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,N HODUC'r lUI, 

Tl"f' l-!resen t r ppor 1 ;s ,fjncerned \~jth certain phenoHlenc-; pertaining to paJlj(':e 

rnot ion '~'itr, 'wo degr ees of fr (',,'dom jn ;; spi,,;: ly ridged FFAG ai celerator with 

program 1 ,1m ng tYe spr :ng ,-"nct summer of )956 ~ Briefly the behavior to whi'h 

we direct, our ,)"'pn+10n i-, ~in exponential growth of the amplitude ofaxi::tl osejJ1a 

tionc: from ve'y smaL irutja] amplitudes" when the structure is such t,haf th· 

oscilbt:io' L'p'1uencies 2ie in the neighborhood of certain "coupling re~onan('es!l 

Tbis"y gro~~r II appears to be the more rapid the greater the amplitude of the 

radial mo; Ion ':l bove a certain threshold and more pronounc ed when the oper ating 

point is flE:D T' • '-,f-' resonan'~e in question 

When tr,e controlling resonance is that for which U;~.z~ for example 

the exponf-n't"~a] growth may be found ultimately to terminate, at relatively hrge 

y ampJitudes If the ampJitudl:' of the radial osci11ation is not too great DespIte 

. he posslble ter rninarion or "turn· over II of the exponentia 1 growth in cer ta in 

cases, however. 1he gl'oW1:h, suggests a certain er gadic aspect of the motion iind 

deserves serious recognition by the machine designer due to the possibility t-'-<lt 

·.his growt:-, m<lY lead to ultimate instab.hty through the mec!';ar.ism of otrH~r in­

herent or imperfel. ':lOn resonances 

• The greater par~ of the work r~ported h.ere was performed while tte authors 
wpre asso'~lated with the MURA group at the University of IUinois Urbana, 
.. llinois ,witb joint assistance from the Nationa: Science FoundC1~:on and Office 
of Naval Research. Use of the ILLIAC was made possible through the cooper­
ation of the Graduate College of t,he University of Illinois 
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Jt is the purpose of this report t.o present compUlrttlonal results penuirlJng 

!o these inherent \SeClor) couplmg resonances, with emphasIs on the amplitude 

range where whatever growth IS present does not terminate, anci to describe the 

result f': of t.heoretlc.1 j analysis intended to account for such results The experi­

mental study reported here was substantially confined to structures for which the 

fl utter fae tor measur mg the amount of sinusoidal spatial modulation of ~he 

lcedian-· pid.ne Leln was 1/4. Through historica 1 accident the computational work 

evolved so ~1.E; to concentrate on filOdel- sized structures with N=-;5, although i' 

mIght have been preferable to have employed the "cleaner II equations charac 

teristic of motion in large-scale structures *' 

C.	 Methcxls 

Ana:ysis of the results was aided by computing, once per sector. the 

quantity	 Ky. whic h is the square root of a quadratic form which remams 10 

2 
var iant for l1near uncoupled motion. This quantIty was taken to be 

K - (~/ + 7Y/f ~ (/22) ~y 

I ~/(AB) 
where, in terms of the matrix CD which carries a particle through succes­

2
sive	 hectors from one homologous point to the next. 

A-D?;:;~l 0- B ) 

The coefficlents ~ i 7; ~ as well as the oscillation frequencies were deter .. 

mined by preliminary short small-amplitude runs Physically> for linear 

uncoupled motion, Ky represents the maximum value which y can attain at 

T As Parzen has emphasised, 15 the use of low values of f (sue h as I! 4) is 
also heLpful in suppressing "non-scaling" terms 

- ':/ ­
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j, ~ ~ '.;:' , fl \' 

:3 
eqlla 1j,)[1 fur' y wLje l~ ~,1 e ] irH:'ar in the dependent val iable y but 

iDVU Vt' ttx ,'cHl c: t • uordinate u measured WJb respect to tne stable equilibrium 

Suitahle ")o:utioms of an approximate (usually linear) differential equatiOJi 

for L obtaltlej on ~he supposition iila' y~, O. are introduc ed lllto the coupling 

terms ()i' th· ,v equ8' [Cln t.O ob1air:. d ; inear differential equation for y with (0­

effirie!l:t., d'\(l;\,"g :0'1" Thf' ['E'nod u!' 'be structure and that of the radial oscil­

lation~ Tbic.; jn~l();\u(!ion in a nOr! Hamiltonian way of what is taken in effect to 

be a .ETe~L.'.,r!..I.:..(J u motion was onginally suggested by Walkinshaw
4 

and appears 

be entirely defl ','ll:->lrle when the y amplitudes are as small as those obtaining in 

greater pc'Lrt of the }Jresent work Since '()Upl1:1g terms are actually also present 

the differentia; eqLdtlOn for u, )t must be acknowledged that the development of a 

Ld'ge CilYlpI1tude:.. os, jj;Ct'ion Will "react bal k" on the u motion, in sDecial cases 

where operaiion LS sur,stantially exacL y on the '-';'< 2 at resonance dnd y'growth'C 

8r:cording]y ( an be acbieved WIth sma}}· amplitude radial osciJ1ations. the gro....1:h 

of Ky has been seen TO be uItimalely :iCC ompanied by a noticeable dec rease of the 

correspondIng K ThIS last~ named «omp] ]cation, however is ignored in the x 

rellJaillder of th:s repor't and the results are ta.ken to apply to y growth in its 

mitia; stages when' the amplitude (an be small 

Subsequpnt ly considerable attention ha s also been given to the question of 

employing perturbation methods slmilar to those 

applied m solid, state physJC S, and by Symon, using the mathematH'al methods 

developed by Moser 17 and applied by hlIn to problems of planetary dynamic s 
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The stud,'t of , 

treated ,n ~hi,s reporr and whi, t: iJermit foLlowing Tl:e p'i.rticl€ for extended pef:0ds 

'''as ,H:-'U 'f'! e ved ,omput'dion;. "t':ention p,rpnt~y and Dr ~;)'mon hrts fad fH,me 

A 

, W 'k' ' "n-- ,"c'i: of'a" f" " t t- t 'd .'Ii dA ' ~lnear y equa, lon SlnUJa r 0 "la (OnSi,nonaw' S -:l.,.d ,.y iH'., erect 

m tbe pn'sect report contairdng the prescribed u-solution as weD as (oeffie lent::; 

wlth Ill€, pf'clOd of the magnet structure a type of "smooth apprOXlnl<ltion': if; made 

to e,i lmln" 1(' Ir,e t er m~ ':It .: Gluparatively high frequenc.Y whii' h involve the strudlJre 

and to U[nalD tIIf-:;reny a Mathieu equatlOn with coefficients baving the penod of ,he 

We however, suggesi an alternative method of analyEiis 

imagining tIle t 'NU periods to be commensurate in some very large interval and 

examining questwns of stability by methods generally applicable to a Hill equaticE 

The basiC' ma;hematical results which are required for this latter approach are-

tr-eatcd in Appendices and have been subjected tc sorne separate computational 

,hecks which may fot-m the subject of a later report WHhm the mair1 body of the 

pr.~sen! repo,- EJepdrate coupling resonan( es are treated specifkally In turn with 

5 a ,companying em;.JerlC a1 data from the computational studies 

,:i
The differ entLal equations which are employed aTe taken from Cole'.5 report: 

cHed abO'le The To-dial displacement (in units of a convenient refer-en' e rad;us) is 

written 

where x f represents the forced motion resulting in the (periodi',) equilibnum orbH . 

.'­
,j,~he free radial oscillation sattsfles, in linear terms the following differential 

5 



equation (if terms 1Il cos 2N8 etc. are neg]ec led)' 

u" + ~J - 0 

or, through quadratic terrns in u, 

U II t rax -+ b cos N e] x 

f2 
..,~ 

where ax '= k t 1 - - . '"'-' k+ / _ t 
2. w 2 [/1/ 2 

- (k +I)] ~wtN2 

b x =f /w 

and the dominant term in b I IS considered to be 

. 2 '*' b 1 ~ - (f i w ) sin N e . 

Similar ly, the y equation governmg the aXIal motion is taken to be 

where f2 
a = _. k + ----- ...- .. --.------------. 

y 2, lJ,T ~ [N.l - ("".;- i)] 

by = - f /w 

and the dominant terms of the coupling coefficients are 

b S • (f/w l ) sin N 8 

= - (f/w 3) cos N8. 

E. The Scaling Properties of the Solutions. 

The foregoing simplified equations. taken to represent the trajectories of 

particles in a spirally- ridged FFAG accelerator with a pure sinusoidal variation 

of the median-plane field and containing coefficients which indeed appear to be 

the major ones when typical parameters for low values of f are chosen, may be 

shown to require a simple scaling feature in any of the results which follow 

* It will be noted that the sign of b I is deliberately chosen to differ from that in 
Cole I s report. 3 III order to correct what we believe to have been an inadvertent 
error [d.. for example, the report by Judd, MURA!DLJ-2 (1955>J. 

- 6 
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. 
therefrOlil Trp eqUiJ' ,();~S ei':;l.()'y ();n.' 

" L 
~~l.. l' 

I
I dX t it /w) cos j. \.J; u and 

, f f 
~¥ 't r,,-, ('f' ,w; ( os Nfi • 

I Y (smN8) uy -2 .....1 (cosNA)u y; , .' 
I 

... 
if the d.eperden; variahles are measured in units of wand the mdependent variable 

and 

The 0, and :,\~ which characterize smalI- amplitude, uncoupled osc illations, are 

dete r rmned by the quantities ax / N2 , With respect to 

larger amplitude osclllations .. with coupling. it is moreover now apparent tho.t - solutions i, u and y) may correctly be sea led together in direct proportion to w 

if the par3 meters are changed so as to keep d: . if. and f I (wN2) constant.xc' Yo j 

Thus, to apply this result to the features of the motion which are of particular 

mterest in the present report, the threshold u-amplitude for engendermg y-

l!rowth must be given by w times a function of ~ "1'" 
~ (,I10 ) I.- I~ ) 

L. e., by w times a functJOn of 1-~t>j;';) l-i_/ ) and f I <wN2). Likewise the 
N 

characteristic exponent characterizing the exponential growth of unstable 

solutions to these equations ~ period C!f th~ Etructu.re must oe expressible as 

a function of these three quantities and of A representing the 

amplitude of th.e radial oscillation, The results obtained in this report are con­

sistent with this ecaling property. 

