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I. In roduction

This paper is a continuation of the report MURA-258, hereafter referred to
as report I. In the previous report we treated the problem of finding the equilib-
rium orbit of a particle moving in an accelerator having an arbitrary magnetic
field. The problem we will treat in this paper is that of obtaining the linear equa-
tions for the oscillation of the particle about the equilibrium orbit, and of solving
these linear equations for the motion and tune of the particle.

The linear motion problem has been treated previously by T. Ohkawa for a
Mark I machine and by F. T. Cole1 for a Mérk V machine having a small flutter.
The more general machine is being treated at present by F. T. Cole. Our pro-
cedure and results differ from theirs in that we will attempt to obtain an approxi-
mate solution which has an accuracy of 10 to 20%. This will allow us to make
approximations which will simplify the equations and will give us a simple general

solution.

II. Summary of Results

In this section we will simply list the results for the linear equations and
tune for the general spiral sector accelerator (Mark V). The results for the
general radial sector machine (Mark I) can be obtained from these by putting
1/w = 0. We will give the derivations in Section IIl and IV. In some cases, for
the sake of simplicity, the results listed are not quite as general as those found

in Sections III and IV.
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The median plane field for the general spiral sector machine is defined by

ke L
He= = (L) < he € ! 2.1

where (/«)h = i N n=oo T !". 4. and
) / 1
q) — {';) - — / \ g, .
’ A N " (2. 2)

The r-tune is given by

Va N i '
Fpas ot ] i :
T A N il |

Py _ 2,
= bho At b s LA T

Vo
T 2 T n
/4 N =y " N (2.3)

where b is defined in I as

b = —- /,j :* + S5 /)
Il'.:. N / (2. 4)
- 1 !“: ‘. _|
and /E e L././r""« v s l | hrl / wu-.»l ,’
nzv o -
The z-tune is given by
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- R e ' :
(vz> = o2l 5 by — bhe X
~ N N2 2 fre s
P S
+ 4> o
A Z ..r{,‘l_,"’ - Hia i . (2 5)



MURA-273

The above tune results are obtained by using the smooth approximation.

The linear equation of the r-motion is given by

M" + (F. —9(53))/1/1 =0 (2. 6a)

£.= bho K3 2 b2 s K(K+1) ‘!m-‘l/,w& /Ah/:z |
N* nz| N N | (@ eb

3” - -} U(..H)—-z H/A/V" },’
N> 2
/\/ : (2. 6¢)

where = “i QXPEZ (Vl//t»«/")/z’h (R/P3J Note

that bhn = L\" when 1/w = 0.

The linear equation for the 2 -motion is given by

4+ (B -Fw)y =0 2. 7a)

E-oav s T - bk K
/\,z N h?l N.’z,_
o s k= T e
| % S el
Fn — |, K=-in/es |
Na N> hoo. (2. 7¢)
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The r-motion is given by a linear combination of the solutions /up and
M g‘ of Eq. (3.6) and ,Uy is given by
ty® ¢ W, &
Myle) = @ I - an 1 &
h#o w2 I % | (&8

Similarly, the floquet solutions of Eq. (3. 7) are given by

(Ve £ L W B
Myie) = € | — 2 » o (2.9)
Ww,* 1+2Y
: h#o h 5 :
]

The floquet solutions given are believed to be good to 10 or 20% for

W/v)< . 4

III. Derivation of the Linear Equations

For the sake of simplicity, we will carry through the derivation for the
general radial sector machine (Mark I). It will be clear that any other magnetic
field can be treated in the same way, without much change in the procedure.

First, let us consider the radial oscillation. The equation of motion in

the radial direction is given by

d Y\" .,...—r ::'.E.

de \)ra+ r|3~+‘203~ \/ra +Y'°‘+ 2,;. / (3.1a)
where
E Pe (r'H* /7/9 . .10

-5 -
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We wish to expand these equations about the equilibrium orbit. Let
F =Yz (8) represent the equilibrium orbit. Vg (&) has been found in
I. Let Vs = RO+ X ) then x is given by Eq. (3.14) in

Ias
h LW, &
)
whl ' ' (3. 2)

X = I"Z

h#o
Now let us introduce the variable f’ which will give the displacement of

the particle relative to the equilibrium orbit. /9 is defined by
- ' 3.3)
r=1+p - @5

'We wish to expand both sides of Bq. (3.la) in powers of /A and in this
paper we are interested only in terms linear in F .
The expansion of F,. in powers of /0 up to lihe_ér ‘t_érms_ in rD is given

by,

R:Toe_:.{er—l- (H%+YH2,;»)(0+»-'%J (3.4

where the coefficients ¥ Hz and ( H;_‘ + v H 2, » ) are evaluatedon the
orbit where r = Y‘s { 6) = R ()+ X ) . H;_L' o means
D Ha / & ¥ (See Appendix A for the derivation of the expansion of F‘,.')

