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ABSTRACT 

Normal modes methods are applied to field calculations in a wave­

guide coupled to outside space by holes in its boundary wall. 
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1. Introduction. The electromagnetic field within a cavity is uniquely deter­-
mined by the current density ~ (x, y, z) in the cavity volume, and the tangential 

component of the electric field E at the boundary surface 8 (Figure 1). This com­

ponent vanishes along those parts of 8 which consist of a perfectly conducting wall, 

and is different from zero across the surface of any apertures which couple the 

cavity with outside space. Explicit formulas giving the cavity field in terms of 

"volume" excitation:r and "boundary" excitation E are important in 
b~ 

a number of problems, such as the determination of the resollant frequencies of 

coupled cavities. Formulas of that type can be obtained by using either Green's 

dyadic (1) or normal mode (2) methods. The two formulations are essentially 

equivalent, since Green I s dyadic can be expressed in terms of the normal modes 

of the cavity (3). In the latter form,which is used in most practical applications, 

Green's dyadic appears to be a mere intermediate step in the normal mode formu­

1ation. A similar situation arises in the study of boundary excited wave-guides. 

Here, agairl, Green's dyadic can be used in principle, but its analytical expreSl­

sion always involves the normal modes of the duct (4). It is the purpose of the 

present paper to solve the boundary excitation problem directly by normal mode 

procedures. It is the author's experience that such procedures are eminently 

suitable for practical computations. The formalism is clearer, the probability of 

mixing up coefficients is lower, and a very desirable flexibility is afforded by 

the independence of the method on the type of boundary conditions existing at 

the terminal planes 81 and 82 (Figure 2). In the mathematical treatment which-follow~, volume excitation ':T is added for reasons of completeness, although 
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its effects are quite satisfactorily analyzed in the existing literature. 

II. Consider the following two-dimensional problems 
a. 

~ i 1)4Cf ~ r.r ~ 
(2. 1) \J Cf -tal< f::' ::::i + 0 a.. T A. r: 0 ) IN{ t.t. Cf= 0 on the contour C of the 

:x.., C) X 1 wave guide 

(n is the outward normal to C) 

The solutions of (2.1) form a denumerable infinite closed and complete set of 

orthogonal eigenfunctionsJwhich will be denoted* by ~ (x~ 'a' ) and the 
.2 ~~ 

corresponding eigenvalues by ~ • Another such set is formed by the 
~ ~ 

solutions of (2. 2), denoted by Je (::1-1 '1) , with eigenvalues I< • 
}'n. fV' 

The eigenfunctions e and ~ will be used to expand the ~ componentr ~~ (j 

of the electric and magnetic fields respectively. 

(2.3) if V=0) with V=constant on each closed curve of boundary C. 
:)c. ~ 

Equation (203) has 0, 1, --no linearly independent solutions depending on 

whether the wave-guide space is simply, doubly... (n + 1) -fold multiply-connected. 

The solutions of (2.3) will be denoted by ~. 

Consider now the following two sets of vectors. 

Set 1 L 1 grad 't- 'denoted by r ('I, a).
~i O' ~~ _ 

1. 2 "V::l X grad ~~ , denoted by ~ cx, ~) 
6 ~~ 6'- __ t~ 0 

1. 3 grad y , denoted by ~L (:X, 'tJ 
:Xl 0 ~.c:.. 

Set 2 2.1 grad 'Je ' denoted by d'L (:::tIl.!)
~4 ''\1\ ~l'\.. ~ 

2. 2 ~ x grad ~ , denoted by X (x,~) 
j .xc ~'W' _tw- a. 

2. 3 i)':\.}( grad ~ • denoted by ~ ( ~ I '&) 
o too 

... - => - -~ - - - - - - - - - ­

* The subscripts m and n stand for a double set of indices j. k, not written 
explicitly for reasons of brevity.� 
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The first set comprises the mutually orthogonal* eigenvectors of equation 

-�(2.4) A perpendicular to C. 

