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INTRODUCTION 

The possible need of a three-dimentional Laplace program in 

future work of MURA necessitates the examination of the rapidity 

of convergence of such a program and an estimation of the machine 

time required for a Laplace problem. 

Frankel* has calculated convergence rates of the Richardson 

and Liebmann algorithms for two-dimentional Laplace problems for 

which the potential is specified on a rectangle. This is slightly 

different from the type of boun~y value problem encountered in 

MURA work. In our problemsthe1potential might be specified along 

the top and bottem edges of a rectangular region but not along the 

sides of the region. We would, instead, require the potential to be 

peri.Qdic in one direction with period equal to the bottom edge of the 

rectangle. Such bounda:-y conditions will be referred to as "periodic 

boundlI'Y conditions" to be distinguished from the "fixed bounchry 

conditi6ns" of the type discussed by Frankel. 

This report extends Frankel's work to three dimensions and 

includes the consideration of the potential periodic in one 

direction. These extensions are really quite simple but it seems 

worthwhile embodying them in a MURA report if only to fill in 

some of the gaps in Frankel's account of his work. In order to 

provide motivation for steps taken in the consideration of two­

and three-dimentional problems,the one-dimentional problem is 

thorough!y discussed for both th~ Richardson and the Liebmann algorithms. 

* S.P.Frankel, Mathematical Tables and Other Aids to Computation,
i, 65 (1950). 
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1.	 Richardson Algorithm: One-dimensional Problem. 

Consider the mesh shown in Figure 1 0 . . . . . . . . . . . 
j -; 0 I 1.. IJ-\ tJ 

Let ~j ) ~"- '," .,N-I ,denote the calculated 
Fig. 1 

potential at point after ~ iterations,the 

potential at the end points, ~"" 0 ",,,,- ~~ N ,being fixed. The 

initial loading of the mesh is given by i~	 • The 
1 

Richardson algorithm is as follows: 
(", I 

-I- cr.	 .) 
(1 ) 

i~ I 

That is in each iteration the value of the potential at each point 

of the mesh is taken as the average of the potential values at the 

neighboring points for the previous iteration. This process 

converges to the solution of the one-dimensional Laplace equation, 
J"-,pk" ... 0 ,satisfying the boundary cond i tions. Our question is how 

rapidly the process converges to this solution. 

Rather than work with the potential itself,it is more convenient 

to work with the error of the potential,that is the deviation of the 

potential from its limiting valueQ Suppose that ~ is the limitingi) (~, 
value at point of the potential yielded by the algorithm. Let~). 

"'-n.~ 

be the error in the potential at point after the~iteration, 

= ~. 
j 

Since the iteration equations are linear,it is clear that these.same 
("" ,	 £.... ' 

equations hold for the ~ ') with the boundary condition that ~ is
) 

zero at the end points, )""'-" and j-:.. '" 

Thus (,.,. )
 
( (",l


(,"4 \) ) \':\)"< f'i-lE, -=	 1.. t,)_, "t ~ '-\-1';2..\ ~	 (2) 
(,.,)~M)	 eN..... ~ '0 ..u... ~ 

() 
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Equation (2) can conveniently be written in matrix form, 

(3) 

or 

(4)LE. 
~) 

where the E. 's and the matrix L are shown explicltly·in.eq~ (~). 
,1,,) 

If t. is the- vector whose components are the errors in the potential 

at the initial loading of the mesh, then 

(5) 

Let us suppose that l has a complete set of eigenvectors* 

)(., )<., .... ,'" ,with corresponding eigenvalues).!\ \..) '-) \'01-' I ) ~ 1... )' ., AN_I 

If we expand E(0 I 

in this set, so that 

D (6)G)::: w~ oL X 
~ :.r J.. 
~" I 

then Eq.(5) becomes 

(7) 

If \~ is the eigenvalue of greatest magnitude and is simple, then 

for large "Y\. 
(8) 

, 

* That L has a complete set of eigenvectors in this simple case 
is a necessary consequence of the symmetry of the matrix. In the 
discussion of the Liebmann algorithm we shall encounter matrices 
that do not have complete sets of eigenvectors. 
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Thll~ ~fter a large number of iterations the rate of approach to the 

solution of the differential equation is determined by the largest 

(in magnitude} eigenvalue of L If this e.tgenvalue is degenerate 90 

or if ha~ another eigenvalue of the same magnitude but opposite 

sign 9 will still be proportlonal to \ ""W'- \ 
~ 

The lapse rate /' in decades per iteration is given by9 9 

I = - Jo~ \A.J .
 
The problem has become one of determining the largest eigenvalue 

of L The secular equation for is 

:: 0 

(10 ) 

the det.erminant "T'\ having and columns. The determinantJ.JI'I_ \ rows 

can be expanded as follows. If we expand along the first row we obtain 

the recurrence relation 

'"T'\ - " /\ ~ _ - '+ "'"J... (11)
JoI"""1 -=- J.) N '4 JJN" 'i 

where '"D..,_"} and \)~_~ are determinants having the same form as 

but with IIJ-").. rows and l\l-.J rows 9 respectlvely. Eqo(ll) is a 

linear differance equation with constant coefficients and can be 

solved by the same means used for linear differential equations with 

constant coefficients. Put 
rJ 

1)~ =: ') (12) 

substitution of Eqo(12) into Eqo(II) yields 

(13) 

• 



MURA-327-5­
Internal 

Thus 
(14) 

Eq.(14) and the &€j-uations to follow assume a particuarly simple 

form if we put 
(15) 

for then 

v =- ~ \ - c.t(") & ± 
(16)

'± ~& =- t e.... 
The general solution of Eq.(ll) is therefore 

,., it.1& (17)DIJ -::. Pc (-~) e 
1)~ must,however 9 satisfy the "initial conditions" 

(18) 
c. V)...... I) .... .L. 

l.t 

and these conditions will determine A and 'B 
Thus,with \~~I 9"2.- obtain 

- J.r A~\.& 
Jig 

.LA'<­
4 (19) 

The solution of these equations is 

\, (j .... L& 
e -e..

