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BSTRACTY Trecretr 2l and (omputational results are presented to tllustra:

he bebavior ol particie motion in spirabiy-ridged FFAG accelerators when

operured in the neighborhoed of the 0;'~ 20}"/ o; - O;, 0;,',20; e 2 and

Zﬂ;tf"ZJ:xZ)r resonances. Save for the sccond ¢! these resonances the
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computational examples pertiin to structures with parameters charas teristic

of models {N=5).
The exponential growth of y-amglitude which may be observed
to occur over many orders of magnitude when operating near these reso-

nan ex is generaliy concordant  serii-quantitatively  with the resuirs of o
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theoretical reatment inn which the equation {or axial motion is

linear and the radial motion independentiy prescribed
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NTRODUCT 1O

A_Genetal

The present repor' s «oncerned with certain phenomens periaining to pairticie
motion witr, *wo degrees ot freadom in & spira iy ridged FFAG a: celerator . with
the romputstona! resul's  rnlelly obrained from the "FECKLESS FIVE" 1LLIAC
programl Jdur ng the spring and summer of 1956 * Briefly tnhe behavior to whith
we direct our arien*ion is an exponential grow'h of the amplitude of axial oscilla
tions from very smalil inutial amplitudes, when the structure is such that the
oscillatior frequencies lie in the neigkborbhood of certain "coupling resonances"
Tris"y-growt' appears to be the more rapid the greater the amplitude of th
radiai mo*icn. 2bove a certain threshold and more pronounced when the operating
point is pesr ‘ne resonance in question

When tre conrrolling resonance is that for which ¢y = 2% for example
the exponertial growth may be found ultimately to terminate, at relatively Jurge
v amp!itudes 1f the ampiitude of the radial osciliation is not too great Despite
‘he possible termination or "turn-over'' of the exponential growth in certain
cases, however. the growth suggests a certain ergodic aspect of the motion and
deserves serious recognition by the machine designer due to the possibility that
this growtih may ilead to ultimate instability through the mechanism of other in-

herent or imperfection resonances

+ The greater part of the work reported here was performed while the authors
were asso~iated with the MURA group at the University of 1llincis  Urbana,
.ilinois, with join* assistance from the Nationa! Science Founda*ion and Office
of Naval Regsearch. Use of the ILLIAC was made possible through the cooper -
ation of the Graduate College of *he University of Illinois



B. Purpose
It 1s the purpose of this report to present computational results pertaining
to these inherent {sector)} coupling resonances, with emphasis on the amplitude
range where whatever growth 1s present does not terminate, and 1o describe the
resuits of theoretica! analysis intended to account for such results The experi-
mentai study reported here was substantiaily confined to structures for which the
flutter factor f , measuring the amount of sinusoidal spatial modulation of the
median-plane field, was 1/4. Through historical accident the computational work
evolved so 4s 10 concentrate on modei-sized structures with N=5, although i

might have been preferable to have employed the ''cleaner' equations charac

teristic of motion in large-scale structures *

C. Methods

Ana’vsis of the results was aided by computing, once per sector, the
quantity Ky which is the square root of a quadratic form which remains in
variant for linear uncoupled motion. This quantity was taken to be

// %

o=t g cp)
(¢5)
where, in terms of the matrix \CD/ which carries a particle through succes-

: , ; . 2
sive sectors from one homologous point to the next,

£= ':*C;“"5_ 7- A-D g ¢ 5°

Fi ~ -
s f o i nio -

n

The coefficients E) !/7, g’ as well as the osciilation frequencies. were deter-
mined by preliminary short small-amplitude runs Physically, feor linear
uncoupled motion, Ky represents the maximum value which y can attain at

. * 15 .
¥ As Parzen has emphasised, the use of low values of [ (such as 1/4) is
aiso helpful in suppressing ''non-scaling' terms
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those homorogous points for wi 0 she srvee Do Ko wppbes and 80 repiresents the
amplitude ol 're motion ot sul polInts

o tre toeorerical work atrention is divected to appropriate coupling terms in

3

the differentiar equation for v which are linear in the dependent variable y but
invo've the rad <! Joordinate v measured with respect to the stable equilibrium
orbit  Suitable solutions of an approximate (usually linear) differential equation
for « obtained on the supposition thar y £0 are introduced into the coupling
terms of the v equzion to obrain a iinear differential equation for y with co-
efficients irvoiv.ng corr the period of the structure and that of the radial oscil-
lations  This introduction in a non Hamiltonian way of what is taken in effect to
be a prescribed u motion was originally suggested by Wal,kinshaw4 and appears to
be entirely defiersikle when the y-amplitudes are as small as those obtaining in the
greater part of the present work  Since coupling terms are actually also present in
the differential equation for u, 1t mus*t be acknowledged that the development of a
large amplitude v osciliation will 'react back' on the u motion, in special cases
where operaiion is sunstantially exactly on the Ty = 2 O? resonance and y-growth
accordingly cau be achieved with small-amplitude radial oscillations, the growth
of Ky has been seen to be ultimately accompanied by a noticeable decrease of the
corresponding K, This iast-named compiication, however is ignored in the
remainder of this report and the results are taken to apply to v growth in its
initial stages where the amplitude can be small

Subsequently considerabie attention has also bheen given to the question of

A o 16 . . T
stability limits by Parzen ~, employing perturbation methods simiiar to those

applied in solid- state physics, and by Symon, using the mathematical methods

1
developed by Moser""7 and applied by him to problems of planetary dynamics

4 -
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The study of v gebraic transformations wiieh aiso can exhibil e phenomena

treated .nornis report and whic b permit following the purticie for exiended periods
ras 2o rece ved vomputationa. aitention recently and Dr. Symon has rad some

1
uccess in apply ng Moser's methods’ ' to account for their ceravior

3

4

in Walkinsnaw's a.n:ialy:sls* of a linear y-equation similar to that considered
in the presert report. containing the prescribed u-solution as well as coefficients
with the period of the magnet gtructure. a type of "'smooth approximation’ is made
to elimiinete tne terms of ¢comparatively high frequency whirh involve the structure
and to opiain thereby a Mathieu equation with coefficients having the period of the
radial osculat.ons. We however, suggest an alternative method of analysis.
imagining tne rwo periods to be commensurate in some very large interval and
examining questions of stability by methods generaily applicable to a Hill equaticn
The basic ma‘hematical results which are required for this latter approach are
treated in Appendices and have been subjecied tc some separate < omputational
checks which may form the subject of a iater report. Within the main body of the
present repor- separate coupling resonances are treated specificaliy sn turn, with

ar.companying emmperical data from the computational studies

D, The Equations Employed:

53

The differential equations which are employed are taken from Cole's report
cited above The radia! displacement {in units of a2 convenient refererv-e radius) is

written
X = Xp o +ou,

where x, represents the forced motion resulting in the {periodi~.) equilibrium orbit.

e

‘he free radial oscillation satisfies, in linear terms the following differential
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equation (if terms in cos 2N, etc. are neglecied):

ay t by cos NQJ u =0

7
u’+ x

R |

r

or, through quadratic terms in u,

174 i
N . 4 %
u’ ¢ l a, + b

< Cos Ne] u =(1/db; u?,

_CZ
1 ﬁz
where a, = k+ [~ Y okrl - T
X 2w? [N = (k+1)] S VE

bX = f/w

and the dominant term in by 1s coneidered to be

+

b, = -(f/w?) sin N 8.

1
Similarly, the y equation governing the axial motion is taken to be
" . 1 e IS ¥4 + C 2
vy o+ [ayfbyCOSNGJy—bsuy + (€10/2) uly.

b
“

where

|
2
{
-
v

) e e e e = o "
ay kK + ;,Uf‘ [NZ__/‘kf//] duerd’-

by

i

-flw
and the dominant terms of the coupling coefficients are
bg = (f/w®) sin N6

c10 = - (f/wS) cos N6,

E. The Scaling Properties of the Solutions:

The foregoing simplified equations, taken to represent the trajectories of
particles in a spirally-ridged FFAG accelerator with a pure sinusoidal variation
of the median-plane field and containing coefficients which indeed appear to be
the major ones when typicai parameters for low values of f are chosen, may be
shown to require a simple scaling feature in any of the results which follow
* It will be noted that the sign of b, is deliberately chosen to differ from that in

Cole's report, 3 1n order to correct what we believe to have been an inadvertent
error [c_f, for example, the report by Judd, MURA/DLJ-2 (1955)] .