The theoretical equations which will be obtained may frequently be ex­

pressed in terms of the oscillation frequencies (oscillations per circumference) 

fo: convenience only. It is emphasised, however, that the phenomena with which 

.. 7 ­



may be free of irnperfectiuns, anrl could appropriately be expressed in terms of 

and ~ 
(. 
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MUHA"L~b3 

If. CHt; C<' 

X 

A. .__Theory:..J1IL.______ . 

For the analy:',ls of axial motion as affected by the relatively strong coupling 

reso:lltl\ t.' WhiCh prevaiLs when ~lies in the neighborhood of 2 Cl/o > it is sufficient 

to charactenze the radial motion by a linear equation m u and to represent the 

coupling by inc lusion of the term b S u y in the aXIaL equation. The equations 

(onsidered then are 

L
,/ 

t [ ax + (f /w) cos NeJ u = 0 

:11 + [3. - Cfl'it1 cos N6 --(f-;w2 ) (sin N8) uJ Y = O. y 

•	 The solution to the u-equation is then given by the results of Appendix II, if we 

identify the coefficient b of the Appendix with C 'N and drop the phase-shift 

for convenience, as 

U	 := A [Sint/fiT fNa4bn11BfArjN8-zt11,,~lIB~N81 
,(' W	 wN t 'j • 

SubstitutIOn of this expression for u into the y-equation and neglect of terms in 

2N8 then leads to f Z 

J' + [tly - (kv)C<TJN8 - ~ """" 1-{B ..u.,IYB r ~f;f C<]"j 1{Bll '" O. 
This equatlOn is of the form of that considered in the first part of Appendix 

HI (and of Appendix V) with the lower sign, viz. : 

fi r I	 I.r ~LQ+bC<JjNa+C~1{B~#B +- dc.«J1{ty,y == 0 
for which the stability boundaries ar-e given by 

i~z- (2~ / / = 2/ ~: bi + cI J 

With the identification IV zb=-£ c ;;= - At rI = Ar # w ) wa ~ W"/tI3) 
the stability boundaries accordingly are given by 

It{"- (21fJI = 4 ::~, {A{ 

- 9 ­



and the "threshold Ii arnplitude 101- radIal motion, a.bove which y-growth may occur, 

correspondingly by 
I loI/lt}3,
'AI:::: IV 1",/2. I"~/)'''f
' . lhr 41'2"-:U! ~ "". ('- -~o, 

An estimate for the lapse-rate characterizing exponential growth in the un­

stable region is like wise obtainable directly from the result, at Appendix IV' 

2 =- __ (a-(J,)(a,-a)<c,z><s"> 
/-" 4 <scl><ci> 

11.:z. 
Since differenc es of I'a II are identical to differences of and, for the present 

purpose, the functions c and s may be taken (Appendix III) as proportional 

to the cosine and sine of 1{ Biz i 

nepers/seclor
 

In particular the rnaximum lapse-rate, for a given amplitude A, is given by 

11 ~ 2 73 (:£.-V!· A dtcad'es I __ J
/ mOl • wNlj vi Iser:ror. 

- 10 ­
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InpocL,'.lOn to examine y' growtn quantit<,~ .\-.:1y in the neighborhood of O~·;::'2.6"( 
tf i"O 

hr	 ':>p It:J 11y· ridged rnu(hines with parameters character ist ic of models. In aU 

/.ik	 c",ses, f '" 1/4, N::;; :>, the initial conditions were characterized by u ::: 0, 

1 C' 6v "'=	 .i) ) I -= 0, and (he duration of a typical run was 80 sectors. Results were
o' 

deoi'tf'd on a serni·-logarithmic plot of K y VB. the number of sectors traversed 

by etie pan iele and, although high· frequency wiggles were present in such plots, 

HlP lapse-rate ('ould readily be determined 

The results of this Beries of runs are summarized in Table 1. In the 

initial e\abation of the data, a linear plot of lapse-rate against u was made 

for eac.h structure and extrapolated to zero to find the threshold. From the 

theoretical analysis it appears that it would be preferable to plot the squares of 

these quantities against each other, but in practice this distinction was of no 

llnportance for most d the cases studied. FIgure 1 presents the graphIcally 

estimated thresholds." plotted against 11~ - 2. tI,•. 
For comparison with theory it might be supposed that one should identify 

A not with I u~1 itself, but with IUoY[ f + WfNt] in accordance with the 

solution for u taken from AppendiX II (when cos ~ is set equal to zero to assure 

f 
that will vanish). In the present work the factor 1 + WNt is not greatly 

different from unity - - being, for example, 1. 2082 for Point ( - - and its in' 

elusion does not improve the agreement between the theory and the computational 

results. Without dwelling further on this possible distinction, we give below in 

Table Il the values of I u l lh r. which were plotted on Fig. 1 for points C, f , 

D, ., .J, and K and the theoretical value of l AIp for each of these structures .nr 

- 11 ­
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TABLE II. 

OBSERVED AND THEORETICAL THRESHOLD AMPLITUDES 

FOR OPERATION NEAR cr"o" 2 cr,jo 

,! , " IIPoint ~ '.J.. I " (
I 01 tx"" ' IAlthr. theoretical) 

c 0.010 0.0108 

f I' 0.007 5 0.0093 

D 0.003 0.0024 

e 0 010 - 0 013 O. 0210 

J 0 008 0.0167 

K 0.013 0.0235 

..-... Point ~ is, of course virtually ~t on the resonance and one would expect A tothr 

be very small-· about 0.0005 

With respec t to the lapse-rate in the region of y- growth, we give in Table III 

two examples of a comparison between the observed value of ~ and that estimated 

theoretically from the observed threshold. It will be noted that the lapse-rate for 

Point ~ should correspond to jA max since for Point ~ the resonant condition is 

almost exactly satisfied 

TABLE III. 

OBSERVED AND THEORETICAL LAPSE-RATES 
FOR OPERATION NEAR (1"" =­ 20'~o 

Point 
'II U() {lUI) /I - lui ;.r. ,ob, observed 

I 
I 

theor, calc < 

(decades / sec tor) 

t ,0,0225 .0212 0.055 0,052 
"...... 

~ -.0150 .0150 0.039 c: 035 

The agreement may be felt to be reasonably satisfactory in these cases 

- 14 ­
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1\ narrow zone ot instability would be expected to arisE: from a cr;:::: eJ:; 
() (. 

resonance, in analogy to the second zone of instabillty for Mathieu's equation> Since, 

however, the resonan, e is second order in its dependence on the u-arnplitude A*, 

a consistent analysis of the problem requires consideration of (i) possible contri 

2butions from the u y term in the y- equation and (ii) supplementary terms, propor­

tional to A 2, wh ieh will enter in u y when a solution to the "non··li~ear u-equation 

is attempted. These features complicate the analytic work considerably, but we 

undertake an approximate t!'eatment, taking f /wN 2 and 1{jIV Q to be small and 

employing for convenience at one point the "smooth -approximation" method illus­

Ztrated in Appendix V. [curiOUSlY, retention of the u y term appears to affect 

noticeably the intermediate steps of the analysis but not, in the present approxi­

mation, the final result] 

The equations with which we commence are, Ci.ccordingly. those of Section II 

plus supplementary terms and take the form specified in the Introduction (Section I D): 

u ll + [ax + b cos N8J
, 

u =(l/Z)b 1 u Z 
x 

yll -t Cay + by cos NSJ Y = b 5 uy + (clO/Z) uly 

where the coeffie ients are taken to be 

b :: f / w by :: f /wx 

b 1 
:: (f / w 2) sin N e b S = (f /w2 ) sm N e 

clO :: (f /w3 ) cos N8 

To emphasisethe second order nature of this resonance, it is sometimes designated 

20; zZ~. 

- 15 -



:\ppencliY 11 fel! use ~n analysing Ihe J'f:SODcln( e (Sec tion II), but supp~e-

2. 
JTJenteG by add [liona terrLS, proportional to A , obtained therefrom by a perturbaticrJ 

procedure· 
' 'fJ . ftl ":J7 

U == L.4VT71.{ '9 ,Lwtfe 4V" 1-{~)/& - 2. WN (.b-j ~ e,~ AlB)A r J 

t!1 2 

-+4wW'L
r· 

~!V()-~ ;YOe<r'l2-:j&+-4 'ffcqjN{}~Z1/iJ 
For the purpose at hand we also take, then, 

In forming the quantIties b 5u and «-10 / 2,) u Z we drop terms involving the sine or cosine 

• 

~ 16 ­
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is neglected in comparison to N 2),(recall jng that V: 
The stability bcundaries near V)( =)}Yo for thiS last equation may now be 

obtained by appeal to the results of Appendix I F, in which the equation 

ij r ~ ~


'I + I co'-- +,9 c,GQ(.,\ G + a c.o,o 2. Wf)J "i = 0� 
~ 

is considered 

We set ~ ::;(. ~::J..V I- A� 
W " UK� NJ~J 

~ 

of.... '=- ))Yo * Y ~ - f~A.~
 
&w¥N l� 

2 

being Reglected since they involve a.n additional
the terms which anse from f1 

;J.. 

factor (, + )
\ WN:l. .. 

This approximate result for estimating the stability boundaries associated 

resonance suggests a relatively narrow zone of instabillty whose
with the ~ ;;: a--",..... 
width is proportional to the square of the radial amplitude and which will be found 

- 17 ­
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,,-... exclusively for va]ues of 6y be~u,.,' ~.~ . 10 ,,-_____ y.. 

two "thrE'shold" amplitudes (for SpeC Hied VI. ,UYo ), an upper~imit 

I A, I= +W ~"" ) v:.: /)10 =;'" ~NZ ./if)..-~it)1 

and the more-pertinent lower limit 

If\ \ - (Ar! ....·,,)· 'NNl.[V: - vio 
\ -\ J3 W of N 

The lapse-rate which characterizes exponential growth in the unstable region may 

be estimated from the result of Appendix IV, noting that the functions c and s are ROW 

primarily represented by cosine and sine functions of 1fx e and is conveniently ex 

. 
pressed in terms of the threshold amplitude AI: 

1-:. ja.-a,)(o...l.-a.) <"C2><.A.1
) ~ 

)L '-I <4C. / ><c..-4.') 

-- I 
~ 
lL
r I~ S·If.. -(11.1

- y~: ~ [(-1f~..- y; )- IlD 

~ f2. r (A~-A~)('jA,~-Al.)· nepera Iradian 

'3 2 W'i Nt. -r,. 'J 
[2. 

nepers / .ector 

decades / sector. 
... 7'7 ( f \1.. N .J (A7,- AtX 3AIl - A'l)- o. /4-, £ijNz.) If" w'L. 

The maximum lapse' rate, for a given amplitude A, is then estimated to be 

( ~):Z N ~)",P """A.." . .:=. 0.0/5 WNl ~ I-LV decades I sector. 