A-= - ) ~ -... 
2.L ~&. '2...'.. ~8-

(20)
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and so Sq.(l7) becomes 

~ (N~\)<J 
(21)

t..\- ~ ­

The roots of the secular equation, Sq. (10), are now easily determined. 

We have 

(22) 

and so the roots are given by 

(' ':- I " '. , N-I • (23 ) 

The root of largest magnitude is 

(24) 

and the lapse rate, in decades per iteration, is therefore 

t ':: - J-(j a ((1.V? ~) 
(25)

t(~
k. \0 

It is instructive to obtain the eigenvectors of l • 

The equations satisfied by the components of the eigenvector belonging 

to the eigenvalue are 

t-J- '- ) 
5 (26) 
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By introducing an ~o and an 1(..,.... we can write these equations 

as fol.lows~ 

(27) 

• 

(This technique of introducing additional variables satisfying 

boundar'"y conditions in order to put the equations into a more 

symmetrical form will be used repeatedly in the later sectionso) 

Eqs H27. ) constitute a linear difference equation with constant 

co~fficients which is easily solved. It isamusing 9 however 9 to 

make the substitution 

(28) 

for then Eq.(27) assumes the form 

(29) 

which is identical with Eqo(11)9 the difference equation satisfied 

by the determiaan±s 1)~ . We have already obtained the general 

solution of this difference equation which 9 with a convenient 

normalization 9yields 
M 

~~ -;: ~~) ~ ~9-' ) (30) 

satisfying the boundary conditions. Thus 

(31) 

These (N - \) eigenvectors form a complete set. 
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2.	 Richardson AlgoritQ: Two-dimensional Problem~ Fixed Boundary 

Conditions 

This is the case treated by Frankel, but we can briefly retrace 

his steps with the insight and motovation provided by our discussion 

of the one-dimea&ional problem. 

Consider a rectanglar mesh of points distinguished by a pair 

of coordinates i L and ,where L takes on integral values\ 
from 0 to tJ, and takes on integral values from 0 to ,I

1\1 ~	 • 

The algorithm then yields for the errors in the potential~ corresponding 

to Eq.(2} in the one-dimensional case, 
(",.. ,) ('¥') (m) (..-) E0"J \ 

E:: ....) ::. t (E-l.-l'-\ -t E-~J~-l -+ f L-+,l ) + (, ~+\ ) } 

(32) 
«(t'\) (('0'\) (""') ( ...... ) 

e i. :: E~~1- ::: Eo \ ~ tlll~ "::: 0 J cJ\ 1"\. 
(M)	 )

If	 we think of the ~ 5 for the interior point of the mesh as 
(M) l,

forming the components of a vector, E ,in an V"',-I)' (Na.-I) ­

dimentional space, then Eq.(32} can be written as 

Crt'-\ I) (m) 
(33)E := L E 

c.l 'C-"""'C-V'+;
where is a matrix whose s ••pe:RiRts are all either or ..L •L	 Jf 
One can, if one wishes, write down the matrix L if one chooses some 

convenient way of ordering the rows and columns. This,however, is 

not very illuminating, as is usually the case for problems referring 

to more than one dimension. 

The general discussion contained in the paragraph following 

Eq.(5} applies to the two- and three-dimensional cases as well as to 

the one-dimensional case. Thus what is desired is the eigenvalue of 

L	 of largest magnitude, ).trA. , the lapse rate being given by Eq" (9). 
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The easiest way to solve this problem is to use the 

experience gained in the treatment of the one-dimensional case in 

o,rder to make an informed "guess" of the eigenvectors of 

The equations to be satisfied are 

')'1.~~.. t ('Y-t_1 ;) +'~&).~_\ + ~t-t'\,i ..,. "Xl, ~'f') 
(34 ) 

L~ I	 , -.- N.-I, , - - N)..-I , 

• 

These equations correspond to Eq~~(27) in the one-dimensional case. 

Taking our cue from Eq.(31) we try as the solution of these equations 

x\~ : SN- 'l,,&, ~ \ S'1­ (35) 

where, in order that the, boundary conditions at ~--IJ\ .; and i ~ rJ .. 

besatlsfled, 
~ 

\ 
_ 
-

J!:.J­
tJ,' ,) 

t\ 
CI '\. 

-=:!!: s 
'N~ (36) 

These vectors form a complete set in the space of (N,-/')" (f'J'\.-t) 

dimensions. The substitution of Eq.(35) into Eq.(84) yields, after 

some manipulation, 

') -: t (c <r> c9-, + Q..(.r"Q (9._) 
(31) 

The ei~envalue of largest magnitude is 

")..~e..t	 = 1.: (~cn ~ + C<r> ~'Y) 
~ I - it [( l!ii'i~ + (liJ"1 

(38) 

and the lapse rate in decades per iteration is 

t "" -	).o-~ { ~ ( c... f... e.,.,~.J ~ 

(39) 
, ~'O' t [I~:r. (~..Yl . 

• 



-10- MURA-327 
Internal 

3'~ Richardson Algorithm: Three-t:iimensi-onal Problem; Fixed Boundary 

Conditions 

The three-dimensional problem leads to no special difficulties. 

