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INTRODUCTION 

As pointed out by the MURA group, (1) the method of achieving very high 

energy collisions between elementary particles by means of colliding beams 

appears highly promising if the potential high intensity of the FFAG accel­

erators is realized. As first envisaged, a colliding beam accelerator would 

consist of two FFAG accelerators tangent to one another. An alternative 

methoct<2), (3) employing a pulsed acceler~tor and storage rings has been pro­

posed by D. Lichtenberg and G.K. O'Neill. 

This report concerns the proposed new colliding beam method, (4), (5) 

where both beams are in the same accelerator. circulating in opposite direc­

tions. Since this method employs a single accelerator. the troublesome 

problems in the other methods, such as target sections having inherently non-

scaling features and beam transfer (usually not too efficient), can be avoided. 

The machine is essentially a radial sector FFAG machine and has a 

fairly large circumference factor. However the simple structure of the 

magnets compared to two spiral machines, the many intersections of beams 

for experiments and the feasibility of changing the reaction energy make the 

machine an interesting possibility. 

(1) D. W. Kerst et al Phy. Rev.	 102 No.2, 1956 

(2) D. Lichtenberg et al MURA-DBL/RAN/HMR-l 

(3)	 ( )G. K. O'Neill Phy. Rev. 102 1418 1956 

(4) T. Ohkawa, MURA-124 

(5)	 L. W. Jones, MURA-134 
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GENERAL DESCRIPTION OF THE MAGNETIC FIELD
 

In the magnetic fields of FFAG accelerators a there exist an'infinite number 

of equilibrium orbits due to the nonlinearity of the field. However these orbits 

have extremely large circumference factors, except two orbits which are clock­

wise and anticlockwise respectIvely in a rad1al sector machine. These two 

orbits generally have different properties, such as the circumference factor and 

the tunesof the betatron os.cillations. The one which 1S not used in an ordinary 

radial sector machine is usti'a~ly unstable. 'We are interested here 1n making 

these two orbits cross each other at an equal energy of parhcles and work at 

the same point on the tune diagram. This can be achieved 'by uS1ng a,magnetIc 

field having a certain symmetry property. 

We write the median plane field as 

r k, 

(1-1 zo = - H l-) ~ J (Ne ) (1)elr;, 

where 

The "fu3l.grangian for the motion 1n the medIan plane is glven by 

( 

() (2 ) 

where (3 ) 
<2 I I / ~(. (II/G-)- - C no Ie +2 

primes denote derivatives with respect 10 e and ± is chosen depending on the 

direction of j['otation. 
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It is obvious from the Lagrangian (1) that the condition for obtaining the 

identical two-way orbits is to make f (N 9) an odd function of N 9 ,i.e. 

fc- tJG ) = - 1- (N&-) (4) 

because the equation of motion is identical for both directions if t (N 9) 

satisfies (4). 

By rewriting f (N 9) in Fourier series form 

feN f)) = 2: ( J?1. CA5>~rKA/e- + J-n. ~ 'V\ N& J (5) 
11. 

(4) implies 

9 - 0 (6)d?1. ­

Customarily we put N9 = 0 at the middle of the "positive magnet" and (5) 

and (6) become 

(7) 

by putting N9 ~ N 9 + i 
Especially if all even f 's vanish, (7) becomes 

(8) 

and we have an additional symmetry around the middle of the positive magnet. 

From the results of rough estimate of the orbits and the betatron oscil­

lations around them, it is realized that the contributions from higher harmonics 
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of the field depend on a quantity l :1;.2 except for the axial focusing,
/1­

which depends also on In actual fields, the higher harmonic 

1. . . b / fcontent is not very high. For example, );;' IS glven y ~ '+1 or a rec­
~""I J 

tangular-shaped field. Therefore, to understand the behavior of the machine, 

a pure sinusoidal field is not a poor choice. 

ORBITS 

The~IDgrangian(2) ~ives the equation of motion in the median plane 

]'- =- --eHo
Cf (9 ) 

By putting J 
(9) becomes 

eHo-- (10)ct 

where J'j is chosen as the average radius of the equilibrium orbits so that 

j 
7i 
96 ef.(NS.) ==- 0 

-7T 

From (9), we get 

- 5 ­



MURA-3l8 

where (l2; 

To obtain an approximate solution for r/the left-hand side of (11) is expaurkd 

in power series in t and the coefficients of t in Fourier series evalu.ated 

by harmonic balance. 