~ 

I< IT the term (c1O /2) u 2y and the perturbation correction to u in b5uy had been� 
omitted, the stability limits would have appeared (cf. Appendices III B &r. V B)� 

at t/'j1J 2. ;. v~). + (t1) -f 2.A 'ifW N'Z.) and JJ. oz. =V", ~.,. (o/r) f ZA 2/(ur ";y~)
 
- - i. ~_' the resonance would have been thought twice as broad� 

- 18 ­
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We ha ve not obtained an example of the ~:::: Oje resonance for structm t'1:::i wHh 

the small number of sector's (N:= 5) employed in the other illustrative cases of this 

report, but shall present some evidence obtained for a 12rge- N machine. In studying 

the ax == rT () resonance, it is desirable to employ low values of a- to avoid inter­1

ferences from other resonances, but care must then be taken to avoid the (f'# 21'[ /4 

resonance, the limitation of stable amplitude attributable too;'= 211/5) and inter­

ference from the higher-order resonance 3a;. + 2~ ~ ::: 2 7(. y-growth 

attributable to the O";c ~ aye resonanc.e was first found with the WELL- TEMP ERED 

U 
I<"'IVE prograrr/ for a median-plane field expressed by -~J'o ::: 1 + L 1708 sin 

2 1i} .2991 cos 2 (l'Tl ~), with N = 40 and with k and l/w respectively in the 

.~ neigborhood of 48 and 325. 5 (~ ;';',3/, f# ::: .~). We present here, however, 

21 Zl
(Table IV) results subsequently obtamed by aid of the TEMPERMESH - FORMESH 

programs for structures having a sinusoidal field variation with f = 1/4. The 

TEMPERMESH dimensions were a = 70, b = 9 

The results summarized in Tab lE IV are depIcted on the Altitude Chart (Fig 6) 

attached to this report. The general form of the region of instability appears to be 

that expected 

- 19 - ----------­
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TABLE IV. 
= 

MURA-2G3 
- 20 -

) 

CHARACTER OF AXIAL MOTION NEAR cf71 ~ ~\j 0 

f= Xi Xv-:: 2 S 0 0 If::. 5'0------.---l- 1------ tor)------ LIt pS f -.RliT£ (J)w,des/Se
TEMPER­ ck I --­

NO. 
MESH 

.k I~./1( I t5§./ Tt Ii' -~'  -~~O!l5l1  -roQ-8io~~~O~2°~£~l~(Ji~fit~~17  4E~~~~~-_  

159 81. 7 .3854 .3564 -.0290 .0138 I� 

160 \I 80,4 I .3826 I .357 7 I -.0229 .0197 0�II 

161 II 79.1 I .3798 I .362 9 1-. 0169 .0184 ! .0107 I 0 
II 

162 77.8 .376 .3661 r ··.010a II .0143 I .0125 I .0063 I 09 

163 I 76 5 .3741 .3694 I -.0047 Ir 0 I .0094 I .0075 I .0048 I 0 

I ,168 It 75.85 I .372 .371 -.001 7 - - - - - - - - 0025 07 0 I i
\ 

I

I I ;I . , I 

164 II 75.2 I ,3713 .372 6 
.,.. .001 - - 0 I 0 0 0 j 03 I I. I, 

l---___-L...______•• ,. J -1-------­--.d---- _------==-=i 
i 

---~  ---4----_<._.< 



We l1st below In Table V the lhrc.s:wid 'linpLt 1 Hies. 1u.,l estimated from
tJvu 

the data obtained with TEMPERMESH 161, J62, and 163 and, for comparison, the 

corresponding theur t<,j,.(~al estbmat£ll. 'A, , " 

TABLE V. 

OBSERVED AND THEORETICAL THRESHOLD AMPLITUDES 

FOR OPERATION NEAR CT"o:= OJ .. 

TEMPER 
\u. i jAilMESH 

: ~ thr''­
NO. (theoretical) 

- 0169 .00028 . 000.21 161 

162 -. 0108 . 00023 .00017 

. 00011 .00~7 . 00018163 

• 

With regard to the lapse-rate, we consIder the case described by TEMPERMESH 

No. 162 with u = -. 00030& The lapse-rate calculated from the theoretical estimate 

of the preceeding sub section, using the observed value of A I ' is 0.0157 6 decades I 

sector and the observed lapse-rate for this case (Table IV) is O. 0125 decades/sector. 
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IV THE (}J' t 2 OJ ....2/L· H ESONANC E 

A. Theory:
~_.__._----­

_-\~ analytic treatment of small"amplitude axial motion in thE" case that 

()~ t l. 6":f bes In the neighborhood of 2 Jr may be based on the same difier­

ential equation as f:'mpluyed for dlScusslon of the tJ"''X =2 0T1 resonance in 

Section II. It io recalled that this equation was obtained by substitution of a 

solution to the u equa tlOn into 

(/' +- [Qy - (1/w),osNe - (1/u.,2)(j/n Ne)u] 't :. 0 
to obtaln Z 

!J;d +L'Q" .'- (i ~/ )cos NB - A.f SIN Yx e 5"" N9 + Af 1/1- c.os ~ e7lJ- :. 0, 
(j )' . I W U? w3 N 3 ~ 0 

terms involving 2 N e being neglected. In the present application it will be seen 

that the term mvolving cos ~ & in this last equation is of relatively small effect 

and hence that it would have been suffie lent to make the substitution u =A sin v;, e 
in the origiaGl y equation. 

We now refer to the results of Appendix III C (or Appendix V C), pertaining to 

~ll [Q +- b (05 Ne ('/2 )COS (N-~)e-To -+­

t (Gj2) CO 5 (N +V; ) e 
with stability limits� 

122 -• G t�I(N - ~) - (e y~ ) 

We identify 
b = - f/w, 

c = Af /w Z , taking the lower sign in the equation of the appendix, 
and� 

d -= Af2~) '3 3)�
/(W N .� 

We note that the magnitude of Z b d / NZ is less than c by the factor� 
,"" a� 

2 [ f/(1.t1 .l)J ("IN) and hence may safely be neglected .� 
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Accordingly we find 
~ -

r~l_ -v< ) - (2-/ )' !elII". X \ v'jo /I . 

(f/w~ )1 AI 
with the threshold amplitude then being explicitly 

'AI /2;;\'( 2 ~I! 'fl',r = l W /'; ) I tv - V'I. ) - (2. V~) . 

An estimate of the lapse- rate for y- growth in the unstable region is again 

given by the formula (Appendix IV) c 

2 ( a.. - a. I ) (Q2 - 0.) <cc. ><.4. >_� 
fA :. - 4 <.~C' >(C~f >� 

with c and s now represented by circular functions of argument (N - -I,/,; )/2. 

Accordingly 

nepers/radiar. 

f r:2 AI. It WiN(H-",)"VA - thr nepers/sector= 
~k~ 

decades/sector 

The maximumr . for a given amplitude A, is 

L / A decades/sectorr"".-, =- 0·682 7=-~ IJ,.TtA1 Nt 

It is noted that fer a sum resonance, such as the one consJcered here, vx 
and"i cannot both be arbitrarily small in comparison to N 

- 23 ­
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B. Computational Results; 

FECKLESS FIVE data perta imng to the resonance of present interest weror 

obta;ned for seven operating points, fo!' which the characteristics are given in 

l'ctOt~' V 1 The lapse- rates were readily measured by semi-logarithmic plots of 

K v va. the number of sectors traversed (c. f. F'ig. 2) and a threshold value for
"'­

the onset of y-growth could be estimated. A comparison of the threshold value 

of Uo ' as observed from the computations, a.nd the theoretical t.h..reshold 

amplitude, 1S included in Table VI.Athr ., 

TABLE VI. 
====-== =­

CHARACTERISTICS OF AXIAL MOTION NE.AR O""x. t 2. O"'Ijo :;; 2 r( 

k = 0.2 f :: 1/4 N=5 

I 
Point i 

1/
IUJ I I II t.lo "''''1' 

! IAl+hi>' 
(Theoretical) 

I 1. ZObS 1. 706 
- F-' -

1 31. 5243 48Z6 ; " 6~24 

I I 4. 618 5 

1. 211+ 1. 763+ 

0.0075 0.011 

3 

2 

32. 9091 

3l. l167 j .4845 

I .7295 

.7053 4. 738 

1. 216 1. 824 
4.864: 0,003 

0.0075 

0.004 

0.007 

5 

4 33.2223

I33. 5555 .4885 

.4875 

.7537 

.7410 
1. 219 1. 852 5 

4.924 

1. 2Z1t­ 1. 884+ 
.... 990 0.0002 

0; 001 

O. 0003 

0.002 

6 34. 1615 .4904 .7781 
L 226 1. 945 

5.116 
0.001 0.003 

1. l31 2.013 
7 34. 7676 .4924 .8051 5. l51 0.004 0.0066 

==±=l==~==::!::::=:=±::====~=======_.:=
 

- 24 ­



MUB. A-l63 

We also 11st below) in Table VII. U;)s(c'Ived 12.pse- rates and those cakulated 

theoretically from the observed threshold values, for runs mad~ using operatin.g 

powts 5 and 7 0 The first of these operating points is very close to the resonance 

in question and the c~lculated lapse-rate corresponds in effect to flmax 
o 

TABLE VII. 

OBSERVED AND THEORETICAL LAPSE-RATES 

FOR OPERATIQJol NEAR C)XC t- 2 cr~D = 2:1'1" 

f I Ii ~ (decades / sec tor) 
Point U o IUol - u.. I +l'Ir ~b\ 

observed theor. calc 0 

5 .01500 .015 .179 .15I
­

I -.00750 .0075 .086 .076 

-.00375 .00375 .042 .038 

-

7 .0145 .22 .16~. 0150 J 
-.0075 .0063 .089 .069 

-
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v, THE 

A, Th.·on' .---._-- ,,--_._.._"-­

In ar. ;uialysis of Lh\:' reSD'ld.nCf to be expec+;ed when :;;. 0': + 2 0"'" is close to 
~ "0 

':.. 'fT, the oh\'ious term to inv,'K2 1-1 the y" equatiOll' is (l/Z',i. ,'~~.(,', Illy. It l'S Of>' e c", __ c' ,,,sary, 

t:uwever, <1.1,0 to :..'onsider the dCt;[)le-frequency (2 --v;) tenus which can enter th~' 

t(~1m b5 u y by virtue of 8upplemeritary terms in u obtainable by '1 perturbation 

solutlcn of the non-linear u-equation (~~ Section III). It will appear that the direct 

contriblltion from {lIZ} ClO u 2y nonetheless definitely dominates. 

The solution of the u· equati.on is taken to be that employed previously in 

Section III .. ndmely 

.....·sl"j~e + L SINV:xf)(O~NS - 2 fv;.. c.oSV119SINNe;7u...=- A r ,. {JJ Ni. W' N ~ ..J 

2 f
In forming (l! 2) "10 u , or - 2 l<)) (cos N 8) u

2:/~: ferm of major lfnporfance in 

exciting the resonance of present interest is cos 2 11,; e cos N 9,4 1.1,)3 " 

although the following terms might all be kept in mind: • 
I f AI. f 1
? (, '.J..2 = - ~ CO~ Ne.,.. A_ C05 2. -,{ eC05 N9 

.f 
I- ,0 4 uJ 4 w 3 .� 

"l. "I. Z. Z.� 
_ A _ .... -f '-A" c.. os 2 i1xe ... . , I 

Lf w Jt Nl. ~ .. 