The analysis proceeds in a manner exactly parallel to the two­

dimensional case and leads to the result 

~IWO\""" - t ( e-cn ~ + tln~"\o. + ~ ~1) 

~ 1- t(( ~~+ (~.)~ + (~)~1 
(40) 

where N,-.' , N"".., , tJ, 1'1 are the dimensions of mesh including the 

rectangular parallelepipedal boundary. The corresponding lapse rate 

is r- -= - ~o-O { t ( C-tr) J~\ -+ <L~ ~ ~ c-V?~) r 
.L [(:!=\~ -+ (~j'" ~ (lJj1.1 (41) 

G:> N,) ,. ~ J ~ 

4_ R1.$ij:a;t~a~n Alg'orithm: Two-dimensional Problem; Periodic Boundary 

Conditions 

We consider a rectangular mesh of points distinguished by a 
,

pair of coordinates 
.
L- and J where L takes on integral values 

1) 0from to ~ , and 
, 

takes on integral values from to N2,.~ 
This mesh is to be thought of as being wrapped around a cylinder whose 

.
axis is in the direction of increasing • The coordinate l can1 
then assume all integral values but we must understand that points with 

the same value of ~ whose L -coordinates differ by a multiple 

of N,. are identical. In short, we seek solutions of Laplace vs equation 

for which the potential is periodic in one direction with period N,. 
ThE!~ potential is given at thesu'rfaces 

The Richardson Algorithm then yields 
~-f \ ') 

(42)
~~i = 
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subject to the boundary conditions 

where r(LJo) and 

(~) ((1\) 

<P~ i '= eJl-+N 
1l 

j all and 

fOJNJare the prescribed boundary values of the 

) 

(43) 

'Y\­

potential. The'equitions and boundary conditions satisfied by the 

deviations of the calculated potential at the mesh points from the 

~ ... , .1 
I .' '''' ~ (44)

J-;: I ) ... N).­ f ) 

""'" . 

limiting values yielded by the algorithm are 
" ..., ) / ( ¥ ) ( M , 1M )

f-,. ":. ~lC' I' 'T E,· ~ £. ,
I,.~ 'r '-/1 l,j-I C~-\l) 

~) (M) (!'Y'" (~) 

t:-~o -: ~ i. \oJ"" -: 0 I e- ~'~ ~ ~ i. ... N \ , '~ a11 

These equations can be written in the form of Eq. (5) in which L is 

a matrix with N" (N,.-I) rows and columns 0 Once again we want to fi nd 

the eigenvalue of L of largest magnitude, and again the easiest 

approach is to guess at a complete set of solutions of the equations 

1+ (~l~, ') .. }.t, ~-I .. ).L~ I,i 
.~ ': I,··· 

.. '11'> \ ..)) 

NI J '\ -; I ~ • , 
~ 

N -I 
~ ) 

(45) 

1- i. 0 ":' X~ N ')0 -:;:. 0 } X ~.~ ":= ";t ~., toJ I J .~ 0 

Note that except for the equations referring to points on the boundary 

of the mesh, l-:=.\ and L"'= N'l. ,Eqso(45} are identical with Eqs. (34) 0 

It must then follow that any solutionsof Eq. (34) that sati.sfy the 

boundary conditions C.Ol\:b!.\~ ~ Eqso (45) will be soluti.ons of Eqs. (45) • 

Eqs. (35) and (36) provide such solutions for those values of ~, for 

which '(" is even. These solutions are 

'i '.. -.. ~ i.8-\ ~ .~ S"\­
~ N. \; 'f.,,'t.v­i~ 

(46)r-l._r~ (' :: '1., .../. _ 'l .e- N, 'L~ 1:J6ta., .. 1-1. J .';1-1) 

rS ;: ',~.) " , ) t-J~1$... -; N". ') s • 
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Ul'-2.).(Nz.- -I)There are such solutions if N, is even~ and (N;!). (N~-I)2­

of them if N, is odd. The corresponding eigenvalues are 

One can surmise what the remaining solutions must be by noting that 

the solutions given by Eqs.•(46) are all antisymmetrical about the 

center of the mesh. They are sinusoids whose periods in the 
? 

~-

direction are integral sub-multiples of the basic period N, • 

~47) 
is even 

is odd, (48) 

Substitution of Eq.(47) intoEqs .. (45) shows that these are indeed 

solutloI1s>provided that 

(49) 

as be.fore. There such solutions if N, is even~ 

and (t:!2.D, (N ~-1) such solutions if N, is odd. These solutions -a.. 

and the antisymmetrical ones given by Eqo(46) are linearly independent 

of each other(they are,infact,orthogonal) and" their total number 

is just N, (tJ".-\) so that they form a complete set. It may be 

noted that aside from accidential degeneracies(occuring,for example, 

when N, - N'to) the eigenvalues ar--e·two-fold degenerate except for 

those having ~,-:. 0 and <9'1. ~;r- (the latter occurring only when 

N, is even). 

That eigenvalue is a maximum for which and &-.,. 

Thus 

(50)
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and the lapse rate in decades per sector is 
(51)r- ~ -~ "1lh ('+ t."":5)1~ :f10 t (f;t 

independent of N\ . If NI is even then (9, w;: -rr 9 19-,:: 7f (N'L-0 yields 

a negative eigenvalue of the same magnitude as )~
~ 

• If ~I is 

much greater than N'1" there is very 1ittle difference between this 

result and the lapse rate for the case of fixed boundary conditions. 