- b
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therefrom © Tre eguat ons empioyed are
L] P Ji / ) g,-é \ R -\.},._. Seciry RIEY Y s 2 s
o topax + {1 /w) cos N, U 3eE {sin N#; u and
- f f
v, T ot Wy cos NB Ly e e NE) u 05 NO 2.,
»y [, T iwi cos NB§ y = T3 (s1n ) uy -3 (cos NB ) u%y;

1

if the depenrndent varisbles are measured in units of w and the independent variable

is transfermed by N8 = 2t there resulis

2~ .
i,
“ (%, T

e e //""E{ 70 7 N e D : ! ;2
/fz +4L N,_+m:6¢'¢2é/(“/w/} "L_w~z(M27)'\/a/w)

and
; [ a, ' ‘ )
Ji A = o )= A (oim 2 ) W) 2 i ezt S

The ©, and "y which characterize small-amplitude, uncoupled oscillations, are

determined by the quantities ax,/NZ, ay/NZ, and I /(wN%). With respect to

larger amplitude osciliations, with coupling, it i3 moreover now apparent that
solutions i u and y ) may correctly be scaled together in direct proportion to w
if the parameters are changed so as to keep o;c : 0;’0 : and f /(wNZ) constant.
Thus, 1o apply this result to the features of the motion which are of particular

interest in the present report, the threshold u-amplitude for engendering y-

growth must be given by w times a function of o}’ ) C‘/, ) and ¢ /(WNZ);
9 /e

YA )

characteristic exponent characterizing the exponential growth of unstabnle

i.e., by wtimes a function of 14 s 74,0/” and f /(yn2). Likewise the
)

solutions to these equations per period of the structure must be expressible as

a function of these three quantities and of !Al/W ) A representing the
amplitude of the radial oscillation. The results obtained in this report are con-
sistent with this ecaling property.

The theoretical equations which will be obtained may frequently be ex-
pressed in terms of the oscillation frequencies (oscillations per circumference)

fo:r convenience only. It is emphasised. however, that the phenomena with which

.7 -
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~~ we are concerned are str.icily sectoer prevailing in machines which

may be free of imperfections, and could appropriateiy be expressed in terms of

X

o andof;_
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I, vHg f’:; = k(; HESONANCE
A

A, The ory:

For the analysis of axial motion as affected by the relatively strong coupling
resonanc e which prevails when O;lies in the neighborhood of 2 0’,‘0 , it is sufficient
to characterize the radial motion by a linear egquation in v and to represent the
coupling by inclusion of the term bg uy in the axial equation. The equations
considered then are

PR [ ay + (f/w)cos NB] u = 0

v o4 [ay - {f/wW) cos Nb -~(f~/w2) (sin N8) u] y = 0.
The solution to the u-equation is then given by the results of Appendix II, if we
identify the coefficient b of the Appendix with f,» and drop the phase-shift

for convenience, as

g = A [&;mﬂ@fiﬁ'h’d"”‘l/gm/ve Z‘PNSWVQMNa]

Substitution of this expression for u into the y-equation and neglect of terms in

2N6 then leads to A-F
]'7‘“[0)',“ (%)co::/ve—— MV@MW@%ﬁ@;wﬂﬂé])/ﬁo.

This equation is of the form of that considered in the first part of Appendix

111 (and of Appendix V) with the lower sign, viz.:

” / . . =7
J [t beoang +e aint/6ain Ve + dcos ¥6/y =0,
for which the stability boundaries are given by
1]
2_ ryas\2 y éc
|5y = 2| B d|
With the identification
b=_—F AL g ALY
w ) w2 wJA/.i J
the stability boundaries accordingly are given by
2

[ tey)| - 4 B

- g -
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aud the "threshold' amplitude for radial motion, above which y-growth may occur,

correspondingly by

i

3 ' peoeed A i 2
= 20 g e

('”’ 2(%)- (%)

An estimate for the lapse-rate characterizing exponential growth in the un-

stable region is likewise obtainable directly from the result of Appendix IV:

e — (a-a,)(a,—a) <22 L8>
7G> <ed) 2
Since differences of "a'' are identical to differences of *L{,, and, for the present

purpose, the functions ¢ and s may be taken (Appendix III) as proportional

to the cosine and sine of Y 9/2_ )

{ [y I - 147 /1/,}‘2‘

"
—
R
X

h -
+
N\
X
|
e
\/
e
B
s -+
sl
h
f\
X
|
R
O
N
",
o

i
2
<

<<
™

G E Azf/rr '76,067‘5/3667/”

—273(w) '.__._;féc. a/ecaa/e%ec/or'

In particular the maximum lapse-rate, for a given amplitude A, is given by

Nmay = =2.73 (wMQ : decades, / sector.

- 10 -
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B Computationai Resuits

A warge number of TLILIAC runs were made. in the manner described in the

. . . . < . 1 e
Introauction to examine y-growin quantita .voely in the ne ghborhood of O = 27
W Fe h Y.

Vi

for spireclly-ridged machines with pararneters characteristic of models. In alt
he causes, f x1/4 N =5, the initial conditions were characterized by u’ = 0,

y = 10 bv‘ y' = 0. and the duration of a typical run was 80 sectors. Results were
depicted on a semi-logarithmic plot of Ky vs. the number of sectors traversed
by trie particle and, aithough high-frequency wiggles were present in such piots,
the lapse-rate could readily be determined.

The results of this series of runs are summarized in Table 1. In the
initial evaluation of the data, a linear plot of lapse‘-rate against u was made
for each structure and extrapolated to zero to find the threshold. From the
theoretical analysis it appears that it would be preferable to plot the squares of
these quantities against each other, but in practice this distinction was of no
unportance for most o the cases studied. Figure 1 presgents the graphically-
estimated thresholds, plotted against 24 -2 14. .

For comparison with theory it might be supposed that one should identify
A not with | &4,/ itself, but with |u°y [+ £ ] in accordance with the

wN*
solution for u taken from Appendix II (when cosé is set equal to zero to assure
that ué will vanish). In the presgent work the factor | +-;%\;T is8 not greatly
different from unity -~ being, for example, 1. 2082 for Point € --and its in-
clusion does not improve the agreement between the theory and the computational
resuits. Without dwelling further on this possible distinction, we give below in

Table II the values of |U )fhn which were plotted on Fig. 1 for points C, € ,

D, 9, J, and X and the theoretical vaiue of )A "U’r for each of these structures.

- 11 -



Y - TAE. )I. MURA-265 )
CHARACTER OF AXIAL MOTION NEAR Gx, = 2 (Tgo
f: }‘/f- N: _Cj
PARAMET’ERS L‘_ "’j7o 7/51 GROWTH CHARACTERISTICS
Point o TS R
X0 ’(O/frzf 0_/90/’71' Un, -2 1}3 . Init.  Ampl.| Decades; Se(.torLI:ength oii«h

x .6278 1. 61 . 5380 3147 1.345 0.787 -, 0375 . 029 280 sectors
-.228 -. 0300 . 021 7 80
- 0225 const . - 80

& .6486 20.82 .5388 .2855 1.347 0.714 -. 0375 101 L& alter 5%
-. 0300 080 £ 8
-.081 -. 0225 055 Z80
-. 0150 . 029 280
-.0075 const 7 8y

5 .6522 20.39 .5392 .2689 1.348 0.672 -.0375 115 U S. after 5¢
-. 0300 .09 7 80
#.004 -. 0225 .06 z 150
- 0150 . 039 7 15C
-. 0075 .02 23506
-. 0050 .01 2350
-. 0010 . 0023 # 350
-. 0001 const . 2350