By using 

-~ 
( q':- Q/~ / )( 1+ 9 /2 ) 'I i'2.( I

b 6 b - - / -r t -+.2 1- 3 6') 
(13)- 1- Z,'1· ( I - St" ) -r . . . . 

(Ie+/)'"(k)1- +1 t -+ ~ t - . - . 

and 

the left-hand side of (11) becomes 
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where (17 ) 

:2NL(I~T/) 62.2 
f I"'" 2//(;/J - ?~::. ~ 

T -t N2.(k7-/) €.32.) I -r .2(k:O - 1<1;;~ I 
k ~ 9 2 r; J k..,../ .3.2.( I) (+ (1""1) 6, (,2 J 7 - ~ N I-t- .2Jk+1) ! 

+ (k+llt, (2 t3 1~I - 2
7 N2.(I-r ~fi,)) ) + . 

c =I 

.,' + tt /2.N1--+ (k+, )..... 4-N'( .....1)-,-- ?N"(I<..-tt)' i 
" -;­ ~3'" \ <. 7 N~.... (~+.d- ::I N'(k-t-I) - ,2"~(k.-tI)~ 1
! ; 

, f fk -+-J> :3 9 <;- ~- • z. / , < d (1-+ tl lJ t - TN - -;- /v(k-n) - f N Yk-;-~ Jj , 

'4' [ j. 2 (k-r/) 
2 

-+'(n . ~ I I N - 7 -+ 
~ <.- ~ ~ ~ O<t-J) J"3 ~
.2. N (k+I)J -+ f:s 13N - 2"" + ~ll<.+1) 

4­ t2t3 i (7;"'):"9N4-- N:O~+I)t2/~+S-) )]
•

'k', : [,(l(kTl)- 4N'+ t'f3N~ ¥+tf-J",t"'+ll+ -£JI{k"N)j,

g:d2.N~ + 1f1'~ I\/''(k"l-IXk-t-,,) t1- t f3 i IYN~-+ ~-Tl)~ "/'(It",,/I';~ )}
\, ~; \ \,~ N'I- .... (7)~- ~7fl"rtt'lkTI3>rJ

J 
;;
Ii
l

~ 
-1\ 'l,f l(J ~"'(k-") ~"'- f{!tfi + M-b'- ~/)l5 ] 

I, 

t tI 
I 
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C3 = 

p. 

For a pure sinusoidal field (fCN e) =cos N9 ), we have 

Co = 0 

(18) 

Co2 0 

C3 C> 

From (17) and (18). by neglecting and k-t-I-N' 
compared to 

unity and also cubic terms of the 
Jg.o. we obtain 

ttl "'-' 
-I z. 

V /(-r) Ii 
;gz. ..-v 

J 
"I-N~ 

(19) 

'.. ?3 ..-v 
-...-­ I 

/ ;;./ 17 )'<'f:~ 
J 

/zfk-t /J ~ 

,,-... 
"":"\,.,0< AIIk~; 

- 8 ­



'. 

MURA-3l8 

Inserting the above values in the higher order terms in (17) and 

neglecting ( I )2. and compared to unity,
~-T J / 

the Z's are given by 

I 3 k.+,t, ~ I~I ;; ) I- ~(k..--tJ) -r -! -N::l. ) (20) 

, I J k.+) 
~ 17- -+ -- }tz fN' f k+-/ d' N2. 

I 3 k+1 f
'\.... I J- - -+-"2l3 {k:/1i f ..4.-9--N'2

kr/ 
- /.z/(-rl) rf 4fJd ) ~ N 

I k.+1 (flit N f 1­
k.+/ ~/" 2. J 

The circumference factor C is given by 

(21) 

The above estimate of the ~ 's and P( agrees well with the results obtained 

from the digital computer. Since the betatron oscillations are a more sen­

sitive check on the orbit estimates, direct comparisons of 6 's and ex 

are not shown. 