The second set comprises the mutually orthogonal eigenvectors of 

(2.5) -
tangent to C. 

It will be noticed that f"b )~ , ~t I dt are irrotational, ~ l-
L'M ~.,..,. 0 ~o 1:""" ) 

~ ,T X solenoidal. ** Each set of vectors forms a closed set in terms of 
~ f-o 

I 

to 

which a sufficiently "smooth" two-dimensional vector can be expanded. Set 1 

will be used to expand £1:' ' transverse component of the electric field, set 2 

to expand H More explicitly:
t 

(2.6) E(x.'U,l"),,2:"-(~f-)f lx, ~) ... Lt(~~)l(", '4')+ La' (~,b)r(x,~) +~C(io~) t (l(~)~ 
'\'II' ~ bill IV\. t'~ 0 0 ~o )on ~ ~')O" " 

(2. 7) H()(,~,~,rl:t-tXJ~, t-)j~", ..)T ~~(a'r)~(0<,1)+~~(~.l;)~ (:x,~) +I ~ (50 f-)l ()(, ~) Llt. 
I'" ~"'" toO""" "" ~ 6 

The equality sign must, as usual, be understood in the sense of convergence in 

the mean. The problem is to determine the differential equations satisfied by the 

various (z, t) dependent coefficients. These equations are listed below without 

proof, a typical proof being given in the appendix. 

(a) for the 0 modes 

(2.8) dCA. o + »-~= _ ...L rl~ )t E). a? Gte.;. .L j E ()V:, ole.
1o ~ . I 0 t" "'~ 1 "" ~o w;. ~ ""bY\. 

" 0 C 0 C 

(2. 9) ~ -to £ ~ =_...!.... rr :flO f tiS 
'0 ~ -ut" No'" .Us too 

: ~e ~r~:g:n:li~Y-p;o;e:;~ o~ the form .If ~It • 
s** The m, nand 0 functions are, except for multiplicative constants, the 

components of the TE, TM and TEM modes of classical wave-guide theory. 
The multiplicative constants have been dropped for reasons of clarity. They 
will be reintroduced automatically in the sequel (see. eq. 3.6). 

- 4 ­
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(b) for the M modes 

VlA"" t;)J I J- -)::tP , J ?J l(2.10) - 1" fA:::b' -C =- - (().)( E •dft c;tc.:: - E. fr: ~ 
() ~ I'b ~ 'N-- tV" fp. I:~ N 2J • 1) 'VL

M C. !'WI () , ., 

(2.11) uol)y\ i ud~ 'jlr T T ~ ~ 
1)~ T 1)t' =- tJ,: .J ..J. Gt~ ~ 

S 
(2.12) - J ~ -oC"", I jJ:;: r J .~ 

~+ 11" 'U~ = - -;:p: .. ~, ..J. ~~~ ~~ 
JW. 'W\;S 

(c) for the N modes 

(2.13) 

(2. 14) 

(2.15) 

Some of the notation should be clarified: 

tJ,.2: S~ 1~.I.tJvS� 
W:= \)Ii;./~S:Jllx;.,.JA.S=( ))s~~~
 
N2. ({ - 2. (( - t 2. .(. 

IV\- ': J) 

~ 

I~~~ \ fA. S: })S l~t~ \~S::. ~ (S dG~ ~& 
- s ~)s O' 

J_ ~r"- ~r V:::, it" '" d'$... V1 __ _ 
(A...'l'\. = unit vector pointing out of the guide.~,lAC.,lAi)forma right-handed frame 

The second members of equations (2.8) to (2.15) are known functions of z 

and t. One readily recognizes the formal analogy between the volume electric-
current ~. which couples to the E. field of the mode. and the fictive 

magnetic surface current lA.. )( E: , which couples to the H field of 

""" 
the mode. 
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III, At this point the vectorial field problem has been reduced to a set of three 

independent systems of partial differential equations in z and t . The solution 

of the latter can now proceed, given suitable initial conditions at some time 

t =0, and boundary conditions* at terminal planes Sl and SZ. The usual arsenal 

of mathematical techniques is available for the purpose. Laplace and Fourier 

transforms can be used to eli~inate the time dependence in the equations. Laplace 

and Fourier transforms, or finite Fourier transforms in z are helpful for guides 

of respectively infinite, semi-infinite or finite length. It is advisable to start 

from equations involving one ftlnction only. Such equations, which can be obtained 

by elimination, are: 