If ,however, N, is about as large as NJ,. then the convergence 

of the algorithm for the periodic problem will be about half as swift 

as the convergence for the problem with fixed boundary conditions. 

This dependence of the lapse rate on only one dimension of -::he mesh 

resembles a phenomenon observed in calculations performed at Los 

Alamos. There a Laplace problem was solved for a rectangular region 

forwfilch the potential was specified on one pair of sides and the 

normal derivative of the potential was specified on the other pair 

of sides. It was found that when the potential was specified on the 

shorter sides the lapse rate wasl11uch lower than it was for a problem 

with the potential specified on the long sides. It is shown in 

Appendix I that this problem is equivalent to one with periodic 

boundary conditions and the phenomenon seems to be accounted for 

by our results. 
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50 Richardson Algorithm~ Three-dimensional Problem;; Periodic 

Boundary Conditions 

It is fairly obvious what the result of this calculation must 

be. We consider a mesh of points defined by the coordinates 
.. 

where l. assumes integral values from o to W, ~ assumes integral 

values from 0 to Nz. and \(. assumes i.ntegral. values from 0 to ~3 

If the sought for solution of Laplace~s equation is to be periodic in 
, 

one direction,say the l. -direction~then the lapse rate is given by 

t= ~~. t [r~s + (i7S1 (52) 

I 

If the sought for solution is to be periodic in two directions ~ the L ­ and 

-directions~let us say,then the lapse rate is given by 

•
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6 0 Liebmann Algorithm~ One-dimensional Problem o . 
We consider a mesh of points 9 X -=:. ~ where ~-::: 0 D \.J ' ,. .' ,N , 

(t.:»initially loaded with potential values with '90 and pllJ fixedf~ 
by the boundary conditions of the problem o The Liebmann algorithm 

differs from the Richardson algorithm in that in a given iteration 

it makes use of values already computed in the course of that iteration. 

The 

(54 ) 

where 1(0) and ftN) are the prescribed boundary values, 'for the deviations 

of the potential from the limiting values yielded by the algorithm 

one has 
(rt- .. I ) ((",.\1 (¥.,)
~ • _.L ~ €....I­

~ ... 'Z. 1;. ~_I "'"" 1~ \ 1=1 .• , .• ~-)1 / Pp 

C"', (~) 

~o ';:; f ~ -::. c for all 
(fVI;- I ) 

If each of these equations is solved in turn for ~. and 
\ 

substituted into the succeeding equation one obtains 
("";-.") (""? 

G-, = tf2. 
(ton) 

+.1. E­
'2- 3 

(56 ) 

('fl+l) 

~N-I 
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Or 

('57} 
-

where 
0	 0.J­ 0 c:>0 :z.	 r - ­

0 ,--- - (J e>•	 ~ 1:­
.l.. J. I .- - 0 0 

I> ~ 'a. "­
t I ...... I::::: I I , 

'l

I " , l " i \
I 

t 
l
t '" "- \ , (58 )


I \
 "­
I'	 I ~ ( " "- ,\ 
I	 \,, I ~ ,I "..... I"
I ' }.\oz. ;.l~i \I-"! ..... I' I

'. J.. 
0 ( i:) (t) (t) ~. · · . • ,. J. 2­

0 
("%./-1 (~)ol-'I. (-t),,03.•••• ', *"i ~ 

If L. has a complete set of eigenvectors then the argument following 

Eq.(5) holds and the lapse rate is calculated from the eigenvalue 

of largest magnitude. Here,unlike the case of the Richardscn algorithm, 

L is not a symmetric matrix and the completeness of its eigenvectors 

is by no means assured. We will find,in fact,that the eigenvectors 

of L do not form a complete set, a circumstance necessitating a 

supplementation of the argument following Eq.(5). 

We	 want to solve the problem 

where L is given by Eq. (58 ). There seems to be no convenient way 

to handle this problem directly because L has a fairly complicated 

form. Suppose we had a non-singular matrix S such that SL had 

a simple form. We could then find the eigenvalues of L by multiplying 

Eq.(59) by S ,yielding 

( 5 L - ,,5) y.. :: '" 
and	 solving the secular equation 
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0 - ~ ~l...-')..S I-
( 61) \~\'\L-').~~= 

The solutions of this secular equation are prec1.sely the eigenvalues 

of L Futhermore the solutions, 'f p of Eqo (60)are the same as the0 

solutions of Eqo(59),again as a consequence of the non-singularity 

of S' For S choose0 

1. 

-I 2- 0 
...	 \ "2.. 

\," "­
S -- '\

" ' ­" "- ,	 ( 62) 
0 " ...... . ~ 

-\ 2... 

w.. ' 
which is obviously non-singular,hav.ing determinant 2. 

Then 
'Q l 

Q \ 

'tl 
'\ 

..~ 

\. 

5 L -::: 
o 

and 
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SL-~S = 
(64 ) 

We want the solution of 

Q l').) -= \SL- A <; \ -= 0 
N-\ (65 ) 

and can obtain these solutions by the same sort of procedure 

that was used to solve Eqo (10). If the determinant QI'{_I is expanded 

along its first row one obtains 

Q ~-\ ':. - 2..") Q tJ-'1 ).. Q N-3 (66) 

where Q",_.. and QM.~ are determinants of the same form as ON-I but 

having I't-~ and N-~ rows respectivelyo Eq. (66)constitutes a second-

order difference equation for the ~ Vs subject to the initial 

conditions 

(67) 

o 

Put 
t.l 

G2 '" -: )) ( 68) 

