in the L-direction we now have, replacing Eq. (52),

e FLEY G or)

while for the mesh periodic in the - and 'y—directionsone obtains
v
- J_(IET)
))\ Wro 3 Na (98)
11. Summary of Results
We present below the lapse rates for all cases discussed in
this report employing the Liebmann algorithm. In all cases the
Richardson algorithm yields lapse rates that are one-half those
given in the table. In the cases referring to periodic boundary
conditions it is the size of the mesh in the direction in which the

periodicity occures that does not appear in the formulae,
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No. of Dimensions Boundary Conditions Lapse rate in
nepers/iteration
2
1 (%)
=V, (mY
2 Fixed 'i'[(ul\ * (‘ﬁ\]
. Y R U
3 Fixed 2 L&Y + G) - (% ]
L (&Y
2 Periodic 2.\ N,
. -+ \*+ A
3 Periodic in one %—[(;1) + (f%)él
direction 3
3 | Periodic in two J~(J:)L
directions 9 “a
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12, Machine time for a Three-Dimensional Problem
The error in the potential at some particular checkpoint in
the mesh is, after ~ iterations (where mu is large) , given by

(m> b AT W
€ = Nwan &, = ol ¢,

where ¢, is the initial error. The computation is considered

finished when the change in the potential at the checkpoint between
successive iterations becomes smaller than some preassigned value A
@alled ¢ on the.agenda sheets for Forocyl) . If 1 is the number of "

iterations required for the solution of a problem then

I -pT
__A_= €5 = €340 - }\ (\...,”)) ~ T\A}M\u' )Or

€ e,
so that
T = o dey (= QMW)
r“ A
which, except for notation, is the equation given in
report MURA-251,

Let us consider the case most likely to arise in MURA work, that
of a three-dimensional mesh with periodicity in one direction. If we
take N;=N»:.N3=;N the lapse rate (for the Liebmann algorithm) is
given by 5
b e 500
so that

T = %&\‘)(%\L&%% (_-_&)z %3 .

We can put some resonable numbers into this formula. -Since the
IBM 704 can accomodate about 6000 mesh points (in a calculation in
which the potentials alone are sought and not the fields) we can take

'0

- -7
N= 18 . Let A= O and €-=12 | Then the formula a’)oﬁe gives =
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as L= /2° iterations, The time needed by the compgter for each
point in the mesh in each iteration is of the order of .5 msec, <o

that in this example the total time needed for the problem is of the

order °f1ﬁ~ ¢ -3 sec,
=M ST Rt iteration) 6000 points )| 720 iteration§=2160 sec.

or about 36 minutes which is not an unreasonable demand of machine time.
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Appendix I
Remarks on Problems in Which the Normal Derivative of the Potential
is Given

We consider the rectanodar mesh of points cshown in the figure.

The potential is specified V gwe
S M‘
along the sides {=¢ and - R\\\

‘&—_.-N\,_ , the normal derivative : /ﬁ?zwm
v 3l
of the potential, %5%" , 1s 1
- VB0 ety é
specified along the sides +=0 O R T RTINS ' N
andt:yA\ . It is desired Fig. Al

to solve Laplace's Equation subject to these boundary conditions.,

The above is an instance of the type of computational problem
met up with at Los Alamos. The authors do not know exactly what o> it
algorithm was used at Los Alamos but we assume for simplicity that the
Richérdson algorithm was used, so that for the interior points of the— ..
mesh the calculated potential on the (+)-s¢. iteration are given by

(mer? ' {m) () ") Y
Tf& = -4,7 (cpi-',‘; + ?1}'\-' + ig;‘“," + ?‘l’~\4\> y (I.l)

L, ML s AT Mt

‘We can derive an algorithm for the points on the boundary t=o as

follows. Let be the potential at the point (Q}) 9(Vg5x and

A
(VQQW' its firsi derivatives at that point, and so on for higher
derivatives, The potential at neighboring points can be obtained
by a Taylor expansion of the potential in the neighborhood of point
(0)3) ;, so that

Ve = Vo= (), + & <V°5)>‘2~ - ;