Likewise. the following terms might be noted to arise fI'om 05 u:::! (f/ wl.) (sin N e) il : 

•
b u- ­
~ ­

With the foregoing expressions for the u-dependent terms, the differential 

equation for axial motion, 
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WDt:tt 
( A ':..
\W) 

I 
/' 

, / A ,1 \ 
~.' 4 ,);'- o"·"e 

~ r'\, '-j' ,IL'J" iLb • . W , 

l =: ­
and� 

d lS of oedet'� 

Thi;:) equa~ion is of the form cO:1sidered in Appendix ill (gee Item 4 of SUffiGtarv) 

10,' wh:cll [he stab:lit.." boundarws are represented hy 

In this last re~atl()n, -v~ refers to the square of the y-frequency when the cu" 

£1 (A '11
efficients edna d vanish; it differs,� however J only by tc:rms of order W2. N2 .wJ 

t'rorn the squarf' of the y- frequency for� A:: O. The f8.ctcr 1. b ct I Nt., moreover, 

f " l­
is less than c 1..... , a factor of or-del' '-'-) Regardmg f / (wNZ) as small inJ� ( wN~ 

compar Lson to unity, we are thus led to the result which 'honld have been obta ined 

if only the term C 10 < 2. had been reta m~d :yf.J. 
- { \2..:._ (A \
4 ())7i) J ~ 

this result i.nvolving A squared, as was also the case for tIlt' 2 0'; :: l O"'jC reSO'la,lCP 

treated in Section III 

The threshold ampli'..lde is correspondingly 

IA It", '" 2 US JJ I(N- 201,)1._ (2-.'j.)'(' 

i 
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An estimate of the lapse- rate for the axial amplitude in the unstable region is 

given by the formula (Appendix IV). 

e .. 
2 .cQ-ai)(Qz.-a.) (G >(;4>

P. -= 
I q <.A C I ) <C A/ > 

witt c and A represented by circular functlOl1S of argument (N - 2 V)(' ) / 2. 

f ALI 
--, 

-- ~AIf_ +ily-. nepers I radian1<0 w 3 (N - 2. 11", ') 
/ 

",'
":. 1. J ~ -.,lA'A~ AHf. nepers/sector8 UJ SN(N-2t'x'> -

JAlff _ A\~y decades I sector. -- Q,Jl 
U; Nt 1- 2-w./N 1..JJ1. 

The maximum jJ-' for a given amplitude A, is then 

f I (~\1.
j-l'(rf).;1. I ~ 0, 11 WiJ"& 1- ~";"/N V'J) decades/sector, 

with a quadratic dependence on A. 

B. Computaticnal Results: 

Data pertaining to the resonance treated here were obtained for three 

operating points, with results listed in Table VIII. 
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TABLE VII.~, 
==:C"'~-:'::'~~~":,:,,-:-.-;:,,,~ 

CHARACTERISTICS OFAXLA L MOTION NEAR 2~., + 2 O"~~ = z'l1 

k '" 0,25 f = 1/4 N = 5 

Ii I ' 
I I i 

11;0 -V'jo
 

Point Y II U'k, / (j't / I IAIthl'.
w I /'Tl' 0 1fT" I 2-{~ ~2v;jo IlL" lot fir I(Theoretical)
lr-~~+-

12 26 . 4785 . 5169 1. 196 1 292 0.010 O. OlD 
4.977 . 

1. 191 1. 22813 25 .4762 .491.2 0.017 0.02.94.837 . 
1. 187 1. 189

14 24. 38 .4749 .4754 

-J 
4.751 0.024 o 037 

A comparison between the observed lapse-rates and those calculated 

theoretically is given in table IX for the structure represented by Point 12. 

This operating point is close to the resonance in question and the calculated 

lapse-rate is close to.fLmax. 

TABLE IX. 

OBSERVED AND THEORETICAL LAPSE-- RA TES 
FOR OPERATION NEAR 2 cr~o +J.-(J:= 2 ~ 

[OPERATING POINT 12J j~ 

I 

j.J. (decades I sector).
~J 1~1~ - Iu.. \\k'r )obs.

l..J.. o observed theor. calc. 
= 

-.0300 .00089 . 12. .051 

-.0225 .00050 .05 .029 

-. 0150 .00020 .02 .0111 
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VI.	 CONCLUSION 

A.	 General: 

In addition to the r'esonances reported here, for which positive evidence of 

y- growth was obtained. operating poir1ts near 2 c-xc -= 30""'jo and others near 

were also studied. These latter resonances (for which the 

coefficient of cr.;c is odd) showed no evidence of y-growth for the structures 

studied (N =5). Recently some positive evidence of y-growth near 30"x + 2: (j:l., :::. 2~: 
o 

has been found with aid of the MURA 1. B. M. -704 computer and the results of 

further studies will be reported at a later date. 

For the resonances treated in the present report, the computational results 

and the theoretical estimates are in fair agreement generally within a factor 

of two. This agreement may be considered satisfactory at this stage in view of 

(i) the data inaccuracies associated with determining the small-amplitude 

oscillation frequencies and extrapolated thresholds, (ii) the presence of addi­

tional (possibly non--scaling) terms which may be prominent in small-scale 

machines,15 and (iii) the approxiIWltions inherent in the analytic work. We 

would like to infer, therefore, that the equations presented in this report afford 

a semi'~quantitative account of the resonances couidered, when the median-

plane field has a sinusoidal variation characterized by a modest flutter-factor 

(f '?' 1/4, or smaller). These formu.s are summarized at the end of thIS 

Section for convenience. 

As was pointed out in the Introduction, the viewpoint taken in the analy sis 

has been that a prescribed u-oscillation is assumed for the radial motion and 

is introduced into a linear differential equation for y whieh is taken to 

characterize the axial oscillations. If large axial amplitudes are built up, the 

- 30­



radial rnot:on WIt. certainlv be affe"ct"·,(, ·"~'U'P".,~ ... ' - .. , ' ...... ,): ,i.1.\,.I" __ -~ '- ..l. ar,d the &rnplitudc of radi;); 

oscillatlOIls h(',s then been seen to de(Te3Se nohceably in certain cases 

It would be of interest to extend this uwestigation, possib1~ with a more 

· 16-17
refmed t heoretical approach, to cases in which the fh.:tter~factor f is large 

(so that addit lOned terms, which here could be considered negligible, become 

impm-tant) and to (ases in which a significant harmonic content is present if! the 

magnetic fIeld (as for separated-sector structures), In further computational 

examples it may prove somewhat more convenient t.o employ machine parameters 

characteristjc of large scale accelerators, ':';0 that the differential equations on 

which the theoretical analysis is based are more clear ly defined, As indicated in 

the Introduction, separate computational chec ks can be made of formulas believed 

to describe the instabilities of the simplified linear equations assumed to repre­

sent the small-amplitude axial motion and the results of such work may he 

reported separately at a later date. 

It is important, of course, also to obtain an understanding of the "leveling off" 

which the y growth may exhIbit (cf. Figs. 3 and 4), the danger that Y'-gro~1:h 

arising from a difference- resonance which might in itself be innocuous would 

aggravate the effects of ot11.:'r resonances, and the manner in which these phenomena 

may be correlated wlth observational expenence acquired with a FFAG model. 23 

The graphs of Figs. 3 and 4 are schematic in that high-frequency oscillations of 

K y, with relatively small amplitudes, have been omi(ted in the interest of S1m 

plifying the drawing. It appears from Fig. 4, for example, that y-growth which 

"le"ds off" at relatively large values of y (near the y-stability limit in the 

cases investigated) is followed by oscillations of K y whose wave-length becomes 

longer as I u,,1 is decreased .- in contrast, the small-amplitude runs which 
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"""	 level off early, and shculd :1,'t he regardpc ;.~.; ::.~J''''''''1:~ y-growth in the sense 

treated here. exhibit morf" r~i.J-,id OSC illation of K v 8.::; f lio/ takes on smaller 

... alll~S (12 g, the three runs of Fig. 4 with Uo = - 0150, - 0125, and 0075). 

For analysis of ~~CIl mutual coupling, additional terms involving y should of 

course be introclL:ced into the u-equatlOn so as to result in a Hamiltonian system 

of equatiODS 

The phenomena d.iscussed here of course have their analogues in "machine 

resonances ", WhlCh may be engendered when misalignments are present. It 

would be desirable ultimately also to obtain a semi-quantitative understanding of 

the corresponding effects produced by such imperfections, both in regard to their 

ability to eXCIte machim~ resonanCES and with respect to their effect on the true 

stability or instability of orbits strongly affected by some inherent sector 

resonance It may be noted that one can expect to encounter certain imper' 

fection resonances whose ar1alogouB sector resonances are absent by virtue of 

median-plane symmetry, since in the presence of misalignments symmetry about 

the 'medlan"- plane II need no longer obtain. 

Computations dlrected to a study of "turn-over tI, which will be summarized 

in a later report. suggest questions concerning the ultimate stability of particlei'> 

whose axial motion is subject to growth and exhibits turn-over. The repeated 

rise and fall of y -amplitude in 9uch cases may c:onceal an ultim:ite instability 

which would only appear if undesirably-protracted runs were made. For this 

reason there has been an awakening of interest in the possible utility of ALGYTFE 

18runs which can readily execute for tens of thousands of iterati.ons algebraic 

19
transformations which also exhibit the phenomena of interest here. 
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We ~ist here for conve:1ent j'efer~nc e the equations de'veloped in thlS r :.:port. 

which serve as "handy for nn,!;~ti to describe approximately the characteristic s of 

y- growth at the several coupling resonances in spirally-ridged accelerators with 

modest fl utter,·factor and a: J:J not close to 1C. 

L The ~ :; 2CTj Resonance: 

:: .lur (~)a -N I(~ )2_ I') ~)
2 \

I 
\- 11' I l161 ~'A I~'f 

decades/sector. 

2.. The ~)( Resonance"'" <Tj 

2~ WN­IA21 
~ •I'A'I 

1
I -- f5 {! f 

(~)~ _ (?)2 ) -

...... p- AI1.)(3~~'--A'''2 

decadesl sector,w2. 

dec ades / sector.
 

: ......
• 
3 

~ . 
-J A-"- A'.:~ 

decadesl sector. 
\AT 

- 33 ­



4. :::: 2, 1[ Hesommce. 

IA Ithr 

f I 
- 0, \1 - ­

w N'2. I - 2. "'It / N we. decades I sector. 