Then substitution of Eq.(68} into Eqo(66) yields 

"V 
'l.-

-l- '- "). -V + "\ -::. 0 

which has the solutions 

( 69'} 

.If we put 

y,:: - X -z. [,,1- -). 1~ 

( 70)
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then these solutions become 
(71) 

o 

The general solution of Eqo(66) is therefore 

1"1 N {- ~ N() _"L N 9- 1 
Q l.l -= (-\) ~r0 & - A-t. -t ~B '€.. J (72) 

The coefficients ~ fAt and f3 ~ are determined by the in.iti.al 

conditions~qs~67)~and one obtains after some simple algebra 

(73) 

whence 

~ 1'JS 
.... ­ (74 )
~O 

The distinct solutions of Eqo(65) are given by 

if N :is even1. ...{.i I 
'("t.- 1,2..,-'. ,oJ . 

d~~\- if Nis odd 
Z 

an ~ -fold root if l'-J is (75)even~ 

~-,an -fold root 1.f N is oddo-~ 

It has already been pointed out that the eigenvectors of L are 

the solutions of Eqo(60)o With SL-\S as given by Eqo(64LEqo(60) 

can be written 

~~2..k'.- N 
) ,) ) 

(76) 

This equation bears a marked resemblance to Eqo(66)o In fact 9 if we 
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substitute 
lVI-I 

AI)\ -=- (- \) Q M-l ("') (77) 

into Eq. (76) we obtain 

'"\ Q ""-'3 -+ 2 ~ Q '\1\-7- -t Q ""-I -:::. c:> ( 78) 

which is identical with Eq. (66). We have already obtained a special 

solution of Eq. (66) s namely Eq. (74). Futhermore this special 

solution when used in Eq. (77) yields a solution of Eq. (76) satisfying 

the boundary conditions appended to Eq. (76) since ~t:?=- v and G)1'1-,< ").)-::: 0 

by virtue of the fact that ~ satisfies Eq. (65) 0 

The solutions given by Eq. (77) form a set of linearly independent
 

eigenvectors of L belonging to the non-zero eige~values of L .
 
What of the highly multiple root ~~ c? Examination of Eq. (76)
 

makes it clear that corresponding to A~O there 1s only one
 

eigenvectors namely)
 

, 

Consequently L does not have a complete set of eigenvectors and 

the argument following Eq. (5) breaks down. L- hasp infact s just 

~ eigenvectors if N is even p and ~ eigenvectors if N is 

"odd. If the :initial set of errors in the potential s E
(0) 

were9 

expandable in eigenvectors of L then the general argument would 

apply, but if E
(.. ) 

has a non-vanishing projection into that part of 

the GN-I) -dimensional vector space that is not spanned by eigenvectors 

of L we do not know that Eq. (9) is correct. This situation is 
J 

met by the following theorem which is proved in Appendix 11 0 * 

• 
* It has been pointed out by Homer Meier that this theorem is a trivial
 
consequence of the theorem that every matrix can be transformed into
 
the Jordan canonical form. The self-contained proof presented in
 
Appendix II is included in the report anyway in the event that the
 
reader is as unfamiliar with this aspect of matrix theory as the
 
authors were.
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Theorem;T is an on)t "YI. matrix with linearly :independent eigenvectors 

K,;--""'f (r<~and corresponding eigenvalues )l~'- ')(' (not necessarily 

distinct and not necessarily non.-zero)o In addit.i.on to these eigenvalues 

the secular' equation of \ ha s a loot ~-:..() of mul tiplici ty "ri- '( 0 

If Z is a vector orthogonal to XI,;". 'X( then --r~_'t"i= 0 . 
An example i.llustr.ating the abO\le theorem is gi.ven by the matrix 

, I 
, I o 

o	 I 
0' ,	 ~, 

o 

tV'\. 
whose secular equation is l~ =0 • This matrix has only one eigenvector, 

(XJ- ";: ~, ~ I. v so that only for th:i,s vector is it true that IX,:- 0 • 
~	 ~ 

But for an arbitrary vector Y it is readily seen t.hat T y-= 0 

The significance of this theorem foT. our work is that although 

the initial set of errors 9 E
(u) 

9do n0t conform to the conditi.ons 

necessary for the applIcability of our general argument (E
(o) 

expandable 

in eigenvectors of l )9 a finite numbe:c- of :1.terations suffice to 

produce a s,et of errors that do conform '1-0 our. requirements. The 

number of 1.texations necessary is one ,Less tha9 the mul tiplicity of the 

root ).. ': 0 (one less because there i~ one eigenvector belonging 

to this root). The multiplicity of this root is given in Eq.(75). 

Since under ordinary circumstances t,he number of iterations used 

in any given problem will be much larger than N v the incompleteness 

of the eigenvectors of l produces no delay i.n the convergence of 

the algorithm and the lapse rate :is correctly given by Eqo(9). 

According to Eq.(75) 

~~o... ~ 
(79) 

I (1!:'\%.""- 1- 1J) 
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and so 

\- (aD)
~ \0 

This is just twice the result obtained for the Richardson algorithm, 

Eq.(25). Thus the Liebmann algorithm converges just twice as fast as 

the Richardson algorithm--- that is, half as many iterations are 

necessary to obtain a given accuracy. 
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7.	 Liebmann Al gorithm~ Two-dimensional Problem 9 Fixed boundary 

Con¢litions 

This problem is discussed by Frankel. We shall briefly 

summarize the treatment. The mesh is the same 3S that considered in 

iectian 2; but replacing have 
t~.. ,} (,.,.1-\') ("''1,) 
L #.L ('-.' 00\0 e, . I
~l\ J+ \' ".', j l.)~-

(81 ) 
f",) ('"', {I't" I",' 