Typical of the problems which can be solved by normal modes techniques is 

the determination of the fields inside a semi-infinite coaxial line with an in­

finitely narrow gap in its outer conductor. Assume that a voltage V is 

sutMen1y applied across the gap at time t = 0 (Figure 3). The solution is then 

obtained by setting 

* Example:¥"r\.-)dn-.> ~O} -8')0\­ vanish at all times on a perfectly conducting 
terminal plane. 

- 6 ­
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in the second members of equations (2. 8) to (3.4). The latter equations, 

incidentally, contain all the familiar (5) results for the normal modes in a 

region free of volume and boundary excitation. For an "m" mode in sinu­

soidal time-dependence, for instance, equations (2.10) to (2.12) show that 

C.� must satisfy 
'l¥-­

(3.5) 

If the solution is chosen, am and c( can be computed 
~ 

as: 

0- __ d.c.~ ~ ¥1» 
(3. 6) ,...,.- lA.. ~ : -0*~	 I<~ 

~ tJ ,.,.,... 

(3. 7) ~ =_ ;wt-c. : _ Jwt eJr~~ 
~ k2. ~ 1<'-­

1M. fW' 

yielding the usual proportionality relations between the mode components of 

a progressive wave. 

To conclude, mention should be made of the successful application of the normal 

model formalism to the computation of fields inside a gap-excited particle 

accelerator.(6). 

- 7 ­
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APPENDIX 

A relation such as (2.10) finds its origin in the following Maxwell's equation. 

(4.1) 

The expansion for namely (2. 7), can be safely introduced in the secondJ 

member. The first member, however, cannot be obtained by merely "curling" 

equation (2. 6) term by term, i. e. summing the curls of the individual terms of 

the expanSion for e: . It is necessary,on the contrary, to expand curl 

separately as: 

(4.2) 

The coefficient is found to be 

~j.s X~:XI't). WAt E' (~,,~,t) tJ..S ') 
(4. 3) lA = 

Hs/aet;J)(,1)/~ cA. <; -
This result is obtained by multiplying (4.2) on both sides by c1t'h"" ' integrating 

over the cross- sections S, and making use of the orthogonality properties of -
the various de . The next step is to transform the numerator by using the 

t-
following formula of vector analysis: 

- -
(4.4) 

where cur~y indicate that the derivatives with respect to x and y only have been 

kept in the normal formula for the curl. Multiplying both sides of (4. 4) by-X yields: 
t"", 

- 8 ­
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(4.5) X · ewJ€:.Ti. •(2 J< ~ ).,..X.w.JE=~,(.!!~i )~_~ -~ (Ii f, E)
tM ~ 1) ~ t~ ~ 6 "b~ tw. ." l.l t:~ .11-.~ i('w< 

If one uses the fact that X =l\)(~ ,ewJ. i' = -~.). r ,integrates over 
(:...... 0 :l1 t~ I)oA ~ 

the cross-section S, and applies the divergence theorem, u turns out to be: 
m 

(4.6) \]v::..l. [~n f. [ .AS - t {~go.F AS-JE ~kJ 
'W\ N~ u ~ s ~ t.... ~ s ~ ~ Co ~ ~~ 

1M 

The first two integrals can be expressed in terms of am and cm (see 2.5), and, 

as a consequence: ,
(4. 7) 

from which (2. 10) follows immediately by equating the coefficients of 

in both members of (4.1). 

List of Captions 

Fig. 1. Cavity with hole in the walL 

Fig. 2. Boundary-excited wave-guide. 

Fig. 3. Shorted coaxial line excited by gap in outer conductor. 
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