The circumference factors obtained by (21) are compared with the 

computer results in Table 1. 
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TABLE I - Circumference Factor 

N kTl Canal C digital� 

64 200 8.7 8.6� 

64 160 9.4 9.3� 

64 120 10.4 10.4� 

24 25 8.5 8.8� 

24 18 9.5 9.8� 

l8 13 8.4 8.8� 

18 12 8.7 9.1� 

18 10 9.2 9.6� 

BETATRON OSCILLATIPN 

To obtain the equations for linear betatron a3 cillations around the 

oribts, the "soft-edge equations,,(6) are used, because the large scalloping 

of the orbits makes the method of expansion (7) used for the spiral sector 

machine troublesome. 

(8)
In the soft-edge equations, 

[ r:r4) ">1.0 ro lelFc:t-~ + -I- F(.-j) T - -- t~~df ] X ­
d,AL roz- f/;z. -re f D etA 

cf:e ?1t> Yo I (22)- [ F(~)y; + - ::; -fc~~ 1] r =0 
etA' f() 2­ fo 

(6) ( )F. T. Cole et al R. S.1. 28 403. 1957 
-\ 

(1) 
F. T. Cole, MURA-F. T .C-3 

(8) 
The same notations in reference (6) are used.� 
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we have 

F(-j) = (:~t +(N$-) 
(23) 

t.. ;'e - Z 6/ c= I)'IIIS- _ {(Nt)) 

for our case. 

(22) and (23) give 

j2X. J [ 2 k. A.,{lv'tt}� 
ciA~+ Y. 2. 0(4 e f 2(N~ )� 

I 

Clt-J)A. LN{)) _~ 

-r 01. e fkf!N~)- k'(tV&) trNl'9) }C 1-+ ~\2(~~) JX = 0 (24) 

J It{N~) .� 

~ - Y, e ./I+A."(N(J) oil)­

(25) 

By using (23) and (20), .A is given by 
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Defining (iJ) by 

A1- .--6 0-- (27) 

Y", ( I+ .2(I<.-/.O ) 

and assuming 

the equations (24) become 

I )2 [ 2. 2k. A.(!V{j))� 
-r (1-+ 2(k-f-I) t;{ -e -j-(NfJ)J� 

O"-I)l(N@) -x (28) 

TO< e i J;21(N@-~\)Je)-f/(N8)r('-tk'2(NG)) 4 JX ==0 

All terms depending on B in the above equations are evaluated in 

Fourier series form 

(1!..-I)Allv(j)) - k� 
e ( I -+ h' 2.(),j8 )) <: _� 

(29) 

k +OJ8) - A.' (Nf9) -f '(Ale) = 2.v, C..--o J'NG 
'J 

zk.hJN(j)� 
e -fC(Ne) =: L S' C-VJJ';V&� 
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t where 

N~ (f/ 2 2 S- Q (j~/OI-J)-+[ T(k-,) 1- z - 4- 6~ -/2 Z; - 2" 6,(» J
( J 

-+ lJ 2, f-N' + ~1l} -+ g3{-3N' + 0;?)J - -i-(J,.-I)f\/'t,tJ 

c, ~, (k--l) f, -+ -$/[N~ (1t_1)2- ~ + 'il~ 1(I{-1)- 3;./ t 
2 s ~/ t 2 .)·+ (k-ON 1 - 7j: I / ~-t- ~2 - .2 6, Zz tJ - 7f t2 ~J2 ) 

~J--N 4 
.2 

7)/ == 

])1 ­
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By using (20) in (29). we obtain 

.. 
~-

",; ...-,- V2 1k.:t-J) /l k-t )[ 1- -+­~- 1 
1-(i~-t ) 2N2. ]N� 

I 3 (1<. -t I )� c-~ 
''"­ +~ ()<T) ) .:+ N L 

,. J2/~7-1) ) j',- [ J ()~-t/)J
'- .3 -+ ;~f:] [/_

IV (.'- N' 
t 

! I '- I( --r __ I'j <!//HI) -r 1'-­

N r I7) ~; - I 1- -- --t-' J (1<-1- 1 ) j�
V';;(k-t!) l. 4:< II) ~V-r'
 

1 . (30)S-­-q --- ( i, +-1) 1­ I-
f 

/ (/-N) t 

tV 
\.. I 1<. -1 I])~ j I + - - '­'f ,"-Jl..v2(k-ti) I 

I 
-T- -, - - j \ 

-r-
r.(+ I 

J•.-J ", ~ , I -t-- -_L J 
,,:"J 

I -1- I?f! ? IV 2. } 

;.: ...-\..- / -r 
I ,;l 1:<+/� 

L-
2... ? Jj~
 

i
I .23 /3 /'>7 ! 