~0 \ = '",. \ ~ Eo \.1) ; Eo ~ ~ ... :a 0	 for all IY\" • 

These equations can be written in the form 
(,..-1"'''' \.~.1 

(82)E ~ LE 
but it is scarcely worth our while to give L- explicitly. The 

eigenvalue problem for L can be obtained from Eqs.(81) by replacemenl: 
("".," (IV' ) 

of~. by f. €'L\ 0 The resulting equations are 
~,	 ' 

C>:- I'). \ .... ~t.\ -").i.-,.\ -'),t J\-t7 - ')t t.. ,)\ - 'Xt;~..\) 

) t ~ ';" ')C \101... ':. "t.a·~ .... X. NI'~ ": co •
 
On the basis of our experience with the one-dlmens:l.onaJ problem,
 

w.e	 makt the following "gu~ss" at the solution of Eqs.(83)~ 
l-+ \ 

"1-~~ ... A ~ ",,9-, 1,M.... \ &~ 

o,~-£''( &l".:::1!"s	 ~;I .. ·,.J,.-Io (84)
9 9 '('-:'j"'N,-I) 

'''I ~ "', 

These solutions satisfy the boundary conditions of the problem. If 

Eq.(84) is substituted into Eqso(83) one obtains after some simple 

alg:b~a \?- ('1 A- t.<n 6, - " ....~ ....') - Pr'- ('-- e- ... ".... "...)1s;.. lQ, lJM. j &~ 

1" ('). - A'-) ~ l<.9\ w.:\~~ ~~I T s..N:~ ~ (!)n ·~G.,. ....... ""') • (85) 

The two terms of the right side of this equati.on must separately be 

zero (as can readily be shown by multiplication of the equations by 



...24- MURA-327 
Internal 

~\.~, ~\~1. followed by summation over 
. 
I. and ) • Hence 

~ ':: A'" (86) 

and 
1+ ... t ( e,.Cf") ~\ -+ ~~ 9-..) or 0 (87) 

Let us count the number of independent eigenvectors that we 

have actually found in Eq. (84) • Note that according to Ego (87) 

if we replace a, by -rr- B, and Bt by 11-&1., then A changes 

sign though ~ is unaffected. This same change in Eq. (84) leaves 

~'i unchanged. Thus the solutions given by Eqo (84) do not p as 

may appear to be the case at first sight D form a complete set of 

eigenvectors. In order that these vectors be truly 5.ndependent it 

is necessary to impose the additional condition 

(88) 

so that Sq. (84) yields about half the number of eigenvectors required 

for a complete set. These are~ however, all the eigenvectors that L. 
has. This statement can be verified by refe~l to Frankelvs paper. 

Frankel considers a more general form of the algorithm involving a 

parameter ~ • Replacing Eq. (83) he has 

" 't ~'l ... 'I.,., + <X (I, 't ,-I;l ~ '/. '+1, i''). 'X <,i-' +'Xi J" - 'IX,) (89) 

which reduces to Eqo (83) when O<=-,# • For e>< different from ~ 

these equations yield a complete set of eigenvectors of the form of 

Eq. (84) belonging to distinct eigenvalues. As 0< approaches ~ a 

number of the eigenvalues approach the value zero and their corresponding 

eigenvectors also approach zero. Those eigenvectors and eigenvalues 

that do not vanish in the limit of e..!: -1;: are just the ones we have 

found. The situation is therefore identical with the one we faced 

in the one-dimensional case and the theorem proved in the Appendix 

applies. 
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(90) 

and the lapse rate is 

t ~ ~,e> t ~~'Z. -+- (~~Yl	 (91) 

just twice that obtained for the Richardson algorithm. 

8.	 Liebmann Algorithm; Three-dimensional Problem~ Fixed Boundary 

Conditions 

The procedure is identical with that in the preceding section 

and yields the results 

~~ = ~ (~lI":) VI of- tll'l "\-c..tn~}2.. ~ l- t~7.)\.~ (~J +(~S1 
)(92) 

p-	 ~ :;:' 10 . t [(~y.. (tJ·;-(]S1 
where t>J, +' 9 ~ ....l' \ 9 ~j .,. I are the extents of the mesh (including 

the boundary points) in the ~,~~-directions respectively. 

9.	 Liebmann Algorithm: Two-dimensional Problem~ Periodic 

Boundary Conditions 

The mesh and boundary conditions are described in Section 5. 

The effect of the periodic boundary conditions in the present case 

is much the same as with the Richardson Algorithm. The results of 

the calculation are 

'). ~	 ~ (cv>S, ~ ~V1&'l.-f" , 
(94) 

'\:0 '-'" N,-I ~ 5'-(.,. 1-1,.-1J	 ) ~ -,) ) 
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so that 

(95) 
') 

and	 (96) 
~ "" ...L-. _, 11" J'l...,l;. ­

I - k \0 A. ( 
N".... 

Once again the lapse rate is independent of the period of the 

mesh,	 N, . 