1 . e

4 “.6560 19.60 .5400 2365 1.350 0.591 -. 0375 115 U.S. after 47

‘ -. 0300 090 v 64

| +.168 -. 0250 . 067 T
5 - 0225 . 055 7 80
; -. 0200 . 043 7200
: -.?375 028 5 7200
JSO A”rnp} e 9):&_'G 7 ZOQ
- 025 <3 x}O_6 7 200
.. 0075 {1.6x10 7 290

i T R A A - _____‘Lf;f‘lf" T T T T T T




A )4 22.93 5559 13328 1390 ¥32 . 0375 12 U.. )-r 40
- 0300 022 > 80
- 274 . 0225 const | 2 80
A 766 23 .8 5676 3456 1.419 0.864 0375 .26 - 14 U S after 28
-.309 .0300 .02 = 80
. 0225 const . 280
B 776 23.4 5692 3306 | 1.423 0.827 0375 125 U.S. after 36
- 230 .0300 .05 32 80
. 0225 Ampl. levels off
C .790 22.87 . 5696 . 3095 1.424 0.774 . 0375 135 U.S. after 50
) . 0300 103 " " 48
-.124 0225 .070 780
. 0150 036 - . 031 >80
.0075 const 250
D .802 22 .4 .56988% .2902 | 1.424 0.726 . 0375 16 U.S. after 29
. 0300 .13 " " 47
-. 027 . 0225 .08 2 80
0150 . 05 280
. 0075 .02 280
. 005 .0l 280
J .836 21.6 5733 .2508 | 1.433 0.627 .0375 19 U.S. after 26
.0300 .14 " 38
+.178 . 0225 .09 =80
. 0150 . 045 280
. 0075 const . 280
K 832 2.2 5714 23681 1.429 0.592 . 0375 .19 U.S. after 39
: . 0300 .14 " " 30
+.245 0225 .08 " " 60
0150 .0l 280
i . 0075 const . 280
L . 842 90.8 | 5677 2173( 1.419 0.543 0375 18 U S after 3o
-. 0300 i3 " BY
+.333 0225 .06 6 Zar
L0150 Ampl.€ 2.6 x 10 >80

MURA-263
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TABLE II.

OBSERVED AND THEORETICAL THRESHOLD AMPLITUDES
FOR OPERATION NEAR G, =20,

Point if‘*cvgt,.,‘ |Althy, (theoretical)
T C 0. 010 0. 0108
€ 0.007g 0.0093
D 0.003 0.0024
6 0.010 - 0 013 0.0210
J 0 008 0.0167
K 0.013 0.0235

~Point§ is. of course virtually right on the resonance and one would expect Ay to
be very small -- about 0. 0005
With respect to the lapse-~rate in the region of y-growth, we give in Table III
two examples of a comparison between the observed value of/u and that estimated
theoretically from the observed threshold. It will be noted that the lapse-rate for
Point § should correspond to /M max. , since for Point § the resonant condition is
almost exactly satisfied

TABLE L

OBSERVED AND THEORETICAL LAPSE-RATES
FOR OPERATION NEAR 0, =20,

2 Y A4 (decades/sector)
Point U, \/I-Uol - ,u'ﬁmoé: observed theor. calc.
€ . 0225 L0212 0.055 0,052
o~~~
¢ -. 0150 . 0150 0.039 ¢. 035

The agreement may be felt to be reasonably satisfactory in these cases
- 14 -
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A, Expected Performance.

A narrow zone ot instability would be expected to arise from a fx =g
o
[

resonance, in analogy io the second zone of instability for Mathieu's equation. Since,
however, the resonance is second order in its dependence on the u-amplitude A*,
a consistent analysis of the problem requires consideration of (i) possible contri:

2

butions from the u®y term in the y-equation and (ii) supplementary terms, propor-

tional to AZ, which will enter in uy when a solution to the non-linear u-equation

is attempted. These features complicate the analytic work considerably, but we
undertake an approximate treatment, taking f/wNZ and 142/Ni to be small and
employing for convenience at one point the "smooth-approximation' method illus-
trated in Appendix V. [Curiously, retention of the uzy term appears to affect
noticeably the intermediate steps of the analysis but not, in the present approxi-
mation, the final result]
The equations with which we commence are, accordingly, those of Section II

plus supplementary terms and take the form specified in the Introduction (Section [ D):

u” + [ax + b, cos Nej u =(1/2)b, u®

y” o+ [ay + by cos NG] y = by uy + (010/3) uzy ;

where the coefficients are taken to be

bx = f/w bV = - f/lw
b, = - (f/w?) sinN® bg = (f/w?) sin N8
c - (f' 3 N Y
*10 = /w¥ ) cos N8
V
* To emphasisethe second- order nature of this resonance, it is sometimes designated
20,220 .
X Yo
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MuiRra 2
ithe solution of the u-equatios ;& now teken to be of the {Drm previously taken from

Appenaix 11 for use in analysing the ({: ‘,90; resonance (Section II), but suppie-
L4 - e

mented by adduiona! terins, proportionai te A, obtained therefrom by a perturbation

procadure- 70
iy 2 ) 4 ”f"‘ / / Fi/l .
J:ALM Lo lewd//b?wszjmgg,am/t@]

f)ﬁz

For the purpose at hand we also take, then,

f
= A [M V@fszzAum 7/9&7”/*/9 4WN,M1/€M7/6M/’V9]

2

In forming the quantities bzu and (ci0/2) u© we drop teyms involving the sine or cogine

of 2N 8 to obtain ‘F’l/fﬁ ,CAZ
/, o= F ’ ; - b — . ')(‘Az

~ beu = W'Z’AM?'&MNQ A (3617‘49 *BW‘ i 872#’00321{9’7
and

N 42
£ Co ~ ._’;+4 o2 p .
’\f)uz < - ~a£M 50waO+ s ainye]

= [4"”21{9 Na*zﬁw EP/WWZVS;Y

The dlfferentlal equation for y,

//+[@¢éngﬂ6— ,é.u-— (%@)ut])/ =0

2 2z
now becomes (setting 1/ = f .
& Yo @ + /(szlv‘))'

4 '/ 2 _{,2 *’}2’42 2
’ - P f A \ 2,2 ‘
W{y/’ ZW’W‘WW‘*W;%?C‘“’%Q";%M 246~ [("2 din*6) cou NO 1)

. +é,&wde MWNQIJY C
This is conveniently re-written w

e FfLOFA YA A covzi)o—~ me--mv‘a} =0
X+£1;¢ e e+ e Y= < 5y

- 16 -
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-
{ci

"smooth approximation eguivalent Appendix V) -2
R 2 n%y e Y P A =0
R T + A gt 'ﬁt}\ Coo D40 - EEN 2.6 £ (- APrcean,0 }3

‘:f Tl zwr? ale wiN? B g HePxE sz1< WH x5/

. 2 %
TR e A £*A o}y=o

+ L EX D Con B — e C.o-o.lvx \j
Y*??’vo gwANT W2 X N>

2y,

pa
(recaliing that 34 1s neglected in comparison to N
for this last equation may now be

The stability boundaries near )),: ))yc

obtained by appeal to the results of Appendix IF, in which the equation

Y+ [A 4+ Caows + Wrao 2we Y= 0

is considered
o~
We set p :2-‘53"9)(&
(J):U)( 3.2
A WN
=YY T TWINE = ‘——A& >,
wWN
and obtain
> 2 v sf flzwt) - ¥/2
(2 2) 1 Y <A W SE frst) - o
o
> 2 2 t S .L
h \Sb {wAN‘ Sy, - B S - e o,
£ 2w!\\q Ty} =y & < L /wf":;\;-f/ﬁf
L3 iel < LFE) TARS S Ta hunNY s
4 AW N2/ AW ;

2
the terms which arise from B being neglected since they involve an additional

2

factor/ —_—
\ WN2>‘

This approximate result for estimating the stability boundaries associated
with the x ;‘,{c*% resonance suggests a relatively narrow zone of instability whose

P~
width is proportional to the square of the radial amplitude and which wiil be found

