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The effect of varioﬁs coupling terms upon the Y~ -growth phenomenon for
an operating point near the 0;0 = 2 O'V resonance is examined computa-
tionally. Results are presented in tabular form and graphically. A tentative

discussion of the results is also given.

* Supported by Contract AEC No. AT (11-1)-384

*% On leave from lowa State College, Ames, Iowa



MURA-295

I. INTRODUCTION

1 afforded an

The advent of the DUCK-ANSWER computational program
opportunity of studying the effect of various terms in pAroducing the "turn-over"
which can terminate the y-growth phenomenon exhibited by coupled differential
equations operated near the 1/*0 = 2 ;’o resonance. 2 The present
report presents the results of this investigation, with little theoretical dis-
cussion, for coupled differential equations which resemble the more elaborate
FECKLESS-FIVE equations as previously applied to the operating point deneoted
as '"Point 9" in an earlier report.

The results of the investigation suggest certain questions, concerning the
onset of true instability and in regard to the reliability of repeated turn-over as
an indication of stability. These questions are mentioned in the Disgussion

[Section IV_] . Individual runs did not exceed 200 sectors in length, an indi-

vidual sector being characterized by AT = 7¢ = 32 Runge-Kutta steps.

II. THE DIFFERENTIAL EQUATIONS:
We list below the differential equations employed, a double prime denoting

the second derivative with respect to T,
1 P" + (184 + .8 cos 2T) P =0

WY - (027 + .8 cos 27T) ?‘ = .8 (sin20) p Y,
These non-Hamiltonian equations typify the equations employed to analyze
y-growth in the manner suggested by Walkinshaw, 4.2 in which the radial
oscillation, uninfluenced by the axial motion (presumed to be initially small),

is introduced as a prescribed function into the axial equation. For this system

-2 -
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of equations, y-growth, if present, will of course persist, butthe equations are
suitable for determining the threshold for y-growth and the initial lapse-rate
characterizing y-growth when present.
(2) ,a” + (184 + .8 cos 27) P= .4 (sin zT)Iﬁz
- (027 + .8 cos 2D Y = .8 (sin 27’),015‘

The addition of the ?2 term to complete the /—equation here provides us with
a Hamiltonian set of equations otherwise similar to equations. (1) above. Effects
of both the difference resonance ﬂxo -~ 2 Vjo =. 0 .and the sum resonance

7/,\'0 + 2 190 = N (with N=2 in the present instance) may be expected to

arise with equations of this form. 5

(3 L2" + (184 + .8 cos27) PpP=0

W " - (.027 + .8cos 2D P = .8 (sin 27')/01"+ (.4/3) (cos 2'{)}&'_5
This non-Hamiltonian system of equations affords an opportunity for a t;’ypical
iﬁ' d term to exhibit any influence which it may exert on growth of IW -

amplitude when the magnitude of p becomes appreciable.

(4) /0“ + (.184 + .8 cos 2T) /az .4 (sinZ?")P'Z

}D' 'f - (027 + .8 cos 27T) ?‘ = .8 (sin ZT)/O}i'-&- (.4/3) (cos 2[')10.3
The inclusion of the yi'e term in the /0 —équation again provides a Hamiltonian
system of equations, otherwise similar to (3). The presense of the }D’g term

in the ;&' - equation might be expected to introduce effects attributable to the

<

7¢/2 resonance ( 1/50 = N/4) in equations of this form.
(5) /0 "+ (184 + .8cos 2T) O = .4 (sin 27')?’2—'.4 (cos 2”,0}&'2
—y’ " - (027 + .8cos 2) J=.8 (sin 27 )PP .4 (cos zr)pzﬂ,

..3_,
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. . . . . 2 2
1 f t 1 i
This Hamiltonian system of equations includes the /0}& , /0 }ﬁ coupling terms
which might be expected to introduce effects attributable to the sum resonance

2 Oy, * 2 Q‘Jo = 2 7f in equations of this form.

(6) /on + (.184 + .8 cos 27) /0; .4 (sinzf)}ﬁ‘z-.4(cos 27")/0%2
P - 027+ .8 cos2T) Pr= .8 (sin27 )PP .4 (cos 27‘),021%
+ (.4/3) (cos Zf)‘w?