10.	 Liebmann Algorithm: Three-dimensional Problem~ Periodic 

Boundary Conditions 

The problem is that stated in Section 5. For the mesh periodic 
, 

in the ~-direction we now have, replacing Eq. (52)9 

(97) 

while for the mesh periodic in the l..- and oJ-directioN one obtains 

(98) 

11.	 Summary of Results 

We present below the lapse rates for all cases discussed in 

this report employing the Liebmann algorithm. In all cases the 

Richardson algorithm yields lapse rates that are one-half those 

given in the table. In the cases referring co periodic boundary 

conditions it is the size of the mesh in the direction in which the 

periodicity occures that does not appear in the formulae. 
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No. of Dimensions Boundary Conditions 

1 

2 Fixed 

3 Fixed 

2 Periodic 

3 

3 

Periodic in 
direction 

Periodic in 
directions 

one 

two 

MURA-327 
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Lapse rate in 
nepers/iteration 

(~ )'" 

t~~t + PrJ~1 

1. [l~) + ffl",,)'. -+ (~t)~] 

..L (1i \2­
2.... N'l. J 
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12.	 Machine time for a Three-Dimensional Problem 

The error in the potential at some particular checkpoint in 

the mesh is 9 after '"Y\. iterations (where 'Y\. is large) gi'Jen by 9 

rl\ 
( 1'1' )	 !J' ')'\. 

E- -	 ">-"MfJ.JI.. €: 0 -= 10-\ G:- 0 

where ~o is the initial error. The computation is considered 

finished when the change in the potential at the checkpoint between 

successive iterations becomes smaller than some preassigned value ~ 

~alled Eo on the agenda sheets for Forocyl). If I is the number of': 

iterations required for the solution of a problem then 

r -rr.A. ":=. E ~ - E':r+ ~ _ ~ ( \ _ ").) ,., ~ ~ \ 0 • ) 0 
~C>	 ~~ I 

so that 

which, except for notation, is the equation given in 

report MURA-251. 

Let us consider the case most likely to arise in MURA work, that 

of a three-dimensional mesh with periodicity in one direction. If we 

take ~,,:: N.... ~ ~~ :: N the lapse rate (for the l.iebmann algorithm) is 

glven by 

so that 

We can put some resonable numbers into this formula. Since the 

IBM 704 can accomodate about 6000 mesh points (in a calculation in 

which the potentials alone are sought and not the fields) we can take 
_1° _1..	 1

N= I g Let A ~ 10	 and t-Q =10 • Then the formula aJlc$'e giv~6 ,': 
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\:lS i ~ 72. 0 iterations 0 The time needed by the comp~ter for each 

point in the mesh in each iteration is of the order of .5 msec 9 so 

that in this example the total time needed for the problem is of the 

order 0 f T '" ~r'l~oint. i ~:~~ tiO~ • ( 6000 po inte j( 720 itera tlOn1=2160 5 ec . 

or about 36 minutes which is not an unreasonable demand of machine time. 
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Appendix I 

Remarks on Problems in Which the Normal DerivatIve of the Potential 

is Given 

We consider the rectangiar mesh of points shown in the fi.gure. 

The potential is specified 

along the sides '\ ":. 0 and 

\ ':' M.. 9 the	 normal derivative 

t o l)V 0 of the pot en ~a 9~. ~sP 

~ '= (;) +-r.....-t--;-- ­
specified along the sides \:.0 \~ t I Z. 3 . ~ - - - M4 

and l.~ M\ • It is desired Fig. Al
 

to solve Laplace 9 s Equation subject to these boundary conditions.
 

The above is an instance of the type of computational problem 

met up with at Los Alamos. The authors do not know eX2ctly what:! . 

algorithm was used at Los Alamos but we assume for simplicity that the 

Richardson algorithm was used 9 so that for the interior points of the- ,~.l 

mesh the calculated potential on the (YlTI)~5t:. iteration are given by 
("'~l' ' (M) (t/< l 

~ ~ :: *(Cft-l )l -r f'~r\	 (1.1) 

'L "e I)~ . ..II - \	 o 
~ ) 1~11 ) 

We can derive an algorithm for the points on the boundary L =: ... as 

follows. Let Vo~ be the potential at the point (0) i) 9 (VD)Jr and 

(Vo)~ its first derivati~ at that point 9 and so on for higher 

derivatives. The potential at neighboring points can be obtained 

by a Taylor expansion of the potential in the neighborhood of point 

(0 ') so that9) J 
~V. \_\ V.) - (VOj))t -t- -:l (Voj»" ~ .. 

VO\'i 1 .. 'to) ~(Vo.) .. -+ .!.(v·) "t ~ -	 (I .. 2)1- 0))l)L 

,'I.. - V· + "1" 
l~ "~ (V~)~ t ( Va ~ )~ 1 -t .. ~ 
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Then by using the fact that V satisfies Laplace~s equation~ 

so that 

we obtain 

-VD'~-\ "'t \(,:l V+-' 1'- 'l.~ ').~ - (1.3) 

Thus the algorit.hm for the boundary points in question should be 
(tr\-vl) 

S>. (1.4 )
~\ 

(1.5) 

, from the limiting potentials obtained 

, one obtains 

('to. .... ' J i ';, ... M"\.-I 
~o·~ ': I J ' I 

(",.. \ ') ~ -:.\)·,,~}t\1.--1 

~""\ ;~ 
or 

(1.7) 

rate is determined by the largest eigenvalue of the matrix ~ 

The eigenvalue problem for 1< can be solved by reduction of the 

problem to the one already solved in section 4. Consider the 

me~h shown in the figure. 
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This mesh is obtained by reflectiondf
 

the mesh in Figure Al in the line L~Q
 

The potentials at the points along the
 

boundaries \ 0;. 0 and \ ~... with l.)/ 0 are the'l: 

c.tJ: --+--<r-------!same as those specified in the original mesh whi.le 
i:O'1,..., 

the potentials at \ ':. D and ~~t11< with L<o are obtained Figure P2. 

by reflection in t~O. For this new problem we assume peroidicity . 
of the potential along the direction of increasing l with peroid 