Va&"\l d VO} *(\/9'3)\: - _"1-— (VOS),# T o (1.2)

\/\)3 A (Voj)a + t<Vo‘s)«3»}'*‘”' .
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Then by using the fact that \’ satisfies Laplace's equation,

so that

(\/,Q” + (\/,\)M = 0 9

we obtain
VO‘;-\ -t \(o‘\ﬂ +'2'\1\,'3 = 4 vo'; + 2(\/93\‘y+ T b (1.3)

Thus the algorithm for the boundary points in question should be
A<V

- 5 )-
SD \ c?@\—l* ?@\"!\ 2(9 ,s ( (104)
where PLQ%’ is given. In a similar fashion one obtains for the

points on the boundary i=M,

o ( (1.5)
- k -L .
QM\‘)‘S - T+ <%M‘;)-\ * ?M\)\* L -"2-(?“*‘)&5* L V‘\‘\)x)V .

If one now considers the errors, that is the d@¥@&tions of the

')
calculated potentials, é; s, from the limiting potentials obtained

9
from the algorithm, »‘ , one obtains
(«*~> m? m . i
= 0 M=l = e Mo
ﬁ( ws L)ﬂ @ ux*‘) P s M‘l) 37 M «I 6)
(w\’ [N} ) Y)
N - |
eo') = t(eer\ -"'éo)i-\ *26-\)3) ) 3 ¥ ’M"
(PASY «m) wn? , P, e, Mo~
E“\; = ﬁ (eP\ )" “' S +2 e"“" >-‘) ! 9
or .o = E\,p‘» -0
(we) ) .7
EEM*‘ < Ef (1.7)

where K 1is a square matrix with (}M.ﬂ) (M.,;—\) rows. The lapse

rate is determined by the largest eigenvalue of the matrix k: .
The eigenvalue problem for k( can be solved by reduction of the

problem to the one already solved in section 4, Consider the

mésh shown in the figure.
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This mesh is obtained by reflectionaf "
the mesh in Figure Al in the line L=0
The potentials at the points along the ' lién
boundaries \=° and ‘y=M_ with 17 0 are the
same as those specified in the original mesh while Tfo AP
the potentials at \=° and &:M, with \&o are obtainéd Figure A2

by reflection in 1= o . For this new problem we assume percidicity
of the potential along the direction of increasing L with peroid
2 “«\ . The equations describihg the errorg in the calculated
potential for this problem are given by Eqs.(44) with Nz, replaced

by ™M, and(assuming integral values fcwm -M, $+M, ., If we seek

only those solutions that posess mirror symmetry about the line (zo ,

that is, if we put

() n>
e_w = tt\ (1.8)

then these equations become identical with Eqs. (I.6) except for
repetitlons. Hence the eigenvectors of K are just the first My+{
components of those eigenvectors of L. for the periodic problem
possessing mirror symmetry around the component L=o , The
eigenvalues of k( are the same as the eigenvalues of L
corresponding to these symmet:ic eigenvectors. These eigenvectors
of |_ are given by Eq. (47) , that is,

YA (efcm L" ()(u—;,}

(1.9)
‘(‘“DZ R ZM\3 S = 4,2, )"V\l,,‘ )
and the corresponding eigenvalues are
= L —‘. """ s)
Sy (m,m‘ t e o . (1.10)
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The eigenvalue of largest magnitude is
2.
{ I \ & - 1 (=
’)“W\M = "i(“\'c}ﬁ M‘v\ - = (Hm (Io«ll)
and the lapse rate in decades per iteration is
. L. L [am\%
Jar 4 \wo ’ (1.12)
independent of ™, ., For a mesh of given size, therefore, there

is a considerable difference between the lapse rates for a case in
which the potential 1s specified along the shorter side of the
rectangle and the case in which the potential is specified along the
longer side of the rectangle, as was observed at Los Alamos.