It is felt that these formulas may be of assistance in the event that it is desired 

to select an operating point such that the threshold for y- growth exceeds the limit 

imposed by inherent radial resonances or by mechanical limitations of the vacuum 

chamber In selecting a suitable operating point it is of course well to keep in mind 

also the ~ccepta!!ce in phase-space, which involves the oscillation frequencies as 

well as the permissible coordinate amplitudes. 
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,r-, VII. REFERENCES AND NOTES 

L The Feckless Five equations represent a Hamiltonian system and are 

designed to represent, with lair accuracy, the trajectory which a particle of 

constant energy follows in a spirally- ridged FFAG accelerator. The forces 

which affect the radial motion (x-motion) are even about the median plane (y = O) 

and those affecting the axial motion are odd. Small-amplitude motion about the 

stable equilibrium orbit is normally represented with reasonable accuracy by de-

coupled linear -equations of the Hill form, but for larger amplitudes of oscillation, 

non linear terms and coupling become Significant [~f. LJ L (MURA)- 5, esp. 

Appendix II] . 

2. Since I~~, = 1 and cosO"" = (A + D) / 2, it is immediately found that 

,-, f = 17.2 
e., - 1 4- ) The equation obtained by setting K y = const. is that of an 

Ili;1~riant ellipse" and the ellipse will be aligned with the coordinate axes if 

'"1 = 0 (A =D, S= I). eCf. Internal MURA Report 206 (21 November, 1956U 

In representative cases the small-amplitude y-motion, observed at N 9 =0, 

mod. 2n, is such that 4 exceeds unity by about two-tenths of one percent. 

3, F. T. Cole, MURA/FTC -3. 

4. W. Walkinshaw, "A Spiral Ridged Bevatron", A.E.R.E., Harwell (1956). 

5. (a) The application of Walkinshaw's Mathieu equation to our data was 

described in a paper prepared for the Geneva conference of 1.1-15 June 1956, and 

(b) the methods employed in the present report were illustrated in MURA lectures 

given by one of us (L. J. L.) in Madison on 20 June 1956. 

6. This observation of ours has been pointed out previously in a similar 

context by one of us (A. M. S. ) in informal MURA Notes (20 July 1956), 
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7 Sorne dIscussIOn of this method was giVE'rl )'lier by one 01 u.s (L. J. L.' m 

informal MURA Notes (1 Februar·".,' 195:',)',' f ., () !' 'MTTRA) 5" dIllT-	 . d.'b_ .L... 1"" \.1 -, ,"'l.pren lX . 

8 Notat lOn of Whittakei' and Watson "Mexiern Anal)' sis H {Cambridge Univer 

sity Press, (927) Sert, 19.:i These authors use 16q in place of our coefficient 

b and take 1'i 2, 

9. Previously a variational solution was undertaken by one of us (L. J. L. ) -., 

for example in reference 'i'--through use of the phase-amplitude representation of 

Floquet solutions. since the separate functions wand l' are periodic and 80 

Implement. form'cllation of a variational equation equivalent to the differential 

10.	 K. R. Symon, KRS (MlJRA)-l and 4, 

11.	 Laslett, Snyder, and Hutchinson, MURA Notes (lO April 1955). The ,- 9tables were prepared by a variational method for the case N :: 2; the results 

for	 other values of N are readily found by a transformation of the independent 

variable (N6 '" 2t>' 

II Relations of the sort obtained here may alternatively be sought by sub­

stitution of the supposed soluti.on into the differential ~quation and use of harmonic 

balance. 

13. N. W. McLachlan.. "Theory and Application of MathIeu Functions" 

(Clarendon Press, Oxford, 1947), Sects. 4. 90- 4.91. 

14. L. Jar kson Laslett and A. M. Sessler. MURA Internal Report 252 

(10 April 1957). It should be mentioned that Parzen has developed, by a system­

atle perturbation procedure, algebraic expressions for expansion of a Floquet 

,.."	 solution which appear to be of the same accuracy as our own (informal cornmuni-· 

cation) and which possess the feature of not involving both the coefficient a and 

and the oscillation frequency 11 
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15 1\hnutet3 of MURA General Scsq'lufi,)llthly Technical Meeting, # 13 

(4-5 January ;D57) 

10 G, Par zen, "Coupled Non- L::.near Resonance in A-0 Accelerators ", 

MURA Report 217 (20 February 1957); ~L also G. Parzen, I'The 2 ~ - zJ)( 

Difference Resonance ", MURA Internal Report 250 (l April] 957). 

17 J Moser, Nachr. Akad. Wiss. Gottingen, Math. -physik Kl. IIa, No.6, 

87 (1955); also Commun. Pure and AppL Math. 8, -4,09 (1955) 

18. ALGYTEE, MURA Internal Report 233 (1957). 

19. L. Jackson Las lett , MURA Internal ~ port 246 (11 March 1957) and 

correction dtd 25 March 1957; also MURA Internal Report .~47 (18 March 1957) 

20. WELL TEMPERED FIVE, MURA Internal Report 226 (1957).
 

21 TEMPERMESH, MURA Internal Report 241 (1957),
 

22, FORMESH, MURA Internal Report 222 (1957).
 

23. F. T Cole, et. al., MURA Report Z19 (5 March 1957) ~ -to be published 

in the Review of Scientific Instruments 
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We were happy to have had an opportunity to disc USB the phenomenon cf 

y-growth with W. Walkinsha.w shortly after the FECKLESS FIVE computations 

had revealC'd this effect. for th e 0:, ; ? A- resonance We are also greatly in­
" -. "'';/ 

debted to Dr. J .. N Snydf~r for his invaluable assistance wlth the computational 

phases of the work It is a pleasure, finally to acknowledge the aid of Mr. E. C. 

Weinberg, of Purdue Universit:r, and Mr. R. E. Mills, of the Ohio State Univcr­

sHy, in checking some of the algebraic work and performing certainaritLmetic 

calculations. 

-
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APPENDICES
 

1.	 ES'I'IMA TION OF STABILITY BOUNDARIES FOR A MATHIEU EQUATION 

Summar;; . 

(l)	 For the Mathieu Equation 

y/1	 + [a ... b COB N a] Y::\I 0 

regions of lUstability are 
2. 2. 

a < - b / (2 N ) 

Nt. /4 - b / 2. (' a < N
2

/4 ... b / 2. 

Nt.·· b2./ (l2N t.) < a <' N 2 to 5b Z/ (l2.N2). 

(2)	 For the Hill Equation 

y ~ + [0< +,9 cos w 8 + ~ 2. wBJ yCOB = 0 

-- a region of instability exists for ~ between 

II.	 APPROXIMATE SOLUTION OF A MATHIEU EQUA TION 

Summary: 

For	 the Mathieu Equation
 

y + [a + b cos N Q] Y = 0
 

we take the solution to be, when ].lIN is arnall, 

Y '"' A [Sin (te +( ) + Cb/N
l 

) sin (yg + f ) cos Nfly 

- (2 b Y IN 3) cos (J,1 Q +E ) sin Nfl 

with 

- 39­



-------

MURA'-iDj 

/" III. STABILITY LIMITS FOR A HILL EQUATln~~ 

SUHunary:

Stability lim its for ~he	 equation 

:, 
y [a + b cosN8 + «(/2) cos (N-J.l,d e 

t (c/Z) cos (N+JIic) e.,. d C08~e] y ::: 0 

are found al:3sociated wit.h zones of instability as follows; 

k I(1)	 

liz. + d I,
 
when the upper sign is taken;
 

t1,h J 
NY + ~ , 

when the lower sign is	 taken. 

(2) -i:-::
1. 

- §.
4N~ /2 

when the lower sign applIes. 

(3) 

for either sign of the term which 
invoI~es cos (1\1 ~ ~) 8. 

(4) If ~ is replaced by	 21'. in this last result, the equation 

y" + [a + b COB N 9 + (c! 2) COB (N - 2 J.1c> 0 

! (c /2)c08 (N + 2 ~). t d cos l ~ 9J Y =0 

has a zone of instability defined by 

I(N - 2 v..)1. - (2 ~.Y/I,; I -e +- ~~ I. 



lVlUHA- ~DJ 

IV.� ESTIMATE 01' CHARACTEHISTIC EXPONENT IN THE UNSTABLE REGIDN 
OF A III LL EQUATION 

The lapsp - rate It neper S I radian, characterizing unstable solutions 

of the differential equation 

y. + f (a, 8) Y =u 

is glven in terms of the eigenvalues al' a Z and eigen functions 

c (6), s (e) associated wlth the boundaries of the unstable region: 

(a - a,� ) (ala) < c z> <s .t > 
._----~--

4 <s c >(c s I >� , 

(CL>~S:l> 
(B C ' >('c s ' > 

V.� SMOOTH APPROXIMATION METHOD 

Summary 
.= ­

Application of "smooth-approximation II methods is shown to lead 

to results for stability boundaries of a Hill equahon in agreement 

with those derived by a variational method in Appendi...x III. 
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APPENDIX L 

ESTIMA TJON OF STABILITY BOUNDAR1ES FOR A ritA THIEt' EQUATION 

In part for orientatiOn purposes, we outline here a varia.tional method 7 for' 

determining the first few stability boundaries of the Mathieu equation 

y II + [a i b~ os r~J y '" o. 

At stability boundaries the differential equation admits a periodic solution su.ch that, 

4J"J), 

formally (. ,2. a. J de 0
b 1 ~ [~ _. (().. t b c.os N e)~ :: I 

o 

the constant -a playing the role of a Lagrange multiplier. 

A At the first stability boundary, correspondingO to ceQ and for which a :: 0 

when b =0, a suitable trial function is 

y = A o tAl cosNa. 

Insertion of this trial function into the Integral and setting the partial derivatives 

of the result (taken with respect to At) . AI} equal to zero leads to the simul­

:aneous linear homogeneous algebraic equations: 

- 2 a Ao - b AI:: 0 

- b A. T (N2-a)A1 :: O. 

Accordingly, for a non-trivial solution, 

with a root 
for b small. 

Also 

[ThiS result, and the others obtained in this Appendix, are, of course, approxi­-
mations representing the initial term or terms of well-known series expansions. 8J 
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B. At the second stability boundary, near a:= N.2 /4 and corresponding to ce 1 ' 

we take 
Y ':: H l cos Nell. t Hz cos 3Nu/Z 

as the trial function. One then obtains in a similar manner 

and 

C. At the third stability boundary, again near a = NZ/4 but corresponding to 

sel we take 
y := C 1 sin N e / 2. + C Z sin 3 N 8,1 2. 

In this case one obtains 

a ::= N
2I' t b/2 

and 

D. At the fourth stability boundary, near a=N2 and corresponding to Be z, a 

suitable trial function may be taken of the form 

y = D1 sin N a + DZ sin 2 N 9. 

One obtains in this case 

and 
DZ/D ~ 1 

E. At the other stability boundary near 0. :::: N2, one may employ the trial 

function 

-.3 ­
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to obtain .., l l 
a -- N'" t 5b /02N ) , 

-v 
........,I�b I (2a) - hI (2NZ)EO/El 

~ ­

r-'
E2./E 1 

:=; bl [2 (4N2 -a~ f::::j o/(6N2). 
J 

It is of interest to note from the results of this and the preceding subsection that 

the stability boundanes are not symmetrically located about a = NZ. 