2 1"\ The equations describing the errorS in the calculated 

potential for this problem are given by Eqo. (44) with N'l., repla ced 

by fv\~ and tassuming integral values ~ ........ M\ t.,+ H( • If we seek 

only those solutions that posess mirror symmetry about the 1.ine v=·a 9 

that iS 9 if we put 
(rfI) 1m) 

Eo _~ ~ ~ ~ \, \ (1.8) 

t~enthese equations become identical with Eqso (1.6) except for , . 

repetitions. Hence the eigenvectors of K are just the first 1"',1' \ 
components of those eigenvectors of L for the periodic problem 

possessing mirror symmetry around the component l":. 0 • The 

eigenvalues of K are the same as the eigenvalues of L 
corresponding to these symmetric eigenvectors. These eigenvectors 

of l are given by Eq. (47) that 1s 99 

~ i.' -:. (~<r-l.., i. ~ r '\ ( c..~ ~.JL. s)
i ~""\) ., M"}. J 

(1.9) 
~= 0.20 --~- ~t\,. 

, ~ J ) S,:= ')L)., 

and the corresponding eigenvalues are 

.. (1 10)0 
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The eigenvalue of largest magnitude is 

\ ­ (1.11) 

and	 the lapse rate in decades per iteration is 

-L. . ..L (.:ILl'	 (1.12)~~ )M'~ 4 ~~ 

independent of \\AI For a mesh of given size~ therefore" there 

is a considerable difference between the lapse rates for. a case in 

which the potential is specified along the shorter side of the 

rectangle and the case in which the potential is specified along the 

longer side of the rectangle, as was observed at Los Alamos. 

The treatment above assumed ~he use ~f the Richardson algorithm 
"~ \ "<"'e \t,1,H). y,.""

but this assumptionAto the main point----the same effect results from 

the use of the Liebmann algorithm. 

This same kind of argument can be used to obtain the lapse rates 

for a variety of other problems. Consider, for example, the mesh 
.. v .shown in Figure A3. The lapse rate 

cJ "1~-
for this problem is the same as MIl 

that for the mesh shown in Fig.A2 V ~rlo,hc. 

i~ tW.~ 

with the following	 boundary -+ 
N\~ltc.~o~ • 

conditions applied~ the 

potential is periodic in the 

)L -direction wi.th period	 f'·I~. A"3. 

~1. ,it is periodic in the ~ -dire:::tion with period ,2.M, and is 

specified along the line t:o If the Richardson algorithm is0 

used with these boundary conditions then the equations satisfied 

by the G',s are 
(~~,) 1 ( (rn) 1m) P't\)E,. ..	 ~ II: - Hlot I •• - ./ 0 , •••. 1"'\ 

.u ~L-I . + 6- -+ e '....	 . J )JJ) )t,( )'".\ .. J ~ t J-I hI) 1 , i" I).· ,M,. ) 1.13 

•
J 
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Except for the boundary conditions one can readily see thr:lt these 

equations are the same as Eqso (44) It is clear that the eigenvectors0 

of the corresponding matrix (with these boundary conditions) are 

(1.14) 

the corresponding eigenvalues being 

,,-=. ~ (CO S, ...... C-(f') ~1.) 

The largest eigenvalue is 

':: t ( 
I 

t ..... c.~:!!:'"'\ ': (1.15) 
'1. "" \ J 

and the lapse rate is therefore 

(1 0 16)
which is just one-quarter of the lapse rate for the problem 

in which V is given on both horizontal surfaces in Figo A30 

The same kind of result obtains if the Liebmann algorithm is 

used)the lapse rate for the Liebmann algorithm being twice that 

~..l for the Richardson algorithm. 
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Appendix II 

Proof of the Theorem Stated in Section 6 

Denote the linear manifold spanned by X'j'jX'f"> by M, .let (""'2... 

be the manifold ort.hogonal to ~I v so that the entire \recto:!' spa.ce 

is the Cartesian sum of M, and t-\." G Let y.. ~ y,
t) of' 

be an orthogonal 

bas.s for l"\~ 
~ 

and 1.. ... ':'I.,. an
11'+1» fW 

orthogonal basis for M2 Decompose 

the operator T as follows ~ 

where 

~ transforms a vector in V\\ int.o a vector in M\ 
--r transforms a vector In ~,. into a vector in M,1­

transforms a vector in ~ into a vector in H,,,.."""3 
Such a decomposition is always possible since ~I is an in\iariant 

manifold of (any linear combination of eigenvectors is 

transformed by '\ into a linear combinatlon of eigenvectors) 0 

~ by itself; as an operatQr in an '( -dimensional spacev has 

eigenvalues ">-'1'.') ~ 1(. In a representation with the YUs as bas:ts 

vectors the matrix -r is 

rows 

o rows 

and the secular equation of -r becomes 

- -
o
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T~e factor \'T1-)1{ provides the roots }.)... )~K> The factor rr;-).1.l 
must provide the remaining roots of the secu13I' equation for T 
all of which are zero Hence the secular equation. ''0'£o 

It; ->.11 =::. 0=\ ~~;< {_.{' 

According to the Cayley-Hamilton theo~ems satIsfies its own 

secular equation~ so that 
",-'l' 

T a� 
Now consider with the i~s as a basiso It has the form� 

(� 

.,... rn"'< 
1\"" , -r 

I--
~ ..... i 

10 
I 

'Where l' is some polynomial in 1\\ \'2,. ;\3 Hence if r is an 

arbitrary linear combinatioin of 1",.", " that :1.~~the y
') )1"" 

representation the first ~ components of e are ze:r'o s then 
.,.. ..-(" .,. i: ;.0 