- 17 -
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I N T ~ | 3 ;
7~ exciusively for values of 5/\,10 below &% * Moreover there thus appear to be

two "threshold” amplitudes {for specified Ty , Z)Yo

I R X,

N LS

), an upper‘limit

and the more-pertinent lower limit

s LPE2 (a2 (303

N

The lapse-rate which characterizes exponential growth in the unstable region may

be estimated from the resuit of Appendix IV, noting that the functions ¢ and s are row

primarily represented by cosine and sine functions of V/x & and is conveniently ex

pressed in terms of the threshold a:mplitude A,
1
2_ _ (a-a)(og—a) LKA 7
4 <ac’><cat’)

v

* |
2,2 A" 3
- 3 A ‘-V‘j{v‘—v")- T T2 / }
M= gj_,-; A = =Yg [ (= )7 @ W ] (447)
r— i ' 2 )
- X3 \}"(Az- A? B A -A‘) nepers/radian
32 wiNPA
£ )
EXuS 1_AT\(3A - A nepers/sector
T o wiNY (A=A
e —
f\z (- A* 3A»7-A1) decades/sector.
= 0./477 (mz) ,-% J w‘>'(

The maximum lapse-rate, for a given amplitude A, is then estimated to be

HMmax = 0085 (Qfﬁ)z_{/‘v %)2 decades/sector.
X

~~

¥ If the term (cig/2) uzy and the perturbation correction to u in bguy had been
omitted, the stability limits would have appeared (cf. Appendices III B & V B)

% 2 2,2 o VAL Z,2
st 12+ (BVF A% (ur By 2) wnd iy 2 2 o 20 (98) F3A% oty ?)
--i.¢. the resonance would have been thought twice as broad.

- 18 -
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~~ B, Computational Results:

S~

We have not obtained an example of the O'; = C’}o regonance for structures with
the small number of sectors (N =5) employed in the other illustrative cases of this
report, but shall presert some evidence obtained for alarge-N machine. In studying
the a; = 0‘“‘70

ferences from other resonances, but care must then be taken to avoid the 0= 2% /4

resovance, it is desirable to employ low values of o~ tc avoid inter

resonance, the limitation of stable amplitude attributable togy'= 27T/5, and inter-
ference from the higher-order resonance 3Cx + 20y, =2 7. y~growth
attributable to the 0y = 0‘;0 resonance was first found with the WELL-TEMPERED
20 :
FIVE program for a median-plane field expressed by -{Zo = 1+ 11708 sin
278 - 2991 cos 2 {27 %), with N = 40 and with k and 1/w respectively in the
neigborhood of 48 and 325.5 ( g7 .gwgg,%:t = .3b). We present here, however,
T
21 :

(Table IV) results subsequently obtained by aid of the TEMPERMESH = - 1’*‘01'{1\f'HE)SHZZ
programs for structures having a sinusoidal field variation with f = 1/4. The
TEMPERMESH dimensions were a = 70, b= 9.

The results summarized in Table IV are depicted on the Altitude Chart (Fig. 6)

attached to this report. The general form of the region of instability appears to be

that expected

- 19 -
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TABLE IV.

CHARACTER OF AXIAL MOTION NEAR Gx = Ty,

- 920 -

MUR A-263

F2 X Yr: 2500 N=50
TEMPER- LAPSE -RATE (Decac‘eslgecfor)
MESH dn Ty O’o (5;( — > - e e
o | £ 1Tk | Tt T T
B B T T |- ooossn |- 008306 |- 000262 |- Gou2rs|< Q00174 ]-.000i7¢
159 81.7 13854 3564 -. 0290 L0138
160 80.4 | .3826 .3574 -. 0229 L0197 0
161 79.1 .379g .3624 -. 0169 .0184 . 0107 0 |
§
162 77.8 76 366, -.010g . 0143 .0125 . 0063 0
163 76.5 3741 1369, -. 004, 0 . 0094 . 0075 . 0048 o
168 75.85 | 372, 371 ~. 001, -- - - -- 0025 1 0
}
164 5.2 | 3714 .372 +.001, -- 0 0 0 0 § 0
. | -
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We list below in Table V the rhreshold ampi.iudes, /u, / ' estimated from
the data obtained with TEMPERMESH 161, 162, and 163 and, for comparisocn, the

corresponding theorotical esthmates, 'Ala .

TABLE V.,

OBSERVED AND THEORETICAL THRESHOLD AMPLITUDES
FOR OPERATION NEAR O, = Oy

TEMPER- | A
MESH R gt A
NO. (theoretical)
161 - 0169 00028 . 00021
162 -.0108 ~.00023 . 00017
— 163 -, 0047 . 00018 . 00011

With regard to the lapse-rate, we consider the case described by TEMPERMESH

No. 162 with u = -.000306. The lapse-rate calculated from the theoretical estimate

of the preceeding sub section, using the observed value of A, , is 0.0157 decades/

sector and the observed lapse-~rate for this case (Table IV) is 0. 0125 decades/sector.

- 2] -



.00020~
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IV. THE 07 + u:}“} = 17 RESONANCE

A. FT‘EUI‘Y

An analytic treatment of small-amplitude axial motion in the case that
Ox + 2 O"j lies in the neighborhood of 27 may be based on the same differ-
ential equation as empiouyed for discussion of the 6y =2 0':‘1 resonance in

Section II. It is recalled that this equaticn was obtained by substitution of a

solution to the u equation into
3*" +[élj - (.f/u:)cqs N — (3{,&2)(&)\ NG)U,JK = O

Af SIN V95|~N9+ Afvf Cos Vi 9]3,

W/\/

to obtain

it - /
¥+l a, - (Fs)cos No -

terms involving <N 6 being neglected. In the present application it will be seen
that the term involving cos z‘ 6 in this last equation is of relatively small effect
and hence that it would have been sufficient to make the substitution u = A sin\/,e
in the origimal y equation.

We now refer to the results of Appendix III C (or Appendix V C), pertaining to
3 r
¢ - la+bcosNO + (“)cos (N-w)6

I (“p)cos (N+Y )6 + dcoslésjfo
-y

with stability limits

| o . !
NEANIAENER

NE T
We identify
b = -1f/w, ,
c = - Af/wé, taking the lower sign in the equation of the appendix,
and
d =

Alw//( |

We note that the magnitude of 2bd/N? is less than c by the factor

e [ 'F/(w Nl)_] (*/N) and hence may safely be neglected.

- 22 -
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Accordingly we find
!f} . \2 /[ T ’Cl
\f‘-“\/‘, "'\2’./‘:;0‘? 5‘ - f
. v
(f/wz

with the threshold ampl;mde then being explic ;tly

Al = 0 = = (2w 2

. ? 1 2

[ s _ O 2
- L)z - 2f— (2 D)

L

An estimate of the lapse-rate for y-growth in the unstable region is again

given by the formula (Appendix 1V) 2
2 (a-a, ,(az-—a)<0 DEAR">
M= yeoc>calp '

with ¢ and s now represented by circular functions of argument (N - v/ )/2 ,

Accordingly

(:

P L O LT

(V=~Vi)

L4 z E

= - f \/A - A the nepers/radian
Gt (N-W)

- 2 :’,‘E’%W:;:\-\/A Aﬁ“, nepers/sector
] ﬁkr

0682 WAt ;-—'VS%V w- decades/sector

The maximum/u. . for a given amplitude A, is

f ! A decades/sector.
Sar. ~ 0682 Tt /“\'*/,Q w

It is noted that for a sum resonance, such as the one considered here, Vi

and '\ﬁ cannot both be arbitrarily small in comparison to N

- 23 -
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B. Computational Results:

FECKLESS FIVE data pertaining to the resonance of present interest were
obtained for seven operating points, for which the characteristics are given in
Tapie Vi

The lapse-rates were readily measured by semi-logarithmic plets of

Ky vae. the number of sectors traversed {c.f. ¥Fig. 2) and a threshold value for

the onset of y-growth could be estimated.