~ 
V2(k-+J) ) / - + ~_.",~-~ 

I1:=./ I;}"/'\:If) "7:?- /'1 ~-- f1\) 

! 
I I, 1­

T-
! \ ~L__ ! 

-'\.. -( I -t­L--:-- 2­
~ .2.- /1 ;2 

{?(k-U) <:t- I i /i._'N f.-.--. .----:...-­ ~-" .E ,3 ,A,J 
i -

.:s / .j:! //) 
+ 

I";;: 
--,,/4- J 
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Using above values, the equations (28) become 

(31) 

7
/~)lD "- ( [..! + I ) ~ I­

4 (i2.-f I) ~ 
3 k-t/

-"\.,.Ax! J2: (k-+-I ) N 1 I-r- 8 N' ~ 
I k:+1 

J iA'i-2 ."- (RTf) i 1- 3(1<:+1) + 7+ 2~1 1- \
6Nz . k-r / .2 (j+l) I 

.<.3 
A~2 "- O<.t-/) [ /- -r k-t-! f -lJZr /--. I' 

.{/k"t/) 6 N ~ - k-tl Rt-/f 

~ -< k-tlf v'~0(1 )3.·~\... - - -~ K."-I/Al·~ - v/&/ /V 1 J - NZ ~ f\);.~+ I 
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To calculate the betatron oscillation frequencies from the equations (31), 
(9) 

Vogt-Nilsen's formulas are used. 

. ~JA~() 
~ ! 

/ A"o 

A;.i
1.

z. 
+� 

4/·J ~ '+-AI- D� 

(32) 

+ ] 

The calculated q-~ for various machine parameters are shown in 

Table 2 compared with the results obtained by digital computation... 

(9)� N. Vogt-Nilsen, MURA-ll8 
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TABLE - 2� 

CJi ~\R:"N k-r 1 - anal ¥ digit -=iF anal r,:digit-rr 
200 .765 .764 .134 .109 

.__ .-- . 
64 160 .639 .641 .158 .143 

120 .529 .531 .186 .179 

25 .699 .743 .422 .41224 

18 .563 .595 .485 .487 

12 .644 .710 .596 .605 .18 

10 .580 .636 .641 .666 

In large N machines J the cr; ~ agree well and the apparent larger errors 

in \if ~ are due to the fact that a small error in cos ~. causes a large error 

in cr' because ~ is small. For small N machine correction terms of order 

get larger and make agreement poorer. 

The smooth approximation may be used for estimating 0- roughly. The 

equations (31) are approximately 

(33) 
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The ~ are given by 

2J;dk112� 
N� (34) 

By multiplying (34) each other. we obtain 

(35) 

For a working point in the first stable region. (35) should be less than unity and it 

indicates that there is a lower limit on N to obtain stable motions. 

In Fig. I at is plotted against cr; . 
From (21) and (34). the circumference factor C is roughly given by 

(36) 

and this shows the minimum circumference factor for a sinusoidal field is 'U 6 

For a rectangular field this figure would be reduced by a factor 

Since we would rather use between (2/3)7Tand Tf to make the cir­

cumference factor as small as possible, the smooth approximation always under­

1'<-+-1estimates ~ . If we plot against - • it looks more like a straight
Nl. 

line than the parabola expected by the smooth approximation. 

1<+3.r­
Furthermore. if cr;;: is plotted against A/). all points lie 

".pproximately on a straight line independent of N. as shown in Fig. 2. So we 

have a handy empirical formula for er;( 
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/I~tj;·r \
! 1,9 (-- ) (37) 

" /'1 2 
" 

Similar1y Ci~ is plotted against which the smooth approximation 

predicts in Fig. 3 and we obtain a handy formula for ~ 

(38) 

The ~ obtained by (37) and (38) are compared with the computer results in 

Table 3 and Table 4. 