To expand the left side it is convenient to rewrite Eq. (3. la) as

4 2L 2L o F (3.5)

48 2y’ & F
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where

Let us expand L in powers of [-’ and /’«"" . The expansion of L up to

quadratic terms isl

o 2 / . /2 3.7
L=+ dhpr + & a4 f
. b I * [
t L,z |
where -
: 2
' ,  -/ : | ~ (3. 8a)
q,= -rr' /L _
"L o o ) g (3.8b)
a. = r / L,
| 3 (3. 8¢c)
a, = /L .
‘ ’ (3. 8d)
The coefficients a.l az} a 3, de are all to be evaluated on the orbit

which means we put Y = Y’/@3 ) e \4" R, ) Z ¥ O . The
linear terms have been dropped in Eq. (3.7) for L as they do not contribute to

the equation for /"

Keeping up to linear terms in (° , we find that Eq. (3.5) becomes
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Ay £+ 43" P+ (43 - a,)lo:% (Hatrte, )P, o)

Eq. (3. 9) is the linear equation for the radial motion and is true for any

magnetic field. We will now specialize to the radial sector field,
- K .
H2:°H(Y/r'> hZh,, GXP(l W, 9) in the median plane.

For the radial sector field, we find that

Hywrthr = =H (£)0 2 (+0K (e by @77
A | ",] - (3.10)

| . | LW, B

_H(,Yﬁy\ p, U.}.K'x) (}(-H) "’h - '

L1 .

\ A
h

In Eq. (3.10) we have used the condition assumed in I, that K<<
The terms in the left side of Eq. (3. 9) involving £ and P ' turn out to be
small. (See Appendix B). The coefficient 4 3 may be written as

a32 /v ¥ 1/R by using Eq. (3.8c) and remembering that ¥ ‘<<| and w<< |,

Thus Eq. (3. 9) becomes

U'f -+ n’l‘/g) M =0 / (3.10a)
where M= P/R  and
heie) = b ? C1+ kx) (K1) hy @ " (3. 100)
| We can also write Eqs.(3. 10) as
u" "l"(Eo‘ - 9(9)) M = O,  Gua)

-8 -
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Z2 = bhe(ig+)) a5 K+ |h|?
— h n
N* N> : n%o N7 rralll (3. 11b)
’a" = —bh (K.-H') _L&Z K (Kt L]m Iﬂh-m . |
N* N* = son N m? (3.11c)

The 9h are th¢ coefficients‘fin the »expan‘zion Cé s = :‘? j n exp (_[ W, s) N

Eqs.,‘(3. il) are the équatiéris giving the. linear radial "r.notic'a-n,wf Theycan be k

solved to give the r-‘tune and the r-mo’vcion.; The Second term in Eq (:3:; vl,llc;)‘-‘:for‘f‘
%n [N?  can us_uall_y‘l'je neglected. :

~ We can find the linear ‘equation for the % '-_n.io'tiori in‘theyis‘axbnéf wia‘,\y;. The s

equation of motion in 2 -direction is

4 z = K (3.12a)
Ag\)ra+r12+?/1 / .

where

- = : .H. ___Y.H |
}‘e-v —:—:(V & | ") , (3. 125)

We wish to expand Eq. (3.12) in powers of 2 . The expansion of Fz_b in

powers of 2 uj) to linear terms is given by (See Appendix A)

R = E—i—-}&— H?.ﬁ‘ - r H;_,,,} 2o+ G.13)

-9-
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where the coefficient of 2 is to be evaluated on the orbit where r=r(e) and
2 =0,
To expandv th. left side of Eq. (3.12) we rewrite it as

4 2 L =K
T 2z ' (3.14)

and use the expansion Eq. (3.7) for L. Thus we get for the linear equation of the

Z- -motion

0,2+ a; Z=e (L, = Hev) 2 . 5 15

P r ‘21.‘9
Eq. (3.15) will hold for any magnetic field. For the radial sector field we
find that

A?*" —~rH = _pR\K N S W, B (3. 16)
¥ ,H%,‘Q ar H(‘—J hZ x'[H'X) "‘Whj"ne T

t‘ Wy,&'

“',H-(—"’;‘)KZ k (1+)5 b, €
_. n |

The term on the left side of Eq. (.135) which is linear in 2’ may be

neglected (see Appendix B). The coefficient Qb > 1/ ) / R .
Thus Eq. (3.15) becomes