Series expansiOns for all these various stability boundaries are, of course, 

given in published texts. 8,13 

F. A case involving a special tlj)J e9.uation may also be consider~d here because 

of certain similarities to D and E above. The equation 

Y II t [ rX t. ~ LJ .r cos", CT + cos 24> BJy = 0, 

with f1 and" considered small, will exhibit a narrow zone of instability for <X. 

near fA)~. Whenj3 =0, the equation is of the form considered in subsections 

Band C (with 2 w corresponding to N) and the width of the unstable region will 

be proportional to Y; when "1= 0, the resonance in question is that considered 

2­
in subsections D and E (with"" = N) and the width will be proportional to~ . 

The corresponding result for the general case (jJ and 1" both different 

2­
from zero) may be obtained for circumstances in Whichj1 and t are of the same 

order of magnitude. The variational statement 

fi ! {y/Z [0( +;8 cosw8 ... ¥"cos lwQ ] y2JctQ :: 0 

is used, with the trial functions 

y = D, sin 4J 8 ... D Z sin 2 w~ 

and 
y = Eo t El cos w9 T E Z cos 2 (.A) 8 . 
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One then finds tbat instability ..nIl. ceCill wh';rl 

d -- .:.../ 

and 

tJllS result lS C01l3istent witt'. subsections Band C (l c<) == N); 
.., 

when I' ~ 0, the resul1. is consistent with D and E (W:::: N} J 

Summary of ZO,nes of Instabilitz foun~ in ~ee;ndix I 

(1) For the Mathieu Equation 

Y II + [a + b cos N eJ y"" 0 

regions of lIlstability are� 

a < - bl/(ZNZ)� 

Nl/ 4 - biz < a <� 
N 2 _.b l /(lZNl ) ( a <� 

(2) For the Hill Equation 

y II +[ 0( +;8 COB w& + Y cos Jy::: 02(...;8 

a region of instability exists for« between 
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APPENDIX 11.� 

AppaOXJMATE SO!..,UTION OF Jj. MATHIE:J EQU A.TION� 

We ar (' 8g;~j r~ (oGcerned with tne Mathieu equation 

, /1 + 
.J r a + b cos N 8Jl Y ~ 0l_ 

seeking ::'in approxurate representation of the Floquet solution£' and an estimate of 

the ch!i.rac.teristi~, ooSLiJlation frequency. In <.:ontrast to the variational procedure 

d
previously employed for these purposes by one of us, a simplification results if 

one imagines that the characteristic period of the solution and the period of the co­

efficient cos N 8 are commensurate 'in some (possibly large) interval and that 

the Floquet 8011tlOn is accordingly periodic in this interval. 

By the foregoing ruse we then again write�

6/11 2 [y,Z -(a+bcosN8) y2J dd =0,� 

with the mtegra; now covering a sufficient numbf'>r of periods of the cosine co­

efficient that the periodicity of the solution in this interval may be exploited 

Seeking E solut:on whose variation with e is roughly that of cos 1/'8 or sin 1/19 

effective trial funetions are 

or 

y:::AZ sinVf)+ B Z sin (N-V) a 1" Cz sin {N+V) 6. 

We proceed to a solution of the problem by use of these trial functions under the 

supposition that 1J is small in comparison to N, results containing this lirnita·~ 

tion being suitable for the purposes of the present report. * 

* Sub6equem to thl'; preparation of this Appendix, a more generally-valld 
representation of the Floquet solutions. for 0 < r/ ~ JY,/2. has been

14 }
undertaken and reported elsewhere .. 
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The first of the trial functitJns',,'!-.,·', L~ iCC' t,\ :l~d.ke the integral stationary, 

leads to the sirnu.itaneous E''lU<iLGnS 

-(b/Z)B, 0-
J 

.... 'J" 
+ I(N -11)'" -al :: 0 

.... ... 

-(b/Z)A1 t [(N+V)l -aJC 1 =0, 

Approximate solution of these equations gives� 

"..., b�B, (1J = .:: Nl. + ~) AI 

/'-./ b 221 , 
C1 (1 .. A,= -NJ andZNl 1 

If'
this last relatic 1 being in agreement with the "smooth approximation" result. j.,.;� 

The second trial function, involving sine terms, leads similarly to� 

( 11 2 a) A Z + {b/Z)Bz - (bIZ) C z 0�:I 

(biZ) A2 + [<N- 1/)2 -2.j HZ =0 

-(biz) AZ + ~N t'V)Z -aJ C z = 0, 

with approXlmate solutions identical in form to thoBe for the cosine series, save 

for a change In Sign for BZ. Thus, although the procedure employed is formally 

s:milar to that which can be used to find stability boundaries (,£!: Appendix I B, C i, 

the relations connectirig 1I"l a, and bare identical for the two cases considered 

here and we may wr ite the general approxima te solution as an arbitrary linear 

combination of che two solutions 

and 
A Z [Sinye + (b/Nl)cosN8 sinV8 - 2bV/N 3 sin N8C08Y6} 

~: 

Y :: A 
y [Sin (Va + ( ) +� 

- (2 b '1IIN3) COB (1/8 +( ) sin N e� 



wlth 
21.(..~· a + 

rit ma) be nOT,eel that Lhis SUi uLcn is identical to that obt~tJ;;.ed Ly expand ion oj 

Wa]Klfu:;rlC:, ... 's f07'l1'1 4 The ,';,)3>1Ll ruay cdso he compared wltn the expansion .)f 

) Sin (JlBt- E + 2.R cos Nef , 

employed 111 dlgital c.omputatlcns for t.he preparation of tal>les 11 pertaining to 

a HiL eqllatwn, By Inspection of the tablEs, partIcularly forVIN small, one 

nottS that 2 P ; b/NZ and lH ~ - 2 b -J IN 31:.. 

Tne app; l~_atlon of this result to the differe;1tial equatlOl1 for M cited in 

the Intr'odL!ctiun leads to the following expression for the raclJal oscillations, 

lJ ~ Ax [s~n (-Y B T E) + f/ (wN 2) sin <,,'xC! -tt) cos N 8 x 

2V f/<wN3) (~OS (lIx 8tt ) sin N 8]x 

where Similarly., for the aXIal OS'1 ~lldtions, one expects 

solutions o~ the for:ll 

\,'- A [s Fl i11' 8 + E\' -"'y 

with - t + (~)2 

As 3. check of the accurac} of tr.is analysis. we have evaluated thlS last 

formal;) lor a reprrcsentative axial oscillation in a structure with parameters 

ldent ~c2.1 to those of. Powl 6 introduced ~>1 Section II B of this report, The 

parameters of this structure are k =- 0.668, i/w:" J.9 6, f,:; 1/4. and N ::: 5 

For conVeniCfl'. e we consider Y'd :.: 53 5/90 and evaluate 
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4y - ,,43 78 x 10 { (' () ~~ (5:3 ;) f.l ! !3 C) [1- {J 196 cos 58J 
- 0 046 sm (53 50/90) sin 58 j , 

for which y (0) = O. aoot and y'(O) =. 0, The results of this theoretical evalL.ation 

are compared with compma,iona] results from the FECKLESS FIVE program In 

Table X, The resu:ts are In sufficiently good agreement as to be virtually in 

distinguishable graphically. The nature of the oscillation represented by this 

example is LJustrated in Fig. 5. 

Summary of Floquet Solution Obtained in Appendix II for the Mathieu Equation 

For the M,' thieu equation 

y 1/ + [a + b cos N e] y = ° 
we take the sol'Jtion to be, when YIN is small, 

y=~ [Sin(1I8tf) + (b/N.2) sin(1I8tf)cosNB 

- (2b';/N3) cos (118 +f) sin N e] ' 

with 

If a more accurate representation of the Floquet solution is required, valid 

for 0< 1/ < N / 2, the reader is referred to reference 14 

.~ 
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EXAMF'LE OF AXIAL OSCILLATION 

AT OPEH..l\.TING - POINT 6 

5 -0.829 -0.823 

1/4 1 212 1. 210 5 - 1/4 -0.844 -0.841 

1/2 335 1. 379 5 - 1/2 -0.845 -0 843 

3/4 1. 084 1.069 5 - 3/4 -0 556 - 0 . 551 

0.734 0,715 6 -0.228 -0.22] 

1 - 1/4 0.694 0.673 6 - 1/4 0.003 0.008 

A - 1/2 0.647 0.623 6 - 1/2 0.212 0,,216 

4 

. 3/4 

2 

2 - 1/4 

2. 1i21 
2 - 3/4 

3 
; 

3 - 1/4 i
I 

3 - 1/2 I 
3 - 3/41 

I 

! 
! 

4 - 1/4 
;"'" 

0.379 

0.077 

-0.193 

0.435 

-0.528 

-0.621 

-0.978 

-1.286 

-1 153 

-0.988 

-1.241 

0.355 

0.054 

-0.220 

-0.462 

- 0.547 

-0.636 

-0.996 

-1.303 

-1. 160 

- 0.991 

-1. 247 

I
,I 

II
IIIi
, !
J:I! 

i 
i 
I 

I 
I 

I 
i 

• I 

! t

I: 
\ 

II 

6 

7 

7 

7 

7 

8 

8 

8 

8 

9 

-

-

-

-

-

-

-

3/4 

1/4 

1/2 

3/4 

1/4 

1/2 

3/4 

i
1, 

I 
t 
,I 
I 
I 
J 

i 
I 

I, 
( 

0.349 

o 494 

0.848 

1.156 

1. 068 

0.953 

1.242 

1. 484 

1.218 

0.905 

0.350 

0.497 

0.854 

1. 161 

1. 067 

0.954 

L 249 

1.494 

1 220 

0.907 

- 1/2 

4-3/4 

".7'c::' 

XI = 

-1. 452 

-1.165 
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AP.PENDLX IlL 

STABILITY L~MrTS FOR A HILL EQUATION 

We are concerned her'e with the differential equatiun 

y" + [a + b CuB Nt! + (e/2) cos (N ~) e! (cis) cos (N +~) 8 

+ d cos t./x fj ] y = 0, 

where we presume that p !i! ~ may be regarded as a rational number and the 
x 

coeffic ients c and d ar e regarded as small. For the work to follow, the 

differential equation is replaced by the variational statement 

JJ2{~i/ -[i1 + £. ..-.-r~ {; + (,cIz.)~(lr/)J{ fj :t «./:;.)£cQ.J,"f-I)tI" f1 

f d """'-' ~.9h: 2) ./1) '" 0 . 

We then proceed tv determine in turn st.abihty boundaries near ~ - 2 }/'" 0) 
(j 

tJx :::lIt 11'-f 0) 11)( -t 2 v'14 == /V a.-J.. 2 ~ .;. 2 1J -.:: N 
d rJG) X . yo .' 