A compariscn of the threshold value

of ug , a& observed from the computations, and the theoretical thresghold
amplitude, Ay, , 18 included in Table VI.
TABLE VI,
CHARACTERISTICS OF AXIAL MOTION NEAR oy, + 207y, = &%
k=0.2 f=1/4 N=3
I
{/ 0’,’[0/ G;'o/ Vao Vo l ' V\l»w.
Point 1 T K Vi, +2Vya Woltve | (Theoretical)
. ﬁ n2 - 2065 1706 0.0075 | 0,0l
1 31. 5243 4826 -, 6224 4. 6185 . . 0L
. L2114+ 1. 763+ }
2 [32.2167 || .4845 | .7053 4 738 0.0075 | 0.007
. 216 1. 824
3 52.9091 || 4865 | .7205 | ©“%4 ged 0.003 0.004
1. 218 1. 8525
4 33.2223 || . 4875 . 7410 4. 924 0.001 0.002
1. 221+ 1. 884+
5 33.5555 || . 4885 | . 7537 4 890 0.0002 | 0.0003
. 226 1. 845
6 34.1615 . 4804 L7781 5 116 ¢.001 0.003
. 231 2.013
7 24.7676{| . 4924 | 805! 5 257 0.004 0. 0066

- 24 -



MUR A-263

We also list below, in Table Vil, ubserved lapse-rates and those calculated
theoretically from the observed threshceld values, for runs made using operating

points 5 and 7. The first of these operating points is very close to the resonance

in question and the caiculated lapse-raie corresponds in effect to /Lmax‘

TABLE VII,

OBSERVED AND THEORETICAL LAPSE-RATES
FOR OPERATIQN NEAR Cj, + 2 oy, = 2T

o | o Tl = 14 T b [ decadenjoccion)
5 . 01500 . 015 . 179 .15
~-. 00750 .0075 . 086 .076
-.00375 .00375 .042 .038
7 ~, 0150 . 0145 22 .16
-. 0075 . 0063 . 089 .069

- 25 -
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V. THE «35;‘ P 200 2 AT RESONANCE

A. Theory

PO, S

in an analysis of the rescuance 1o be expected when < o5+ 2 7y, 18 cloge 1w

e
il

, the obvious term te invoke 1a the y-equation is (1/2) ¢y uay. It is necessary,

Fowever, also to consider the double-frequency (2 V4) terms which can enter the

term bg uy by virtue of supplementary terms in u obtainable by 2 perturbation

solution of the non-linear u-eqguation (cf. Section III). it will appear that the direc:

contribution from {1/2) ¢g u?y nonetheless definitely dominates.

The solution of the u-equation is taken to be that employed previously in

Section III, namely
r f £ Vi v,
ws A LsNUE 2 siNvigosNe — 2 S (O8O SN

4
+ fAL [sw NO — SiINNB COS 240 + lf COS N SIN 2 QJ
Huz N*

{cos N 8) u?*, the term of major importance in

{ 2
exciting the resonance of present interest is /.7 As cos 2 1& & cos N,
w

In forming (1/2) ¢y ué, or — 3

al?hough the fodowmg terms mlght all be kept in mind:

_.__AL3 cos N8 + fA oS &% 6 LOSNE

_‘quZ i .cﬂSZWG*“"'
w

he following terms might be noted to arise from bgu = (f/w") (8in N&)u:

. AT fA

2 Cio

Likewise, t

With the foregoing expressions for the u-dependent terms, the differential

equation for axial motion,

L Ea’a' +-,65,COSN9 ~“/65“-' - (Cno/Q\)LLZ_]X N oN

-~ 26 -
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{‘; A\:‘
2R Sy P RTINS coorder SR ‘\7;)
h é
e
i '8 /AN
Lo =W i+ teyms of order( é/ /

This equation is of the form considered in Appendix [1I (see Item 4 of summary),
tor whicl the stability boundaries are represenied by
‘ 2 ‘ | PRI
e N sy Vo=l 4 2093
\(\/\/ C—Vyl (\C \‘/lto) ! — l(, + —z ;-
U . 2 ,
In this last relation, *\/.jo refers to the sguare of the y-frequency when the cou-
. o C e e A )L
efficients ¢ anrnu d vaniskh; it differs, however, only by terms of order WL‘NQ
from the square of the y-frequency for A = 0. The facter 2 bd/N“ moreover,
o f 12 , ; . 2 .
15 less than ¢ by a factor of order Wz) , Regarding {/(wN*“) as small in
curuparison to unity, we are thus led to the result which woitld have been obtained
- T
if only the term j—é——B— cas 2 v, OS2 in Cio ua had been retained:
4w 2 ‘ 2
N
A
2 2 L (H |
(N=2W) = (2Ve) | = 7o B/ s
this resuit involving A squared, as was also the case for the ¢ & = 2 0"3:: resonance

treated in Section III.

The threshold amplitude is correspondingly

iA\ Ew‘/}"{“f‘/‘ E‘Vx)z"‘ (24, )ZT

the

pwy - Y- (Y]
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An estimate of the lapse-rate for the axial amplitude in the unstable region is

given by the formula (Appendix IV).

I CEERTCINT LAY
» J<R iy <e TS ’

with ¢ and s represented by circular functions of argument (N - 2vx )/ 2.

Accordingly,

2 2
po (e e Bat -l
- N2y

f /A'*-— Al
= = Hhy.

lows® (N-2) nepers/radian
: N
) % UJ!NJ(N-EVU ..\/Zq - A nepers/sector

f '\ J At~ A‘{ﬂw decades/sector.

w N - 2N wt

= 0.1

The maximum o for a given amplitude A, is then

,“rro.x. ‘wa |~ 2_*/” decades/sector,

with a quadratic dependence on A.

B. Computaticnal Results:

Data pertaining to the resonance treated here were obtained for three

operating points, with results listed in Table VIII.

-~ 28 -



CHABRACTERISTICS OF AXIAL MOTION NEAR 2 &, + 2 Sye

TABLE

VI

MURA-2063

=27
ko= (.25 f=1/4 N=35
‘/ l; o - Vo .‘Jbo |A\
Point W | u""’/d o /ar ; L thr.
‘ / 2 Ve *e‘rdo ! 0]*\\1' (Thg%x;etical)
12 26 . 4785 . 5169 1.196  1.282 0. 010 0. 010
4.977
. 1,191 1228
13 25 4762 . 4912 4 837 0. 017 6.029
4 - 1187  1.189
14 24.38] .4749 . 4754 4 751 0. 024 3. 037

A comparison between the observed lapse-rates and those calculated

theoretically is given in table IX for the structure represented by Point 12.

This cperating point is close to the resonance in question and the calculated

lapse-rate is close to/Umax.

TABLE IX,

OBSERVED AND THEORETICAL LAPSE-RATES

FOR OPERATION NEAR 2%, +20,= 27
[OPERATING POINT 12]

decades/sector).

Ly '\/ 1 Qolq - iU. \Ltm ot obse;f::d : theor. /calc. )
-. 0300 . 00089 12 . 051
-. 0225 . 00050 .05 . 029
-. 0150 . 00020 .02 .01l
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A, General:

In addition to the resonances reported here, for which positive evidence of
y-growth was obtained operating points near 2%, = 30“30 and others near
30y, *+ 0y, = 21 were also studied, These latter resonances (for which the
coefficient of O}, is odd) showed no evidence of y-growth for the structures
studied (N=5). Recently some posgitive evidence cf y-growth near 30, + 20y =2~
has been found with aid of the MURA 1. B. M, -704 computer and the results of
further studies will be reported at a later date.

For the resonances treated in the present report, the computational results
and the theoretical estimates are in fair agreement - generally within a factor
of two. This agreement may be considered satisfactory at this stage in view of
(i) the data inaccuracies associated with determining the small-amplitude
oscillation frequencies and extrapolated thresholds, (ii) the presence of addi-
tional (possibly non-scaling) terms which may be prominent in small-scale
rmachines, 15 and (iii) the approximmations inherent in the analytic work. We
would like to infer, therefore, that the equations presented in this report afford
a semi-quantitative account of the resonances considered, when the median-
plane field has a sinusoidal variation characterized by a modest flutter-factor
(f = 1/4, or smaller). These formulas are summarized at the end of this
8ection for convenience.