This Hamiltonian set of equations includes all the non-linear terms which appear

in equations (2), (4), and (5).

It is noted that the foregoing equations contain A-G (T—depehﬂent) co-
efficients in both the linear and non-linear terms, computations in whichalternate-
gradient effects play a less prominent role being under study by Dr. Parzen. 6

We list below, however, two sets of non-AG coupled equations which are of interest

for comparison of their performance with the results of the present investigation.

(M P" + 29235649 0 = .0542 @<

Sﬁ" + .056 07424}& = .1084,0]}'

These Hamiltonian equations are intended to have the same small-amplitude

oscillation frequencies and a /O—threshold for }&—growth closely similar to the

values applying to equations (1) - (6).

8 P "o+ . 292 356 49 0 —,08/0¢2'
g+ 056074 24 ~.,03,0215-==.04 }&‘?

These equations are derivable from the Hamiltonian

il

1]
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/ 4 / :
M = (/-'4)/? * (/’~)/O¢,
2 . 2 1/ 2 2 -Q‘z_ 2_2 82 4
+(V"°a/’2)/o+(%é)l%+ ‘/N*/J?-}_ JoN* v,
with B =-.8 and N = 2, it having been suggested (K.R.S.) that this might in

a sense be the smooth-approximation representation of the A-G problem (2).

III. RESULTS

A. Characteristics of Small-Amplitude Motion:

The oscillation frequencies for small-amplitude oscillations were deter-

mined in a preliminary run (#200) employing the linear uncoupled equations

,q&_v" + (184 + .8 cos27 ) P=0

1&" - (.027 + .8 cosz'r)}&: 0.

In this way it was determined that

Ve, = Oxo /T = 0.85907 ,

Vg, = 02./%  =0.2368,

N being equal to 2 in-this work.
In the course of this orientation work the coefficients of quadratic forms
which remain invariant as the motion progresses through successive sectors from

one homologous point to the next were also determined. With
2

K/, = (/§°/02+ ’7/oﬁ//;' # 5ﬁ//‘;2
Ky =8, ¢+ WVE +4, P,

we 5/0:/ 550.—_/
7

e =9 Np =0
/1. 23121 5,, - 8.209755/

and

5/0'—‘
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A diagram indicating the location of the operating point with respect to various

resonances of possible interest is given in Fig. 11.

B. Threshold for ? - growth and Lapse-Rate:

(i) The growth of K 2 representing axial amplitude, is depicted in Figs. 1-7
and will be described in “ft;rther detail later. The character of the initial }ﬂtmotion?
which develops from the small starting amplitude of 10-4, is affected by the /O-motion
entirely or primarily through the coupling term which involves /Oy The threshold
for p growth, and the lapse-rate characterizing this growth when it occurs, can
be estimated 42 by introducing into the }ﬁ‘equation a solution /o () of the uni

perturbed /0- equation. For equations of the form

P'+ &y + b cosNT) 0 = (C/2) (sin N7) P ?
W"+(ay- bcost)?’ = C (sinNZ’)/op"

the threshold for ?'. growth may thus be extimated” as
# 2
= Txo TYo | R
77 mec| (B) (2 %)
16

Ap
- ‘ (. 5407)2=(°4736)?‘, =0.39 ;

8x0.5407x0.8x0.8
this result may be compared with the empirical initial amplitude for the threshold,

/Bth =0.315 (Figs. 1 & 2).
Above the threshold, the square of the lapse-rate is seen to vary linearly
with the square of the /0- amplitude (Figs. 1 & 2). The coefficient of propor-

tionality in this relationship may be estima.tedZ as



MURA-295

/‘(2‘ ﬁz
f = (%)

P f,’-thn
2 2, a2
[N [(Z)-(23%)] o as
in ers ian

len IE -

%)% 7°

_for/4 in decades/sector

_ [ 273 (sh1)*=(#136)*

=00/¢
§x0.315 .54 6

for/,c in decades/sector,
in which we have substituted the observed threshold value of lo for A P thr.
3

this result may be compared with the initial slope 0.0185 of the empirical
Ve 4 vs. p 2  curve (Fig. ).
[The threshold and lapse-rates found here for the DUCK-ANSWER runs are

similar to those found from /42’ vVS. “02 plots of FECKLESS-FIVE results®

obtained for operating points near the 074 o = & G“;f , resonance (as for
"Point @), if O is identified with u/w.]