TABLE -3 

N k-r 1 Ci>C emp. form. 
,I'
-\l;J(. digit

=ff ­
200 .763 .764� 

64 160 .646 .641� 

120 .531 .531� 

36 40 .565 .563� 

25 .743 .743 .� 

24� 
18 .599 .595� 

13 .744 .750� 
18� 

12 .708 .710� 

10 .634 .636� 

16� 9.5 .733 .741� 
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TABLE - 4� 

N k-t-1 ~ 
71 

emp. Form -* digit 

13 .580 .580 

18 -
12 .605 .605 

10 .666 .666 

25 .409 .412 
- "24--­

18 .488 .488 

200 .123 .109 

64 
160 .142 .143 

120 .169 .179 

HIGHER HARMONICS 

The magnetic fields in actual machines contain higher harmonics which are 

usually smaller than those of rectangular fields. The effects of the J
, 

-th harmonic 

on the orbits and the gradient focusing are reduced by a factor and very 

little change in ~ is expected by adding harmonics. Table 5 shows the U; j 

hardly change by adding third harmonic s . 

" - 20 ­



MURA-318� 

TABLE - 5 Harmonics and 

ThirdtJt:/rrN k-t 1� harmonic axSinusoidal content 

18 12 .71 -25% ~".'	 ~ 71 

.6418 10 .64 -25% 

24 25 .74 -30% .74 

24 18 .60 -33% .60 

64 200 .76 -33% .75 

The circumference factor is reduced by adding harmonics, since the orbits 

are almost unaffected and the peak. field is reduced. When the harmonic content 

is smaller than that of a rectangular field the circumference factor is approximately 

given by 

(39) 

where C sin: circumference fa-ctor of sinusoidal field and the field is assumed 

to have the form (8). 

According to the smooth approximation. .tri is given by 

(40) 

where 

(ft) for sinusoidal field 

-' /­
U\~/ 
t, 
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2
is plotted against F in Fig. 40 It is clear in the figure that the 

lncrement of CJi" is more than that given by the smooth approximation. G-; is 

giv....n ver~ roughly by 

x 0. /6 ] (41) 

SPIRALLING 

In a large N machine, say N )100, spiralling might be necessary to 

obtain a comfortable \Ji 0 The orbits and the radial tunes change very little. 

The smooth approximation formula for the axial tune is given by 

(42) 

Stability limits would be decreased by spiralling due to the additional non­

linearity of the fields. 

STABILITY UMITS 

According to G. Parzen s(10) formula for stability limit due to non-linear 

resonance lines, there are no remarkable differences from the ordinary radial 

sector machine, except that the Walkinshaw's line ( \J; -'-2~ = C ) 

is almost forbidden in this machine. (10) 

(10) G. Parzen, MURA-300 
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A -­ (43) 

The above formula is compared with the results from the computer in the 

following table.� 

N k+l A anal A digit� 

20 16.1 1. 9 x 10-2 1.3 x 10-2� 

36 58 5.0 x 10-3 8.9 x 10-3� 

For the sum resonance line 
I ~+2.~ =.27f the stability limit amp­

litudes are given by(10) 

A - !'1~2 I(~r- (Ii! I� 
(44) 

B - !'1~ )-Zlmtt- %f.iJ I~t---o;f/~~ 

A and B depend on the tunes ~ and ~ at the stability boundary to which 

\r,Zo and C!";O are driven. It takes long se:tdes of computer runs to obtain 
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A and B as a function of initial values of x and Z8 This survey has not been done. 

However, few values of A and B obtained so far indicate fair agreements with 

(44). 

TWO-BEAM - ONE-BEAM TUNING 

Since the symmetric machine is a special case of the radial sector FFAG 

machine, the machine can be used as a one-beam radial sector machine by 

changing the magnitude of the magnetic fields in the positive and the negative 

magnets. 