As was pointed out in the Introduction, the viewpoint taken in the analysis
has been that a prescribed u-oscillation is assumed for the radial motion and
is introduced into a linear differential equation for y which is taken to

characterize the axial oscillations. If large axial amplitudes are built up, the

- 30 -
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radial mofion wili certainly be aifected, nowever, and the amplitude of radia;
oscillations has then been seen to decrease noticeably in certain cases

It would be of interest to extend this investigation, possibly with a more
refined theoretical approach, 16-17 to cases in which the flutter-factor f is large
(so that additional terms, which here could be considered negligible, become
important) and to cases in which a significant harmenic content is present in the
magnetic field (as for separated-sector structures). In further computational
examples it may prove somewhat more convenient to empioy machine parameters
characteristic of large scale accelerators, so that the differential equations on
which the theoretical analysis is based are more clearly defined. As indicated in
the Introduction, separate computational checks can be made of formulas believed
to describe the instabilities of the simplified linear equations assumed to repre-
sent the small-amplitude axial motion and the results of such work may be
reported separately at a later date.

It is important, of course, also to obtain an understanding of the 'leveling off"
which the y -growth may exhibit (_c_{. Figs. 3 and 4), the danger that y-growth
arising from a difference-resonance which might in itself be innocuocus would
aggravate the effects of other resonances, and the manner in which these phenomena
may be correlated with observational experience acquired with a FFAG model. 23
The graphs of Figs. 3 and 4 are schematic in that high-frequency oscillations of
Ky, with relatively small amplitudes, have been omiited in the interest of sim-
plifying the drawing. It appears from Fig. 4, for example, that y-growth which
"levels off" at relatively large values of y (near the y-stability limit in the
cases investigated) is followed by oscillations of K,y whose wave-length becomes

ionger as | uol is decreased - in contrast, the small-amplitude runs which

- 3] -
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level off early, and shculd nct he regarded #s showing y-growth in the sense
treated here, exhibit more rapid osciilation of x\v as !ucl takes on smaller
vaiueg (e g, the three runs of Fig. 4 with u, = -. 0150, - 0125, and - 0075).
For analysis of sucn mutual coupling, additional terms invelving y should of
course be introduced intc the u-equation s¢ as to result in 2 Hamiltonian system
of equations

The phenomena discussed here of course have their analogues in "machine
rescnances', which may be engendered when misalignments are present. [t
would be desirable ultimately also to obtain a semi-quantitative understanding of
the corresponding effects produced by such imperfections, both in regard to their
ability to excite machine resonances and with respect to their effect on the true
stabiiity or instability of orbits strongly affected by some inherent sector
resonance It may be noted that one can expect to encounter certain imper-
fection resonances whose analogous sector resonances are absent by virtue of
median-plane symmetry, since in the presence of misalignments symmetry about
the 'r'nedian-—plane" need no longer obtain.

Computations directed to a study of "turn-over', which will be summarized
in a later report, suggest questions concerning the ultimate stability of particles
whose axial motion is subject to growth and exhibits turn-over. The repeated
rise and fall of y-amplitude in such cases may conceal an ultimate instability
which would only appear if undesirably-protracted runs were made. For this
reason there has been an awakening of interest in the possible utility of ALGYTEE

18

runs which can readily execute for tens of thousands of iterations algebraic

transformations which also exhibitlg the phenomena of interest here.

- 32 -
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B. Summary
We [1st here for conven eni reference the equations deveioped in this report,
which serve as "handy for niulas  to describe approximately the characteristics of

y-growth at the several coupling resonances in spirally-ridged accelerators with

modest flutter-factor and O y ot close to 7.

1. The 0: z 203 Resonance:

9}: ( G‘g.
'W

B
—
4
|
g
g

- decades/sector,

2 () (R AT (3A - &)
2 vx wl

f EN (A
/um’ = 0 OBS (W‘) Y (E) decades/sector.

-
'

3 The 7y ¢ 203 = 277 Resonance:
, L 2 5‘—.\2
Al = (25| (2= §F)-(e58) |,

f JAS- A
A"~ Acwe
poo= 0082 gy B

decades/sector.
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i
o
—+
BN
'4“
>~
:‘0.

wWNE |- 2*/;/-,; w e decades/sector.

It is felt that these formulas may be of assistance in the event that it is desired
to select an operating point such that the threshold for y-growth exceeds the limit
imposed by inherent radial resonances or by mechanical limitations of the vacuum
chamber. In selecting a suitable operating point it is of course well to keep in mind

also the acceptance in phase-space, which involves the oscillation frequencies as

well as the permissible coordinate amplitudes.
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W

VII. REFERENCES AND NOTES

1. The Feckless Five ecquations represent a Hamiltonian system and are
designed to represent, with fair accuracy, the trajectory which a particle of
constant energy follows in a spirally-ridged FFAG accelerator. The forces
which affect the radial motion (x-motion) are even about the median plane (y = 0)
and those affecting the axial motion are odd. Small-amplitude motion about the
stable equilibrium orbit is normally represented with reasonable accuracy by de-
coupled linear equations of the Hill form, but for larger amplitudes of oscillation,
non-linear terms and coupling become significant [gf. LJL (MURAr5, esp.

Appendix 1I | .

2. Since 3 g‘ =1 and coso = (A + D)/2, it is immediately found that
2
é; -1= Zl-— . The equation obtained by setting Ky = const. is that of an

43

"irwariant ellipse' and the ellipse will be aligned with the coordinate axes if
7’1 =0 (A =D, é: 1). [g Internal MURA Report 206 (21 November, 1956)] .
In representative cases the small-amplitude y-motion, observed at N6 = 0,
M 2%y, is such that é exceeds unity by about two-tenths of one percent.
3. F.T. Cole, MURA/FTC -3.
4. W. Walkinshaw, "A Spiral Ridged Bevatron', A.E.R.E., Harwell (1956).
5. (a) The application of Walkinshaw's Mathieu equation to our data was
described in a paper prepared for the Geneva conference of 11-15 June 1956, and
(b) the methods employed in the present report were illustrated in MURA lectures
given by one of us (L..J. L.) in Madison on 20 June 1956.
6. This observation of ours has been pointed out previously in a similar

context by one of us (A, M. S.) in informal MURA Notes (20 July 1956).
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i Some discussion of this method was given .. rher by one o1 us (L.J. iL.) in
informa!l MURA Notes (Il February 18953); of. also LdL (MURA) -5, Appendix Il

8 Notation of Whittaker and Watson ''Modern Analysis" {Cambridge Univer-
sity Press, 1827). Sect. (9.3 These authors use l6q in place of our coefficient
b and take N - 2.

9. Previously a variational solution was undertaken by one of us (L.J.L.) -~
for example in reference 7--through use of the phase-amplitude representation of
Floquet solutions, since the separate functions w and ’P’ are periodic and 80
implement formulation of & variational equation equivalent to the differential
equation.

10. K.R. Symon, KRS (MURA)-! and 4.

11. Laslett, Snyder, and Hutchinson, MURA Notes (20 April 1955). The
tables were prepared by a variational method9 for the case N = Z; the results
for other values of N are readily found by a transformation of the independent
variable (N8 = 21).

12. Relations of the sort obtained here may alternatively be sought by sub-
stitution of the supposed solution into the differential equation and use of harmonic
balance.

13. N.W. McLachlan, "Theory and Application of Mathieu Functions"
(Clarendon Press, Oxford, 1947), Sects. 4.30-4.9].

14. L. Jackson Laslett and A. M. Sessler, MURA Internal Report 252
{10 April 1857). It shouid be mentioned that Parzen has developed, by a sysiem-
atic perturbation procedure, algebraic expressions for expansion of a Floque!
solution which appear to be of the same accuracy as our own (informal communi-

cation) and which possess the fearure of not involving both the coefficient a and

and the oscillation frequency v
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15 Minutes of MURA Generul Sesquinonthly Technical Meeting, # 13
(4-5 January 1857).

le. G. Parzen, "Coupled Non-Linear Resonance in A-G Accelerators',
MURA Report 217 (20 February 1857), ::1; also G. Parzen, "The 2 1/5 - -’/x
Difference Resonance', MURA Internal Report 250 (1 April 1957).