(ii) The non-AG equations (7) are of the form

P 1//%’“,0 ©/2) yr
iW"*"l/y;W Cllo}Ua

with 7//0 = 0.5407, 2/, =0.2368, and C; = 0.1084. The expected thres-
() [4

hold for these equations may be readily obtained by substituting IO = A P cos

R

it

i

1/ T into the ';0‘-— equation. One obtains a linear equfition of the Mathieu form
° .
with a threshold

-7 -
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in agreement with the observed threshold for equations (7). This threshold :
coincides (intentionally) with that found empirically for the alternate-gradient
DUCK-ANSWER runs and the dependence of lapse-rate on /O-amplitude above
threshold is .found, as expected, to be similar for the non-AG case (Fig. 7)

and the AG cases.

C. Run Employing Reversed Integration:

As will be seen from Figs. 1-7, many of the DUCK-ANSWER runs exhibit
a grdwth of I&' amplitude through some four orders of magnitude, followed by
a decrease through one or two orders of magnitude. Since one may in a sense
visualize the computations as launched with initial conditions corresponding to
a mixture of exponentially ascending and descending solutions of the governing
differential equation, it is of interest to inquire how accurately the comput—v
tional program can follow an exponentially decreasing solution. - To obtain
information relevant to this question, one of the runs; shown .in Fig. 2 -- that
with the initial condition ,00 = - .400 -- was reverséd with initial values
corresponding to those attained after traversal of 105 sectors in the forward
integration. The result of this test is indicated by the dotted line in Fig. 2 and
suggests that reasonable éccuracy is attained when computing an exponentially

decreasing solution through some two and a half decades.
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D. Summary of Computational Results

The DUCK-ANSWER computations for the equations (1) - (7) are summarized
in Table I, especially as they pertain to ?’- growth and turn-over. Information
concefning ultimate instability is presumably least significant for runs based on
noﬂ-Hamiltonian equations. For the various Hamiltonian systems of equations it
is of interest to note that the onset of instability seems to become apparent at
‘smaller initial /0- amplitudes as additional coupling terms are introduced and as
corresponding additional resonances become effective. There is evident a certain
similarity between the AG results and those obtained for the non-AG equations
(7). ’Theré, is less similarity with the non-AG equations (8), for which the thres-
hold for y'. growth occurs at considerably higher initial }ﬁamplitudes (as an

analytic study of these equations would in fact suggest).
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TABLE 1. MURA-295
SUMMARY OF DUCK-ANSWER COMPUTATIONS FOR EQUATIONS (1) - (8)

Equations Run No. /?, Growth, Turn-Over, and Stability Characteristics
(Non H:la.miltonian) 201 -.20 No growth, Stable through 200 sectors
: 202 -.25 " " " " " "
203 -.30 " " " " " "
204 -.35 Exponential Growth
205 -.40 " "
“ 206 -.45 " "
207 -.50 " "
fl 208 -.55 " "
| 209 -.60 " "
2 | 211 -.20 No growth, Stable through 200 sectors
(Hamiltonian) “ 912 - 25 noom M " noon
213 ~-.30 v ”‘ " " " "o 3'
214 -.35 Ch‘owth, Turn-Over, Stable through 200 sectors |
215 -.40 " " " " " " "
216 -.45 " " " " " " "
T‘ 217 -.50 " with variable turn-over, tho stable through 200 sectors
218 -.55 " with very erratic turn-over, tho stable through 200 sectors
219 -.60 " with variable turn-over, tho stable through 200 sectors
254 -.70 " with slight turn-over, but overflow after 75 sectors
253 ‘mrfl%lgiciiixs ( Retraced motion of Run 215 through some 2 1/2 decades)
9 %?‘e%rr-yg ion
291-294 | 100-sector sU % 75 unstable after 13 1/2 sectors; ](/'..70 Stable
-search through 100 sectors
( ( (