The treatment above assumed “he use o5f the Richardson algorithm

5 wee\event

but this assumptionh§o the main point----the same effect results from
the use of the Liebmann algorithm,

This same kind of argument can be used to obtain the lapse rates

for a variety of other problems. Consider, for example, the mesh

shown in Figure A3. The lapse rate k) %§ e

for this problem is the same as H;

that for the mesh shown in Fig.A2 V pertodsc

w Halg
with the foliowing boundary

Mrechon .
conditicns applied: the |

i«'v

= Ve

potential is periodic in the My

A= 1 2 7 T -
»  =-direction with period Fig. A3
M, , it is periodic in the 4 -direction with period 2M, and is
specified along the line 1I=e . If the Richardson algorithm is
used with these boundary conditions then the equations satisfied

by the €’s are

) (n) {m? M)
€.. = & e 6 twy ;:-H+| ) se - ‘V‘
&y M -t o+ ét . + €. WY T T FRMULES
53 3 >3 tg¢|) 2 e ey My y (I.13)
(nd tm)
X v = Gy . ., = € | -
vt l\‘,‘)x ;B 3 é‘))*Mz C) ; & 03 -0 .
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Except for the boundaty conditions one can readily see that these
equations are the same as Egs. (44) . It is clear that the eigenvectors

of the corresponding matrix (with these boundary conditions) are

X La L@ {wse-,_
T 'Ly, ‘
&==§%F ) (:\)nw)zﬂp\) (I.14)

M. U My even
9, =T L ossoape, - :
1 M;’f k‘p M‘L \S OM

the corresponding eigenvalues being
') = ‘%: (cn&; - Qm&l) .
The largest eigenvalue is

4

Nowway = ";(H— cwa) = - -b—( ) (I.15)

I\

and the lapse rate is therefore

A
n . 1L ('IE
s Y= 4 \1H,
(1.16)
which is just one-quarter of the lapse rate for the problem '
in which \/ is given on both horizontal surfaces in Fig. A3.
The same kind of result obtains if the liebmann algorithm is

used)the lapse rate for the Liebmann algorithm being twice that

-wsme for the Richardson algorithm.
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Appendix II
Proof of the Theorem Stated in Section 6
Denote the linear manifold spanned by X,)..}.X(, by M, . Let M;
be the manifold orthogonal to M‘ » so that the entire vector space
is the Cartesian sum of M, and M, . Let \/';MY' be an orthogocnal
bas¢s for Me and)\'m )..a,\/“an orthogonal basis for M, . Decompose

the operator | as follows:

T 2T +T, + 7T,

where
’ﬂ transforms a vector in Yﬂ\ into a vector in VA‘ )
P o o o
. transforms a vector in Mg into a vector in M,
‘TB transforms a vector in M‘.lnto a vector in ?{1. .
Such a decomposition is always possible since QAG is an invariant

manifold of T (any linear combination of eigenvectors is

' ,‘trahs%Ormed by ~1 into a linear combination of elgenvectors) .

T by itself)as an operatar in an ¥ -dimensional space, has
eigenvalues 'X‘f.,"x¢, In a representation with the j/“s as basis

vectors the matrix 7 is

— ) g s
'| i-rz Trow
]

P R

| o %"}J}”'Y’ TOoWS
and the secular equation of "1  becomes
® N
T-21 T

° = O R S AR A N
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The factor h’,-)l( provides the roots ),)... )A"Y“’ The factor h‘b—}’l‘
must provide the remaining roots of the secular equaticn for T

all of which are zero. Hence the secular equation of T; is
#=x
[To->1] = et =\ = O
o

commom—

According to the Cayley-Hamilton theorem, ! satisfies its own

secular equation, so that .
[e 8

T, = 0 .
M-t 3

- Now consider T with the )’“s as a basis, It has the form

o ro) ( :
“r'm‘( | -P \ =y \,
_rm»V - \ : H ‘13

i

= N
\ )\T; y I. )) o) )
. C o . T po— a— ° -z o
- where ? is some polynomial in 'y \a A3 ., Hence if Z is an

‘arbitrary linear combinatioin of xm)“’ ])'M , that isjthe ‘7/ o

representation the first Y components of &  are zero, then

-
T Z =0