A (1) The location of the first stability limit of interest here is determined. by 

aid of the tnal function 

y =BI cos 1{9/Z + BZ cos 3~91l 

+ R I cos (2p-3) ~ Qil + PI cos (2p-I)t1.fJ/Z 

+ Pz cos (2 P + 1) ~ 8/2. + R 2 cos (l P + 3) J{ •/2. , 

although, as we shall see, incluslOn of the terms with coefficients B z, R
1

, and 

R 2. is unnecessary for the accuracy desired here. Insertion of this trial solut.ion 

into the integral and formation of the appropriate derivatives leads to the followmg 

simultaneous equations:, 
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r-- Vy." I - I--" -- (~- d-1B - A.B - D..!~  1) 
b to C/;2. 1) _ f.. R -(1") -0L L-I 2J I 2. e 2 I, 2. r2 ~' -t 4 f\~-

N 
cn 

t 81 T [~  -a.Jez -.: ~ R - ~ Pz -- b R - b R -- 0'""-0 E I "2 2­
'-1 

<' 
:c~  

"'._\ 
'-' l I;E 

I C/r'".l ,___ 
n-r- '~--b + £8 +- [(ep-J) v/-alp - .s£. R - -~ R, -=0 

-=:. 2 I t~ 2. 4 ~ I E 2. 

b .:t (Ie -~R -0 
- -4p +- ~['P ~I / -l- a.J Pe Z c-

o B\ ~ Bz Z I 
L. 

[(2E-3i ll/-a.]R,- .k.
2 

52 - JiR T ~O 

- ~8, 2 4 

C R _ d r'\ rl 2 l 
- - h-II+ 11 

- eb 5
2. f i~ +l(e~ :3) - a.l2 =0 

It can be seen from these equations that B2. Rl' and R 2 are of the same order as c ami d and hence that 

these coefficIents WIll play no slgniflcant role In the fIrst equatIOn If terms of second and hIghf'r order In C 

and d are Ignored. 

( ( l 



MURA-l6a 

If diU', P Z {~ , <'x' d/{!N":'" IE :leglected in COlr.q:';d.rlSO::1 to unity, the coefficients 

P 1 and P:~ are then fou::lc to be givc::l by 

F� 
I 

and 

By use of the first equation one then obtains, if the l.lPEer sign is used, 

~7-

-
'f (a. tl' 

+ 2ly!!) - b~ 
2p1...y;­

i­ de­ ) 

ar 

1// 
i - (0. + 

hI. 
2 N" ) .- be 

21{l. 
~ d 

2: 
If the low~.!. sign is used, one obtains instead 

Yx'L ( b"L):.-..yx be.. 
- - a.-r- 2Nz - 2N)
'+ .z 

2
Since, by ~:he results of Appendix It 10 i: a + b / (2 N 2) represents the 

square of the frequency of the y-oscillations for the case c =d =0, we may 

conveniently write 

for the upper sign} 

and 

t 

for the lower sIgn 
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MURA- 263� 

A (2) A second stability limit to the differential equation is snnilarly obtained in 

the same ne ighborhood by use of the trial function 

t ~ CI 5iN"';. ~/2 t ., " t Q,51N (2.p-I)~ a/e 

.+ Q SIN (2p -r I) "lit e/e ;. , . , 
2 

In this ';ase one finds 

b - C/2 
-·2pe~1. 

with the relations 
a. 

-v'~o 

for the upper sign 

and 

for the lower sign. 

The associated stability limits discussed here [~ubtlection8 A (1) and 

A (z>] may thus be summarized as follows: 

-�-�
when the upper sign is taken, 
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and 

when the lower sign applies. 

R Higher-order resonances. as "'V)l r;:;; ,):1 11) may iflvolve the perturbation 

coefficients c and d to a higher power, but, with some additional algebraic 

complexity, may be investigated in a similar manner. 

We consider here the equation 

~ II t [a.. + b COS p~ e 

+ ((Ie ') C~ (p-I)~ e - (C/2.) cos (pH)y>< e 

+ d cos '* e] ~ =0 

b)H«2- [It ., bcos r-.Ix e 
+- (CI"L)~ (p-/)-Vt (t - (C./2 )C05 (f'" ')Yx S 

+dc.os l/x eJ'O'z. ] de :: 0 , 

in which p represents N / ~) and seek the stability boundaries in the neigh­

borhood of JI)( -- V:Jo. 
B (1) We first employ the odd trial function 

~:: ~ $1 N 0 e t F;. SiN 21-1x e 

+ WI S:.IN (p- 2) y)( e + VI SIN (p- I) "/x e 
+- U SIN p1l)( e 
•

rV2 SIN (p +-I)y){ $ +- We SIN (P+2.)vfc e 

",...... and, taking q« 1'2. ~;l.... N~obtain the simultaneous algebraic equations: 
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1-';' . c� (,
) I(

'. 
x-a.;F - Q./) f-e +- q ~\Ij + ti. ~ -~U _bV,,­

c.� 2- Z. . e +4 We =0 

b c. c 

.0

-t F, +(Lfv:-a.) F2 t 2 WI - -4 VI� - "2.Va - -b2 W2 =-0M

"".J 

<t::
I 

C� ~ '1. 1. 

~	 

b 
+ P1Ix (1- F) w, - -d V

;::JI li~ ~ e ~ 2� =-0I 

b J::� ci. 
~ 

'2 -~~ - 1- W, t-fV/'(1-1)1.V, - --e u� =0I I 

1.- 2.-c ~ 

I� -~ V, t f~
£ L) - ~ VI. :.0 

I 

..0

. -.b F� 1. 1. I ;" d 
tn 

2. - ~ F2.� - d U t-f~(lt~ \It.. - - We. -=-0I 2- l.� 

C b ­
~ F .- -� re.
~ 

. , 2.� - ~Vl .,. f"'-I,:1.(~')~W2 :: O~
\ 

> WI' '" W
It appears appropriate to solve approximately the last six of these equatlons fOr F 

2 2 

III terms of the ma.m coefficIent 1'1 and then to substitute the result mto the first equation to obtaIn the 

location of the stabi lity ooundary In question, A guide to thIS solutlOl1 IS obtained by fIrst solvmg certam 

speCIal cases, 1n whlCh one or more of the coefficIents in the angInal differential equation are taken to be 

~e ro, and I t rnay be belpful t a keep in mmd the re"(lt suggest cd fort hi B cas e by ! he "s rn oath apprOX1( '110'1" 



ML'fI.A-263 

r-~' 

;-2 ::: 

(in which the second term is not nN:ded){) ­-

\J2 -­ [{ 

wlth the equation 

Ct<~ 2- a.) ~ - ~ Fe 1- ~ (W, + WZ) t 4(VI - Vz ) - ~ U =0 
y:e .dll1J5 the result [a term bed I ( 2 P51.1x. 4 ) from U being ignored) 

l!. 

/'Z. b vx-a.-- ­
~ p2.'1/~,- vx 

2. 
3 el-i/xZ - V.... -- I r be. d�jo B P~2. -t - I -r ­I/2- p'!> -Vx' -v;I.­ f 
3 el­-
8 i.. r ~ .d 2­- Nl.- + tie L N 3 V~ ] • 
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H \2 I, For l.he bcc.ond sLitl'lily boundary In the neIghborhood of Vx !"'v' Vij we employ the even trial function 
. 00 

~ ~  Go + 6 1 Co~ -Vx e + G C05 2v)( ee

+ H, cos (p-2)Vx€1 1" J: co~ CP-/)~ 8 .,. L C.05 P11K 9 

+Ja ~ (P+ I) ~  e + HaC05 (P 1"2 ')-Vx e ,
'''J 

.~  In wtnch G 1 rf~presents the major coefficient. The simultaneous algebralc equations obtaIned in thiB case, again 

$ takmg 0- «( p2"'''/1. .., ~'C'"e. ~ .... 
::J 

~  

-2Q.G -d·(;
I -~J  - b· L 1- ~ ~ =00 

d c- d· Go +(y/- a. )b, --G --H -al hI Ctt2 e. if I 2 I -2 e+-q 2- ::0 
co

b- ~  G1t (4-1x"-i'; &e - ~ H, .. tI ~ J 
I - 4'cJ 

2 - "2 He. =0 
11') 

I 

c b e "1.(I ~ \"l..H _d J-~ - (, - 2 Ge. +P~ 1- f) I"1 I 2. , =0 

c. /'. d,.!- ~ Go - ~ G + - be - ~ HI +pa1h.1.(I-~)").J --LE.. I If 2 =0 

-- b . (,0 - d. J + Fl --..;,." L _dJ =02 e2 '� 
c (.... _b&2--'0 d (\~J d2 I - ~ &2 - 2 L +11//- I"'~) e - e. H~ =0 

c. 
~ &, _b 6 ~ 1 a 1 2.H"2 e. - f' e1"f~  (Itt) l -=0 

( ( (� 



---

! 1+ 2/p
,.) \ ... 

pZ1lX~ 

r b'l.-c J,d -, 
Ir..L= (- 2f-V;r.. 2pi~{; ~ JvI 

b1..c.i +-4!P hd lHI: + .­pI 'f1- Z. C~ /2 p3'1t,'1 /2 Yx 1 JGI 
j_ 4/P [- ~ 

b"Z.c. 
- 1- t' .. bd 1 G-H2 ply.? Ie p,3 tiA" /2 -v..: :z. J I 

•,- with the second equation, 

this gives 
1.- 'Z J,l.. h2.. C S lJ C ~ 6e..d ~ .i.7.."I'). -Q­

2 f7..ifi.l -
~f·i/../ IF f~If~1# ~ f3,,(('1 Ie "Vx L 

Vx 'L_ -'v<; 2 c"l.- ~ [ k - citdo 8pz,-J',( z. 12. P1-1')" v;: 

The results of subsections (1) and (2) can thus be summarized as 

for the zone of instability associated wIth the~ ~ ~o resonance, It is noted 

that the width of this resonance is proportional to the ~gua_re of the perturbation 
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,C 

coei'Ll'lents land d thd t the \ '1 LL. ", :)/, "t the L rn its 0 f s 1 ~" b j • it Y d r (' 1n 
d " 

, . ·".,,1 2Jgeneral not sltuate(J '3ym~iJ(tj' If 3l"y c.llY,it V x l 

[ a ,. ,t m 1 ~ 1 i11 ", l" 0' rUJ j' ; ,- 'j • ; 0 '1in ('2 dominates ~ "-.' n ..I.. J. ... V J...L C1 ..' ~ .. ' (" l..,. 1. with tli€ 

unstable reg10n nee ,r ,=' exclusively 1'01 'y';:ducs of 

CO) An additional zone of instab~l1'~'}'~~~~r J{ + 2 ~~ _~ We write for 
c-

convenience N "'. 7~ and ~ ::;; (~ - I ) )I 0 J where ~ ~ IV - zJ.x, The 

equations 

It;
'I

+ \ 0 + o COS '3 lIo 8 
L" 

+d Co:, (9:J - i) 'II" '1] t - 0 
or 

b~os 'b~9 

t (L /e) Co s -vO 9 t- (cle) cos (2.~ - lh/o e 
• 

+dcos (CfJ -I ) Yo 9 }/-Jde=: 0 
are then solved approxImately by the trial functlOn 

~ ~ t l C.OS vO ~/e. -r -r; COS (e~-I) ~ 6/2 

+ T2 CO~ (2~ .,.I)~ 8/2, . 
The following condItions are found to apply (for either sign of the coefficJent 

of cos (e~-I) v'o e) . 