17 J. Moser, Nachr. Akad. Wiss. Géttingen, Math. -physik Kl. 1la, No. 6,
87 (1955); also Commun. Pure and Appl. Math. 8, 409 (1855).

18. ALGYTEE, MURA Internal Report 233 (1957).

19. L. Jackson Laslett, MURA Internal Re port 246 (11 March 1957} and
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APPENDICES

1. ESTIMATION OF STABILITY BOUNDARIES FOR A MATHIEU EQUATION

Summarz
{I) For the Mathieu Equation

1

y + [afb coB NB] y=90
regions of instability are
a< - b/ @eNY
N°/4-b/2 < a < N%/4 + b/2
N% - b2/ (1288 < a < N2 4 5B2) (12N%),

(2) For the Hill Equation

v¥ 4+ ["( +/F coswldt ¥ cos 2w9]y=0
a region of instability exists for 4 between

2
a)z—/3/(/z W) +ifyana s 5%%’1“’1) -b//»z «

1i. APPROXIMATE SOLUTION OF A MATHIEU EQUATION

Summarz:

For the Mathieu Equation

y + [a+bcosNG]y=0

we take the solution to he, when 2Z//N is small,
. 2
ysz [s.m (Y6 +¢€ ) + (®/N) sin (¥8 +€ ) cos N#@

- (2by/ /N3) cos (8+€)sin N8
with

A
1/ ; a + b2 /(ZN?_)

- 39 -
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STABILITY LIMITS FOR A HILL EQUATION

Sz.xmmarz T
Stability liraits for the equaticn
vl o« [a +beosNU + (c/2) cos (N-2x)9
T (c/)cos N+3p4 )0+ d cosz/:e] y =0
are found associated with zones of instability as follows:

v - (2,)*

(v ~ 5

< f
vz + d I

N )
when the upper sign is taken;

i et = 2] G4

when the lower sign is taken.

2

2
<2)4-~£[£_ d 2 2 2 L
Iv: 12 |47 +,7x]<7/x—z{%\<%,f7i+§[_ 4

when the lower sign applies.

I(N"Z{)z"(z’/jo) -“=|’°* /ff‘

for either sign of the term which

USRS

involves cos (w4 ¥ )86.

N

{4) if )4 is replaced by Zy,“ in this last result, the equation
y” + [a+bcosNo + (c/2) cos (N- 21}) o
¥ (c/2)cos (N+ 214)0 + d cos 2149] y =

has a zone of instability defined by

n-23)* - a2 | < v 57|

- 40 -
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IV. ESTIMATE OF CHARACTERISTIC EXPONENT IN THE UNSTABLE REGION
OF A HILL EQUATION

Summary-

The lapse-rate, M repers,/radian, characterizing unstable solutions
of the differential equation

y¥ + f{a, 8) y=u
is given in terms of the eigenvalues &;, a, and eigen functions

c (8), s (8) associated with the boundaries of the unstable region:

2 _f(a-a,){ag a) <circs?ts

/‘&‘_-‘ 9

4 CschHecs’>

2

2 ~ <c*yes*)> _2a - By ]
Moe = T s> f[ 4

V. SMOOTH APPROXIMATION METHOD
_Summar_v;
Application of "smooth-approximation' methods is shown to lead

to results for stability boundaries of a Hill equation in agreement

with those derived by a variational method in Appendix III.
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APPENDIX 1.
ESTIMATION OF STABILITY BOUNDARIES FOR A MATHIEU EQUATION
In part for orientation purposes, we outline here a variational method’ for
determining the first few stability boundaries of the Mathieua equation
v+ [d + b cos I@j y = 0.

At stability boundaries the differential equation admits a periodic soluticn such that,

formally pl
S yéﬂt’i (a+ b cos Né)f’] 48:-0 |

the constant -a playing the role of a i.agrange multiplier.

A. At the first stability boundary, correspanding‘3 to ce, and for whicha =90

0
when b = 0, a suitable trial function is
y = Ap + A, cos N8,
insertion of this trial function into the integral and setting the partial derivatives
of the result (taken with respectto A, . A])} equal to zerc leads to the simul-
taneous linear homogeneous algebraic equations:
-2a A, -bA =0
-b Ay + (N%-a)A; =o.
Accordingly, for a non-trivial solution,

2a (N%-a) + b2 =0,

with a root bZ
a = - — for b small.
2N<
Also

AI/A _:_y: b/NZ.
[This result, and the others obtained in this Appendix, are, of course, apprexi-

mations representing the initial term or terms of well-known series expansions. 8:1
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B. At the second stability boundary, near a = N%/4 and corresponding to ce,

we take
y = B, cos N6/2 + Bpcos 3Nw/2

as the trial function. QOne then obtaing in a similar manner
~ -2
a =z N“/4 - b/2
and
BZ/B = b/(4N%).
1
C. At the third stability boundary. again near a = Nz/4 but corresponding to

se; , we take
y = C; sin N8/2 + CZ sin 3N#8/2.

In this case one obtains

a = N%/4 + b/2
and 5
Ca/c1 z b/(4N°).
D. At the fourth stability boundary, near a=N*® and corresponding to se; , a
suitable trial function may be taken of the form
y = Dy sin N8 + D, sin 2N 8.
One obtains in this case

2

a = N° - prjaznd

and D ~  1b/{6N%).
Z/D1 -

E. At the other stability boundary near Q@ = Nz, one may employ the trial

function

y = E + E; cos N8 + E, cos 2N#@&

- 43 -
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to obtain . . i
a = N° + 5b°/(12f y
-
b2 Eq = P (-1:1~~T-Z-a)‘}l £~ b/(6N“).

It is of interest to note from the results of this and the preceding subsection that

the stability boundaries are not symmetricaily located about a = N2,

Series expans:ions for all these various stability boundaries are, of course,

given in published texts. 8.13

F. A case involving a special Hill equation may also be considered here because

of certain similarities to D and E above. The equation
y ¥ +[ o & +/6cosw6+ cos 2409]y=0,

with /@ and § considered small, will exhibit a narrow zone of instability for a
near @ ‘2, When/3= 0, the equation is of the form considered in subsections
B and C (with 2 wcorresponding to N) and the width of the unstable region wili
be proportional to ¥, when Y = 0, the resonance in question is that considered
in subsections D and E (withw = N) and the width will be proportional toﬁ z

The corresponding result for the general case (/0 and 2" both different
from zero) may be obtained for circumsatances in which/”%\nd Y are of the same
order of magnitude. The variational statement

) / {y’z - [x +f coswe + ¥ cos Zw@] yzfde =0

is used, with the trial functions

D, sinw @ + D, sin 2w#

[{]

y

and
Eo + Ej coswf + E, cos 2 wé.

b
1]
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One then finds that instability wili cecur when

oA ~ o*

lies hetween

-
|When /?' = @, this result 18 cousistent with subsections B and C (2 ¢o = N);

1
when & = 0, the resull is consistent with D and E (W = N}J

Summary of Zones of Instability found in Appendix 1

(1) For the Mathieu Equation
y” + [a+bcos N8| y=0
regions of instability are
a < - bi/@eNd
N2/, -b/2 < a < N¢/4 + b/2

N°-b2/12N% ¢ a< NZ + 5b%jQ2 N%).