3 223 .30 No growth, Stable through 200 sectors MURA-295
(Non-Hamiltonian)
225 .40 Growth, regular Turn-Over, Stable through 200 sectors
227 .50 Growth irregular & erratic Turn-Over, Overflow after 128 sectors
229 ,60 15 ) B B . 4 . ' | 1" 1" 3] 11} 101 1"
4 233 .30 No growth, Stable
(Hamiltonian)
235 .40 Growth, Irregular Turn-Over with questionable stability, tho held
on through 200 sectors
237 .50 " Overflow after 164 sectors
239 .60 " " " 166 "
- ?H ian) 241 .20 No growth, Stable
amiltonian
243 .30 No growth (just below threshold), Stable
245 .40 Growth, with regular Turn-Over, Stable through 200 sectors
]
247 .50 " erratic Turn-Over, Overflow after 169 sectors =
’ [}
249 .60 " no marked turn-over, Overflow after 79 sectors
6 321 .20 No growth, Stable
(Hamiltonian) "o
323 .30 Stable through 200 sectors
324 .35 Grthh, with Turn-Over, Stable through 200 sectors
325 40 " 4] n 1" 11 1] n 1"
326 .45 " with little turn-over, Overfloﬁv after 97 sectors
327 . 50 1" 1 n [ ] 11 1" " 89 n
329 .60 13 [A] 2] 1" 1t 11 1" 77 131




7 258 -.30 No Growth, Stable MURA-295
(Nc;-;la—rﬁi(i';onian) 257 -.35 - Slow Growth, Turn-Over, Stable through 200 sectors
256 -. 40 Growth " " " " " "
255 -.60 " with fairly well-behaved Turn-Over (tho of diminishing
amplitude excursions) through 200 sectors
280 -.70 " with Variable Turn-Over, Overflow after 141 sectors
281 -1.00 " with some Turn-Over, " " 79 "
282 -1.30 " with early Overflow after 31 sectors
00-302 100:sector '50:1.7 unstable after 9 1/2 sectors; }[f = 1.6 Stable through
‘0 search ° 100 sectors °
8 270 -.60 No Growth, Stable
(Nornl;ignonian) 271 -.70 "o " -
272 -1.00 " " " T
273 -1.30 "o "
276 -2.20 Growth, initially at = .11 dec./sect.; Repeated Turn-Over at

/(’” = 2 ; Stable through 200 sectors
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During the course of a computation in which the ZD - amplitude, as
measured by K v exhibits pronounced growth followed by turn-over, the
p-amplitude, as measured by K P exhibits a noticeable complementary

decrease and subsequent increase. This behaviour in the neighborhood of the
difference resonance 0"‘00 - 205 o 0 was less immediately evident in the
corresponding FECKLESS-FIVE runs, 2 but is suggestive of coupled motion
governed by an energy integral. ! The relationship between the /o and Iﬁ
amplitudes, for a couple of examples based on the AG Hamiltonian equations
(2), is illustrated in Figs. 8 and 9 by linear plots of amplitude vs. the indend-
ent variable {. Figure 10 illustrates the relationship in such cases by a plot of

S&'-amplitude vs. /o- amplitude. The trend indicated in Fig. 10 suggests a
slope d (A YJZ) / d (A/g 2 ) = - 3/2. This value may be somewhat mis-
leading because the amplitudes employed here are determined at the center of a
radially-focusi‘ng region, where /0 is large and V small. For points at
which the Floquet amplitudes assume maximum or minimum values, however,
" Symon has been able to employ Moser ‘cheory8 to obtain a simple expression
relating the changes of squared amplitudes to the ratio of the ''phase function"
derivzautives12 at the point in question:

d(As¥o _ _, I#0lo
’ .
d Mf ° Bﬁ 7"]0

For a non-AG case near the 07; = 2 Oy resonance, this formula would gii'e
a slope -2 z/'o/gjy, = =4 in agreement with the result -1{0 2/2/,/,2 = =%
expected from the constancy of the energy; in the present instance ¥ d may be

13
obtained conveniently from tables a,b

and we estimate [? ;, E psz g,
=0

- 13 -
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- ‘|~ 2 F2
|:¢ V/] = 0.35’ to obtain d (A )u)/ d ( A P ) = =/ 7 in reasonable agreement with
t-0

the computational results.