(3.17a)

M+ ‘V)A,r) (67 M= 0

- 10 -
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~ .
where /"a - 2/ R and
~ W
thlo‘ = b-z v X1+ (D) %] ,lﬂ,,(? " & (3. 17b)
h .
- b Z K (1 + k) hn @. w, &
h R
We can also write Eq. (3.17) as
N+ () -fi6)) » =0, 5 180
where
F, _ b 2 3
= 2 Jhal®— 2 3 Ll n by b
- S mMem s s Wm W 9‘,
homme o
. ‘ ‘ 3°
_bho kLA Z L&/l 2 (3. 18b)
| /\/a_ | v bR N
— h-m o
fﬂ_ = _19__ Z o L’m.l‘;m-m
N> N?* ::ﬁ o , | . 180,
m+mi+tn h w”‘ w"?;“ .
_ m,m,miden
N N S S B
:/\/:‘ : :: }ml N‘/
o~

The 'Fn are the coefficients in the expansion 7‘ 9) = 'hi 'ﬁ, % W, 9) .

-11 -



MURA- ¢73

!
Some of the terms in Eu and 'F 1 are usually negligible. We can

!
usually drop the third term in E o and all but the third term of 'Fh

If we drop these terms we can write,

E' = b s lhal”

__n7_. e (3.19a)
2 m+o '
bk b ket K
n* m¥s M* N7

|
|

(3. 19b)

Tune and Floquet Selutiems of a Radial Sector Agcelerater

Eqs. (8.11) and (3. 18) are the linear equations for the r-motion and the
2 -meotion ir a radial sector aecelerater. We will now use these equations to
find the tune and the fleguet selutiens.

First,‘ let us find the tune of the radial metion, )/7 , which is determined

by Eq. (3.11). The r-tune, V), , depends on E; and 3h according to

there]:aﬁ):icm2
2 A
v({l) = E +a2a35 |2 L (3. 20)
N /Vl mz' ,\‘1 na /
where % 2

-l2-
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If we puf o( = / ~ in Eq. (3. 20), then this is just the smooth approximation.
The coefficient o gives about 10% correction to the smooth approximation. Eq.
(3.2) should be valid for Y/ <X .4

If we substitute the values of E 5 and j w givenby Egs. (3.11), we

find for the r-tune

IS

o(()l,;)"‘: bho K+ L 46*7 (k+ Ck+) [, | (3. 228
N o NE Nz }/\/2;_. e J
_(N"“")Q H’)m)
I ? b Y)Z7) N n‘f (3. 22b)

In the same way we can find the 2 -tune. The 2 -tune is given by

it (Zi‘-)~l—_—a£ > ha|® = bh K @.250)

N

"’o<2‘ = )—- g 'LQ > K I (3. 23b)

-13 -
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The r-motion is given by a linear combination of the solutions M V and
*
M v of Eq. (3. 11) , and is given by2

L W, B

My = Lw}{l_ i L R § (3. 24)
n:to | '

The Z--maetion is given by the solutions A{)V /\9 3" of Eq. (3.18) and
/

the la.v are given by

- (3. 25)

_ ol Vs |
/?'Vf e Z W"“ )4-2)//4‘/,,,67 . .

IV. The Spiral Sector Accelerator

So far we have treated ohly the radial sector field (Mark I). The deri-
vation -given emxld be applied, without very much change, to any other mé.gnetic |
field. We would like to indicate, in this section, the derivation of the linear
equation results for the spiral sector field (Mark V) whose median plane mag-

netic field is given by

K Wy
H%:-H({T> % }\H.@ h ) (4. 1a)

P=6 = ”z"‘({'—’\)

(4. 1b)

- 14 -
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It turns oui, that most of the results for the spiral sector field can be
obtained from the results for the radial sector field by making a simple sub-

stitutuion in the radial secter results. This substitution is given by

ks hn i K"Z'h/"""f E,, I (4. 2a)

where

(4. 2b)

~in /)l (v /7))
© |

o=

and S is any integer 0, 1, 2...
To see how the substitution appears, let us rewrite the spiral sector fiéld |

as

.v #} .y (—E)Khj(’ +9().K~M/Wyll:nf‘i Wi 9‘ | (4?_3)-

MEq (4¢3 wehaveput ¥ = RCI+%).
If we cdmpare this field with the radial sector field given by

_H%T'H(Q)KZ(H-Y)K »@?‘Whg (4. 4)

~ we see that the latter can be obtained from the former by letting K - K=thju
kn _— l”h -+ in the coefficient of exp ( ! W, e ). If one looks

through the derivation given for the radial sector field, one can see that the sub-

- 15 -
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stitution rule Egq. (4.2) will hold; though not in all cases.
Using the substitution Eq. (4.2), we can new find the linear equation for the
spiral sector field.