T, ..: Ie b+ d ) /( 2. o..2ol,/1)l r 
L- '- U 0 ... i..- j 



.~// .:[,and, again nut ing " ,b/(2N·" 
. " j 

C (2). A similar result, with a reversal in sign of the entire right- hand side of 

the equation. can be obtamed for the companion stability boundary if sine functions 

are used in plac e of cosine functions in the trial solution We accordingly write 

I z z. I· I�I~ - (£ 11~ • ') I - c. of" 

.summary of Stability Limits Found in AEper!dix III. 

Stability limits for the equation 
II 

~ + [0, to b c.os Ne +- (C/2.) C.OS (N-1!x ) e 
t (c-/e) COS (N+-Vx) e + dc.o'::J Yx eJ d=-O 

are found as soc iated with zones of instability as follows: 

U) • + 
when the upper sign is taken; 

-•-
when the lower sign is taken 

(a) 
~ _~ [0:. d 1 e/ .,11. ... J 'l. "J..

8H r. Ie. N' r ~ J ~ ? - v~. 

when the lower sign applies. 
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(3) 
.. 

for either sign of the term which 
involves cos (N + ~) 8. 

(4) If we replace ~~ by 2-1)' in this last result, the equation 

~ Ii -t [a.. + bCU5 IV $ +- ((../t;.) ,-os (N - 2. --Ix ) (:) 

± (ele.) ~ (N+e. -V,,) e + dC05 21/x e]0-::' 0 

has a zone of instability defined by 
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ESTU.1A 1'E OF CR';'HACTEHISTIC EXPONENT rN THE 

UNSTABLE H,l'.GJ DN OF A HILL EQl.JATION 

All ap!:Toximate expression may be derived for the characteristic exponent, 

;U-) 'NtllCh characterizes the lapse-rate of an exponentially-growing solution In 

the unstable reglOn of a Hill equation" For this purpose we follow a procedurE:: 

analogous to that Lieser ibed by Me Lachlan. 13 

We denote the even and odd character-istic solutions at the assoclated stabihty 

boundaries by c (8) and s (8) respectively. The solutions near the vertex of t.he 

zor.e of instabillty may then be written approximately as 

~fl$ S]ir :=. e- [C.Gee) ± A. (8) 

l11 plaee of representing the Floquet factor within the bracket by expansion in a 

complete orthogonal set of functions Substitution of this solution into the differ­

ential equation 

(J..-'I + f ( o a.J e) ~ =. 0 

yields 

Cc!I(9) ± S,,/(e) .t C,;c.CCC.'C9J t 54 '(')] +- [;.L + f(C4. 1 &~[C~ (e) t 54 (9)J.:: C, 
The eigensolutions satisfy 

and al and aZ are eigenvalues corresponding to the stability boundaries of thp 

problem. Thus 

The coefficients of the ev:en and odd functions in this approximate identity 

may be related by multiplying through by c (~) and by s ('1) in turn and inte­
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gr:.lting. making use of the orthogonality of the (per .<.ld:c) eigenfunctlOns whil.'h 

cOr'respond to the two dlslinct eigenvalues a1 and a2 In this way one obtains 

+ 2)L S <C ,(1,1> =0 

where (> denotes that the average value is taken. An approximate solution of the 

resulting determinantal equation yields 

(o..-a.,)(a.1--a..) (Cl.) (4
2

) 

£I (.A..C: ><c ~ > 
If the parameter "a;' lies midway between the two eigenvalues the 

lapse-rate will thereby be maximized. 

<.. c"t..> (...¢..)
t [et;a'f

(4C.1><C~> 

+0'1" a...::. (a.../; 0.,2.) Ie., 
The foregoing expressions for ~ may read ily be applied to estimate the 

lapse-rates assoc iated with the resonances which form the subject of this report, 

employing the estimates for their respective stability boundanes der ived in 

Appendix III. For the eigenfunctions c(6) and s (8) it is convenient merely to 

take the cosine and sine functions which constitute the dominant terms of the trial 

functions employed in estimating the stability boundaries. 

Summary of Expressions Derived in Appendix IV for the Lapse- Rate 

The lapse- rate. ~ nepers I radian, characterizing unstable solutions of the 

dlfferential equation 
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j~: given in terms of the eigenvabes aI, aZ ana eigenluncLons c (Q), S (6) 

a.ssociated with the boundar il:'5 of thl:' unstable region. 

(~- G.. 1)(0-2.-a...) '-.C"t.> <.~"I.>--
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APPF:NDfX V. 

SMOOTH\PPROXlMATION METHOD 

5a 4
It may be recalled th~~t Walkinshaw applied a type of "smooth approxi­

mation" to an equation of the forrn 

=-0 

in which the coefficient of y is slightly modulated in amplitude and frequency by 

the relatively slowly-varying (periodic) functions g (8) and h (6). The procedure 

followed appeared essentially to replace this equation by 

and perform an expansion of tlae last term to obtain 

With the elimination of the high-frequency component. a simple Hill (Mathieu) 

equation is thus obtained 

It may be of interest to carry through a similar procedure for the equations 

considered in Appendix III. 

A (1). The equation 

~" 1" [CL t b co~ He + ('/2) c.o~ (N- 1I'x ') e� 
+(C./2) c~ (N-t- Y't) €I +� 

may be rewritten for the present purpose as 

~ II + [a.. ,. d c.o~ i1x S + (b 1" C ~-v)( 9) co~ NeJ <t -:: O. 
In this case it appears reasonable to replace this equation by 

t. 
I I b t( C COS 1/x e\' J 

~ I + La. "r d c..O~ V X e ..,. 2 Nt. L l· 0 
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or 
? bU I! r·. I ,c. I ) ".. I e1 t'"v 

(J -+- L"V -t" (" -!Ii. +- d C.uS lIx J 0 ::. () . 
Th;!" simple 

Oo 
Mathieu eql:ll ion win exhibit instability for vio near J/~ 12" 

with the:';:1,'lbi.iity boundaries given by (see, for example. Appendix I) 

i 2. 21 2i~NC. +-11!-Vx - c..2 V~J =- I ~ I it 0 If 
(}j I , 

i~ d.greement with the resLllt of Appendix IlIA. 

A ( ... '" ) Likewise the equation 

~ II + [a.. 1- b c.os N9 'T" ( C- /2. ) C- 0 ~ (N - V){) 9 

- (c./2.) co~ (N+~) e + dtoS~ &] ~:::..O 

may be written 

~" -+- C?-+ bCC6 NS + C e.INVxfJ SIN Ne + d CO~ >1< eJ~ =0 

,,-. or, approximately 

~ \l t [a....t fl COS 'VICe .,.. bc.o~ (NS - t SIN -Vx e)J 't ~ 0, 

If the suggeated smooth approximation is now made, one obtains� 
e­

" r; I b -J­\II + La.. + d c.OS -Jx e 1- "2 .' - \..y - 0 
\j [tV-v'x(clb)~vxeJ2 u 

Thus a simple Mathieu equation is again obtained, with the stabil ity 

boundar ies of interest now given by 

in agreement with the result found in Appendix III A for this case. 
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B On 'he' ;l;;S.S of the difft'ren;;d. f;qu",-!;or:. W;1; l' [f·:;,dted 1n Se( 'lon A 2.) frorn 

~'1ppi:( ;l!jon \)[!/w sInouth approx;mdtLon jt appears r:Ju! a nalTOW zone of Insta.­

bl]:1y #uuJd be expe' ted ncar ~ = ~o for the equation 

" 
(t" t La- -r bc.o~ NS + C ~/N -0te SIN Ne + d CO~ Vi eJ t ::. O. 

To obtd.n ctlud.ntird~ive description of this resonance, the smooth approxim8!1l1'; 

must be app.lied wnh somewhat more care however. than sufficed in A (2), since 

the per rur b', tion c oeffiri~nts c and d now enter in a more su bt i..le way. 

We commrnce by rewriting our differential equation in the form 

I II C' "C' I C 
2 

~ T" Q..+Li I+eif SIN ~e)C05 (Ne - %SIN~ e) 

t d C05 -Ix eJ\k -= 0 .)
iJ 

2equivalent. through terms in c Application of the "smooth 

;"'" approximation I' in the manner employed previously, to n;>move the rapid 

variation aT ising fr'om the argument N 6, yields the "eq~ljv8.1ent11 Hill equatlOn 

+ dCO:'> -Ix e] ~ 

or 

At the ~ ~ PJ'o resonance. the terms involving (as 11,1( 9 can contribute 

to the width of the unstable zone to second order in the coefficient [~~C. t dJ) 
the terms Involving (2 on the other hand. can contr ibute directly and their effect 

wilj actually dominate in our application (-1.- ~) We proceed by
w,f~ , 
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as the condition for instabilIty. 

This result gives a. width of the unstable zone which is proportional to the 

squ are of the perturbation coeffi~ients c and d. It is noted that if the term in 

c 2 dominates, as it normally will III Qur application. the instability associated 

with this reSOnZ;fl"e will appear only for values of -;/"1 below ~. Sine(:='
0() 

~ 'YN" is presumably quite small in thIS approximation, the correction terms 

which involve thIS quantity might be dropped. 

C. With respec t to the resonance for whi( h 1{. 1" :2 ZYo ~.IlI: considered in 

Appendix III C, it will suffice for our application to consider here the sImpllfied 

equation 

Regarding the term in cos N e as definitely more rapidly varying than that in-

Jvolving cos (N-vx) e. it appears natural to replace this differential equation by 

,..., " t [0.. 1- be + ~ (05 (N - -VI( ) 8 ] 0 ::. 0 ~ 
IIf 2Ni 

or 

0 
II 

1- [ y'~ 
2 

+ ~ COS (N - Vx ) e] ~ - o. 
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Again the 3tability boundar·l'~.-; ul :rl'.erest are expected tc be given by the 

condItion 

-- I<.. I , 

which is consistent with the rCSU.i_t of Appendix HIe when the coefficient d is 

sufficiently small that its effect can be neglected, 

Summarl of Results of Appendix V 
t ..., _ 

ApplicatlOn of "smooth-approximation II methods is shown to lead to results 

for stability boundaries of a Hill equation in agreement with those derived by a 

variational method in Appendi.x III. 
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