If is given by 

(45) 

the smooth approximation gives 

4Ik;J) { 
(46)N 

.j 
. z 

c-< ,'. ,;.-</"-(1<.7/ )l- k-rl }u.-+- ­2..N2- IV 2.­2JV<r­

(/1)
where I 

c)..:=: 

(ll) rJ I. ;' p )
tA 18 '-T. .. Ct-t cS-2·H 5 

re /'0 vt M UR A - 2. f 3 
.. 24 ­
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By eliminating eX' in (46), we obtain 

";/lI -j I')o "~- . I 

(47) 

This shows the working points mO!ire along a hyperbola by changing the magnets 

excitation. It must be noted that this is the smooth approximation result and 

shows only rough behavior of the working points, especially for high 

EXAMPLES OF DESIGN PARAMETERS 

In the fol1owin~typical sets of parameters for rather small size machines 

are discussed. 

UnfortWlately direct F0roc:rl-Formesh calculation can not be used with 

vanishing average value of the magnetic field. The calculations are done as 

follows. In the magnet configurations of ForOGy]. agenda, a finite value of 

potential on the positive (negative) magnet and zero on the negative (positive) 

magnet are given. The configurations have the symmetry around the centers of 

the positive magnets and also aroWld that of the negative magnets. By picking 

up only odd Fourier coefficients of the median plane fields in the output of 

F'oIlOQyl, we have the median plane field when both positive and negative magnets 

are energized. This field can be used to calculate dynamics by the Well 

Tempered Five program. (The alternative is to feed this field in Tempermesh 

and use Formesh for dynamics)(12) It must be noted that all field coefficients 

are normalized to t = I and fhen multiplied by of to rWl dynamics to keep 

_~ _,!iYltnJ1le .!!DBtt o..f !h! pZ:0i!am. 

(12) This procedure is being used for New Model by A. Sessler and P. T. Cole. 
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N for small size. (electron) machine might range 14/\.-.24 considering 

the magnet gaps and straight sections 0 In this range N:::: 18 must be discarded 

because the working points stay always too close to the line 

which is an essential and dangerous line. 

EXAMPLE 1. 

N =20 k= 15.1 

The configuration of magnets is shown in Fig. 5. 

FoUrier components of median plane fields 

1st 1.000 f)QO� 
3rd - 00228407� 
5th 0.054433� 
7th 0.004272� 
9th - 0.017548� 

11th 0.014469 
13th - 0.008186 

Circumference factor 7.2 

[J~ ~ 0.727 CJ'l1r Y 00547 

Phase plots of x and ~ motion are shown in Fig 0 8 and Fig. 9, 

Radius at injection 200 cm 

at output 275 cm 

Energy at injection 100 Kev 

at output 50 Mev 

4300 gausses 

EXAMPLE 20 

N := 16 k =8.5 

The magnet configuration is shown in Fig. 6. 

Fourier components of the median plane fields 
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1st 1.000000 
3rd - 0.228394 
5th 0.054391 
7th O. 00,4.a·4t 
9th - 0.017617 

11th� 0.014520 
13th -� 0.008215 

Circumference factor 7.2 

'iJj.hr ::y O. 746 J---o/rr ~ 0.739 

Radius� at injection 200 om'"� 

at output 340 cm� 

Energy� at injection 100 Kev� 

at output 50 Mev� 

Hmax� 3500 gausses 

EXAMPLE 3. 

N = 36� k= 57 

The magnet configuration is shown in Fig. 7. 

Fourier components of the median plane fields 

1st 1. 000000 
3rd - 0.264663 
5th 0.092525 
7th - 0.017268 
9th - 0.015356 

11th 0.024919 
13th - 0.022792 
15th 0.016176 

~ .718 ~rr ~ .275% 
.··~11·' ~ 

Circumference factor 7 . 07 
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Radius at injection 890 cm 

at output 1000 cm 

Energy at injection 100 Kev 

at output 300 Mev 

Hmax 7000 gausses 

OTHER PROBLEMS 

Since the machine is different from the ordinary FFAG accelerator only 

in the particle dynamics, the problems such as, acceleration, injection. 

stacking, space charge effects and so on, are the same as in the ordinary FFAG 

machine 0 The discussions of these problems can be found in numerous MURA 

reports. 
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