From Bq. (3.11), we find the r-motion equation

A 4 (Ea-gie)) M= o, (4.52)

£ = bh (;m) 25 mm T /A 2

N N P /7 1 / (4. 5b)
L L - N/
oo bh, &) .
N . N 2 | | | | (4. 5¢)
In Eq. (4.5c) we dropped the second term from Eq. (3. 1llc)
From Eqs. (3.18) and (3. 19) we find the y-motion equation.
W'+ (E=Fr)y =0 (4. 6a)

- 16 -
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E,I _ b o
_N'{. - aﬁig,\h”l Lko'/':/—v_ (4. 6b)
s kst )0
| /
Fooo Lh K-iner
N | e ] (4. 6c)

Now we apply Eq.(3..20) to the above linear equations to find the tuﬁ_e.

The r-tune is thus found to be

"(v(_\ﬁf_);: bhe Kol o qbrS Ef.‘:’.i‘_”_*_‘_/A I

s . (4.7a)
N /V | I NVF na.]

Ay = 1= PEE LTl I |

h?| N7 ny = (4.7)

Note that the ‘substitution rule Eq. (4. 2) should net be used to find the tune.

The 2 -tune is found toe be

78 _
§<7.‘- (‘/‘y"> —_ /V g “lhl L }70 7’5.1 (4. 8a)
| rerZ o h]?
M2

- 17 -
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o K2+ /™ ‘
O<a.:,— 21;12 N‘/ '/""A—"?'—/'- v . (4. 8b)

The floquet solutions are given by Eqs. (3. 24) and (3u 25) except that the

j” and ﬁ are now given by Egs. (4. 5¢) and (4. 6c).

V. Comparison with Numerical Results

In this section we would like to indicate the accuracy that can be expected
with our linear equation results. In report I, we found the equilibrium orbit to
an accuracy of 10 to 20%. Since this result for the equilibrium orbit was used

in this paper, we may expect the same sort of accuracy in the linear equations.

To compare the theoretical results with the numerical results, we will

calculate the tune of twb radial secter machines.

Machine I is defined by /V:JQ/ K=%, he = I

l,.:},_v, =3/ and \Jar = o.

Machine I is defined by /| = (qu /(-'—'/S"?/ l?°=0

.I‘h: 1’-1: /2. and 1/m~= 0.

| Comparison of theory and numerical results is given in Table 1.

-~ 18 -
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TABLE |
Machine Theory Nimerical Resul s

Vy /N . 306 . 357

I
Va / A 118 122
Vi //V 302 3205

I '
Vo /N . 885 . 9715

Eqs. (3.22) and (3. 23) wer used in calculating thé tune. The 0(7(

o< 2 factors in this equatien giv a cerrection of about 5% te the smoeoth

appr 'ximation results.

The numerical results for M ch ne II aredue to T. Ohkawa -

- 19
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Appendix A

In this appendix we will deve_op the expansions of the force terms F. and
F, in the equations of motion. Let us consider F, first. F,. depends on the

magnetic field according to

ﬂ:fz(ryf-?’f?’a),

(A: 1)

Thus to obtain the expansion for F,., we need the expansion for I 2
and He in powers of /o and 2
The expansion of the magnetic field around the median plane, in powers of
Z , has been given by Akeleya. The expansgion of H;_ in pewers of Z is

given by

- - 2* o \
Hey=craz + 62 w62

where

C, = H, A

c, -\ H,
(A. 3b)
e}
- - L
Ca - Qvt Hz
! (A 3c)
C, =+ V° A
3 e "t (V* t>' (A. 3d)

.- 20 -
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In Eqgs. (A. 3), the coefficients <, are all evaluatedat Z = 0 and the
' -

<, depend on X and /‘9,) oron I and & . A‘t is the component of

the magnetlc field perpendicular to the median plane, the . Z2 = 0 plane,

—

vt is the operator ’L 2 Jax + } R e T Since #, = o
for Z=o mourcase then <&, = (, = O.
The expansion of ﬁt ()( E :2) in powers of 2z is given by
-_— . .
: . - - — - — 2
Ht ()(n;,a) =d,+4d,z =+ A4, Zz -+ ag 2 400 (A.4)
where -
/'/ﬁ , | | (A. 5a)
= Vil
- . (A. 5b)
-—
A
—
— -
g, =-%V,
' (A. 5¢)
7, = -1 V(Y )
= _ 2 /),
3 6 Tt (A. 5d)

—

In Eqs (A.5), the coefficients 5( are to be evaluated in the median plane

— et

at _?1'0 . Since ﬁf for Z2= O .,Clo = (ji = 0.