IV. DISCUSSION OF STABILITY LIMITS:

Before attempting to comment quantitatively on the computational results
pertaining to stability, it may be helpful to summarize the properties of the non-
AG equations (7) as determined by the energy integral which exists in that case

[Section II (7)] . The potential-energy contours for this problem are sketched

in Fig. 1% With V/o = 0, motion with | /Oo ‘ > 0.5166 is energetica&_able’ to

exhibit instability, as is motion with /%, =0 and | Z ' > 1.18. For motion
which commences with “0; and 100’ equal to zero, /007 ¢hyr, =0.314
represents the approximate threshold for ;ﬁ'- growth, below which stability might
be expected to obtain wit}}out appeal to the energy ir;tegral.

The computational results for the equations (7) do not, in the course of a
200-sector run, afford any clear evidence for instability of motion commencing
with /ao = -0.60, nor does a 100-sector }P‘- search commencing with/g = 0=
and- ?; = 1. 6 reveal instability [Table I] . These observations may lend
some support to the view that computational runs of this duration are inadequate
to reveal eventual.unstable behavior of a conservative system which, it might be
expected, would have access to all portions of phase-space which are energetically
permitted.

With respect to the Hamiltonian AG equations (2), the computations begin
to indicate a somewhat variable turn-over of Y"—growth for /% between -0. 45

srd -0. 50, although instability is not definitely revealed until /g exceeds -0. 60

- 14 -
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in absolute value and is given the value -0.70. A 100-sector Iﬁ- search
indicates the onset of instability for }&; between 0.70 and 0. 75 [Table I and
Fig. 2] . The values cited here apply, it may be noted, to the coordinates
as observedat 27 =0, mod. 27 -- i.e., at the center of a radially-focusing
region where the A- amplitudes may be expected to be a maximum and the ?’-’
amplitudes a minimum.

It is tempting to imagine that the stability limits for the AG equations (2)

can be simply rélated to those applying to the non-AG equations (7) having the

same small-amplitude osecillation frequencies and the same threshold. If the co-

efficient of the cc;upling term in the AG equations had a constant component, or
even if the coefficient ‘céntained a component in phase with the cos @ term which
appears :in the linear portion of the equations, there might be some basis to |
support this contention. In the study of cases involving a non-AG coefficient in
the coupling term Dr. Parzen has observed a decrease of oscillation frequency

as the stability-limit is approached (" @ = 0 resonance"), a characteristic

which would be expected for motion in the non-AG case when traversing the '"pass’
in the potential-energy surface.

In the present case, however, it is observed that the oscillation frequencies
of solutions to the AG equations (2) do not decrease as the stability limit is
approached, but in fact appear to increase. The presence of the additional
resonance Gp + 2 0‘? = 2 7C (sum resonance) would suggest a mechanism

TR0t |
whereby true instability might arise, but direct substitution into a simple

2
formula for the threshold amplitude attributable to this-somewhat remote

resonance leads to the rather large amplitude 2.2. An interesting possibility

- 15 -
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suggested by the nature of the computational results is, however, that O? and

loff @ are "pulled' together, in the ratio 2:1 towards the values 7 and 7 /2 which

represent the interesection of the O-F -2 oy = 0 and 070 + 2 Ty = V4
resonances.

One method of estimating the effect of the intersecting sum and difference
resonances in producing instability has, accordingly, been suggested by Parzen.
In this method the simple formulaz’ 6 for instability-arising‘ from the sum

resonance,

) ]( ) (O'yo

= AR
P Lo 4 4

is employed and 030 assigned the value 7C/2. For the equations (2) with which

we are concerned here, this procedure leads to

4 4 | (.25)% - (new)?|
hLn™ 0.8

an approximate equivalent to this formula, based on the supposition that O‘yo <<

4 =077 ;

oys = W/
' = ﬂz = '7(:__.1 - ]
A/f b = ¢ Zxoe —1RS5.

Alternatively, what may be basically a similar approach is afforded by the
observation that solution of the equations (2) is approximately achieved by

harmonic balance with expressions of the form

LP=A [ 5. ]
[‘c:(%g)*--]‘

- 1€
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Specificaily, with the trial expression for }b’

_ - .
14 ‘-B/M‘Z—Q*Bz"“"—f‘m

/
one obtains

Ap e, = /35

and the approximate formula

z
A. ~ ON 9x4
Phlien. = 56 = 32z08 ~ L4

These results for estimating the stability limit for equations of the form (2),
while showing fair agreement between themselves, appear to overestimatg
somewhat the stability limit indicated by the computations. [It may be noted,
from Section III B, that the analytic estimate of the threshold is also high (by
some 20 percent);, It may be, however, that further computational studies
will bear out the approximate validity of the general form suggested here for
the stability limit arising from the 07‘9 ’20’050 resonance in the presence of

~
—

the O‘);o-f' 2 oyo = £ TC sum resonance. The simple formula 4/9 L,
>
3
N 2/ ( ;;c)’ when expressed in terms of parameters characterizing a spirally

ridged accelerator, would read

Ap b, = 5%
S e S F G2y -
In closing this report the writer would like to emphasise that DUCK-
ANSWER runs in which integration of coupled differential equations is carried
through a few hundred sectors may provide a rather poor estimate of stability
limits. This view is suggested firstly by the failure of runs made with the

ron-AG equations (7) to show instability for starting values as small as those

- 17 -
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which would suffice energetically and, secondly, by the variable or erratic turn-
over exhibited by solutions of the AG equations (2) which none the less persist
through the number of sectors prescribed for the computation. It accordingly
may be informative to examine phenomena akin to those with which we have been
concerned here by means of algebraic transformations, as is possible with aid
of the ALGYTEE program. %10 It may be noted that preliminary ALGYTEE
computations for a problem similar to that described by our equations (2) have
shown11 in the course of 100, 000 iteration runs a very marked erratic fluctu-

ation in the duration of runs made with initial values near what may be supposed

to represent a stability limit.

- 18 -
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Fie. 2. TREND OF W AMPLITUDE
FOR THE HAMILTONIAN COUPLED EQUATINS
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TREND OF ¥ AMPLITUDE . - , Fis. %.
FOR THE NAMILTONIAN COUMED ' EQUATIONS .
48 = (184~ 8cus 2T)P + H(sin 2T)F?
S 2027+ 8cs2T)F + .8(sin 2T)PF +(860)(ees 20) %
0

with ’;'t

Gy =.SHOTX Oy =.2368 7

RESULTS OBTAINED WITH DUCK-ANSWER PROGRAM
WITN INVARANTS = MURA LAB, MADISON

0 T T T T T T T T T T T T T T 3l

T Tl

>
b

T

1o

TV TTrT

ol

Vi

]

o

[ N

1
i

LI |Tl|[1[ 0 T 1 1T 11T

LN R B I IR S

rryitl

107"

Urrrry

1077 . R S R g
el T | | I | — 1 1 1 1 1 1 1 1 '} 1 - :l
0 10 20 30 ¥o 50 60 70 8o 90 /00 7] 20 /30 160 ? /80 /90 - 200

/'
Secrons TRAVERSFD ——



TREND OF ¥ AMPLITUDE

FOR TRE NAMILTONIAN COUNED EaVATIONS
48 = (184 -8es 2T)P + . H(sin 2T) 2~ #less 2T)PF*
4R =(.027+ 8cs2TIF + .8(sin 2T)PF - #leas 2T)P* ¥
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TREND OF ¥ AMPLITUDE Fi16. 6.
FOR TRE NAMILTONIAN COUPLED FQUATIONS
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TREND OF ¥ AMALITUDE Fis. 7.

FOR TNE NON-AS COUPLED NAMNTONIAN KEQUATIONS
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DUCK-ANSWER RUN 215 FIG. 8.
(R = -.400)
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