- /

HY‘ and H 5 can be found from Hﬁ by taking the radial and azimuthal
-

components _ofr. f/t . /7/ r and Hg are given by.
-21-
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J (A. 6)
- 23

= d,e 2 -+ agra Z7+. .

Hg > l (A.7)
where
d,, = H%r , Q'& = (I/V‘) Hg)g} A. 8)
- __‘_,_ X

e = "T % (v* H > (A.9)

Uy = O/r (vt B, @. 10

So far we have expanded the magnetic field in powers of ¥ . We must also

expand around the equilibrium orbit V" = Y; (9): We get then for /'/é
/

keeping only up to quadratic terms,

Hg.: (C0A+ Co,rF"f";i-Co'Vw (oz>+‘ C2 z" (A.11)

H: + ”f.r/”-f-;t//;,w/’z—; V;He 25+,

- 22 -
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where the coefficients in the power series are to be evaluated on the orbit where

r="v18) , 2= 0
Similarly we find for Hr ,
Hr= (alr + a.,},.,o )2 +. (A.12)

= Hi,r} + Hi‘,rr pz+.

We find for /7‘9 ,

Hp" (gl" + a";?‘ /@72. LA
Tt 2 K (EHhe) PR

=t 2 + (f\# Hga:}»' =%, Hep) P2+

(A.13)

We can now find the expansion for- Fr , upto qﬁadratic terms, by putting

the expansions for H;‘ H r H9 into Eq. (A.1). Thus we find for F ,
/ ¢

O L L P

- 2! [-\);, He}a'?' -+ (}L- Ha,slr —}l-z. H%,s) P2 j""" —)Z
_‘ . ‘ (A. 14)
Prg e e
F(E b+ o) * = £ g, 20

TR 22 4.0 3 |

. - 23-
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Inthesaméwaywecanfind E < @/PC> (}’ /-/9 - r Hy)/
FQ':‘;‘;?(Y'-H") E—# Heop 2 + (‘%— Hepv ~pu He,e);”il]

| ‘(f_\_r,)- (H?,r? -+ H‘Q’yy- Pe) +, . } (A.15)
F?: 'Fez- g (—E Hé'& —Y.H?’Y‘B%

+[%(H},9V -J;- H%g)"rH?}kk —H-‘g\)r F??
the 2 £l

One should kéep in mind fhé.t the coéfficients in the above expansions for

The above expansions are correct up to quadratic terms and will be used in

in £ and 2  should be evaluated on the equilibrium orbit.

discussing the quadratic non-linear resonances.

-2
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Appendix B

In this section we will discuss the neglect of the linear terms in P! ) [° and

in linear Eqs. (8. 9) and (3.15) which arise from the expanding
-

2!
‘L N

Lo‘:‘. {\ri_\_Vl +2I'\— ‘2.‘

Let us consider the r-equation first. If we keep the (’ and /’ g terms in

Eq. (3. 9) then the equation becomes

A+ (E -3 )m— 3" (6 YU = § 7 4'=0 @D

where : , '
- Y
g"(p) = —I-'é- Y / | (B.2)

B N DES S EARE LAY ®.9

9 m/&) and | 3.@') / @) have the fourier coefficients

, 3-4(;‘)/N1 = o ) (B. 4)

g9y = ew,,//v"j

9PNt = e,

o (B. 5)
S gy e 5 O ae b hiem h
- ' T — =3 b hn
| h //\/ = 2P 5 3 m{: o + o } ’
o Y2 h

- 25 -
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It may be shown that all the results we found in the repbrt for the solutions

and tune of the linear r-equation will now held if we make the substitution

Y= &+ % 3 (B.6)

This can be seen by repeating the derivation given in report MURA-200,
including the new terms.

For small enough K or & , the above substitution may make a
considerable difference in the results, but usually these terms contribute about
10% at most.

Similarly, if we keep the 2" term in the 2 -equation Eq. (3.15), the

Z -equation becomes

HA}N _’, (EO'-'F/9)>/*3 - -FM/Q)/?'-: 0 ) (B.7)

where

(B. 8)

1) =+ (' + R

1
'{ (9) has the fourier coefficients

'F:J /Nz':' c (B.9)
K = b i b b hy

-NB.

- 26 -
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Again all our previous results for the solutions, and tune of the 2 -equation

hoHd if we make the substitution.

| ":h——‘? ‘g + 2 }/2_ ';CHM . (B.10)
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