(2) For the Hill Equation
y ! +[ o ¢ +/6 cos wd + ¥ cos 2wé ]y-.r()
a region of instability exists for& between

wz—gz/;fIZQZ) f/r/z andd &)27‘ 5/62/{/.1.(02;"3//2.
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APPENDIX il
APPROXIMATE SOLUTION OF A MATUHIKYU EQUATION

We are again concerned with the Mathieu equation
v Ta + b cos NE€ | vy o= 0,
L J
secking an approxiurate representation of the Floguet solutions and an estimate of
the characteristic oscillation frequency. In contrast to the variational procedure
A ) 3 pr o as :
previously employed™ for these purposes by one of us, a simplification results if
one imagines that the characterisiic period of the solution and the period of the co-
efficient cos N 8 are commensurate in some (possibly large) interval and that
the Floquet solition is accordingly periodic in this interval.
By the foregoing ruse we then again write
d‘ i /2 \ 2 N
1/2 |y -{a+bcosN@j) y de =0,
with the integral now covering a sufficient number of periods of the cosine co-
efficient that the periodicity of the solution in this interval rnay be exploited.
Seeking & solution whose variation with 8 is roughly that of cos 278 or sinz/g.
effective trial functions are

y = Ajcos g + By cos (N-/) 8+ C,cos(N+¥) ¢

1
i
L

or
y = A, sin¥8+ B, ain (N-¥) 8 + C; sin (N+2/)) 6.

We proceed to a solution of the praoblem by use of these trial functions under the

supposition that 2/ is small in comparison to N, results containing this limita-
%

tion being suitable for the purposes of the present report.

* Subsequent to the preparation of this Appendix, a more generally-vahd

representation of the Floquet solutions, for 0< o/ ¢ 4/ 2, has been
undertaken and reported elsewhere. -
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The first of the trial functions. wier ac:zoon @¢ wake the integral stationary,

leads to the simuitaneous equat.ons

Za - FaN “y
(V" a) Ay - (5/2) B, -(b/2ayC, =0
[ ) )
/2y Ay o+ [((N-V S -al By = 0
~(b/2) A, (S D LY RSN}

Approximate soluticn of these equations gives

B 2 S (1+ &) A
Cz-_/—;”%-z{ ‘2;2.{:) 1 and

YEiza+p® [ @2N%,

.

,\

this lasi relatic \ being in agreement with the ''smooth approximation' result.

The second trial function, involving sine terms, leads similarly to

(V% -a) A, + (b/2) B, - b/2) C, - 0
(b/2) A, + [(v-1)2 2] B, =0
~{b/2) A, + [(N +#)° —a] C, =0,

with approximate solutions identical in form to those for the cosine series, save
for a change in sign for Bp. Thus, although the procedure c¢mployed is formally
similar to that which can be used to find stability boundaries {(cf. Appendix I B, (),
the relations connecting 1/7 a, and b are identical for the two cases considered
here and we may write the general approximate solution as an arbitrary linear

combination of the two solutions
A [cosg/e + (h/N%) cos Ng cosVe + ZbZ//N3 sin N@ sini/e}

and ‘
A, [sinzjﬁ + (b/N2%) cos N8 sinVe - Zbl/,'/NB sin N8 cos¥ 6 ];

}'LZ, .

y = A_ [sin (ve +€) + (b/N?‘) sin (/6 +€ ) cos N#®

- (2b ¥ /N3) cos (/0 +€) sin N 8



with s
2f"-fw*~ S &
,.._:d + L \ij\\' :.

réwa~~l«\ ST el 1ot woy it ; i i ¢ X i
i It tnay be noved that this so'uticn is identical to that obtxined by expansion of

-

Walkinshaw's form ® The resuit may also be compared witn the expansion of
the form A i+ 2Plus Na o+ ) sin {8+ € + 2R cos N8+ . )

11

employed in digital computaticas for the preparation of tables pertaining to

a Hili equation. By inspection of the tables, particularly for?/N small, one

18

- ZU‘V;/NJ]

-

notes that 2F = b/N% and 2R

Iilustration

Trie app’ication of this result to the differential equation for <« cited in

the Introduction leads to the foliowing expression for the radial oscillations.
r . pl .
v o= Ay Dsin (1/x6 r€) + f/ (WN®) sin (¥, 0 +€) cos N
L ~ ey i + & im N
g;jx [/(WNj) COS (Vx 6 +£ ) sin N 6]
2 o~ 4

where 7/)( = :é ¢/ Similarly, for the axial osciilations, one expectis

scolutions of the form

Yy - A}, [sm (‘Vy 8+€) - f/(wNZ) §in (Vy5 +€) cos N® ;

+ ?.V'y %WNS) cos ('z/'y 8 +€") sin N6, |
with , 2 , . 2
Ji= - A 4 )

As a check of the accuracy of this analysis, we have evaluated this last
formula for a representative axial osciliation in a structure with parameters
ident.cal to those of Point 6 introduced lu Section Ii B of this report  The
parameters of this structure are k = 0. 668, i/w=19 6, {=1/4, and N =5

For conveniense we consider 1/‘&7 = 53 5/20 and evaluate
&

-~ 48 -
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y =12437g x 10 4 { cos (53 58/480) l[i_(l 196 cos 58]
- 0,046 sin (53 56/90) sin SBj ,
for which v (0) = 0.000! and y'(O) = 0. The resuits of this theoretical evaluation
are compared with compuraiional resuits from the FECKLESS FIVE program in
Table X. The resuits are in sufficiently good agreement as to be virtually in
distinguishablie graphicaily. The nature of the oscillation represented by this

example is iilustrated in Fig. 5.

Summary of Floquet Soluticn Obtained in Appendix II for the Mathieu Equation

For the Mathieu equation

v+ [a + bcosNe] y =0
we take the solution to be, when /N is small,
y = A, [sin(de +€) + (b/Nz) g8in (/8 +¢ ) cos N8

~(2b¥/N3) cos (#/8 +€ ) sin Ne]

with
]/2 =Z aq bz/(ZNZ).

If a more accurate representation of the Floquet solution is required, valid

for 0< Z/ < N/2, the reader is referred to reference 14
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—~ EXAMPLE OF AXIAL OSCIL cation 0T
AT OPERATING - POINT #
I e L b 1 £eu Mo 5
X P 5
NO i' Analytic /0 ‘%1 ac Run ‘ NG Analviic /04}
F i wewin 3@ emn e
0 1. 000 1.006 s 5 -0.829 -0.823
{
1/4 1212 1.210 : 5-1/4 -0.844 -0.841
1/2 1335 1.379 5-1/2 | -0.845 0 843
3/4 1. 084 1.069 ‘ 5-3/4 -0.556 -0.551
! 0. 734 0.715 6 : ~.228 0,221
1-1/4 0.594 0.673 | 6 -1/4 0.003 0. 009
1-1/2 0.647 0.623 6-1/2 0.212 0.216
- 3/4 0.379 0.355 6 -3/4 0.349 0.350
2 0.0677 0.054 7 0 494 0.497
2 -1/4 1 -0.193 - 0.226 7-1/4 0. 848 0.854
2-1/2 ! -0.435 -0.462 | 7-1/2 1.156 1.161
2-3/4] -0.528 -0. 547 | 7-3/4 | 1068 1. 067
3 -0.621 -0.636 8 0.953 0.954
3-1/4 | -0.978 -0.996 8-1/4 | 1242 1.249
3-1/2 1 -1.286 -1.303 8 - 1/2 1.484 1.494
3-3/4) -1.153 -1.160 8 -3/4 1.218 1.220
4 | -0, 088 -0. 991 g 0.905 0.907
4-1/4] -l.24 -1.247
_—
-1/2 | -1.452 -1.457
4-3/4| -1.165 -1.161 iﬂ_
¥y - — 0.0062/530 Yo = O0-000/600 Py, = — O 0553885 /';. = O

X,(~ ~—O 0215 3p “ p—x‘( — 0. 0553885
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APPENDIX 1L
STABILITY LIMITS FOR A HILL EQUATION
We are concerned here with the differential equation
vy’ o+ [a + b cos Ne¢ + {c/2) cos (Nn?fg) 8 + (c/s) cos (N +I/x) 8
+ d cos 2/ 8:’1 y =0,
where we presume that p = %may be regarded as a rational number and the
coefficients ¢ and d are regarded as small. For the work to follow, the
differential equation is replaced by the variational statement
Efify™ ~[a b amp it # () em (o) 0 2 el ) o (p11)5,8
Fd Ao 1,{9]512/ dd = 0.
We then proceed to determine in turn stability boundaries near 7/,( -2 2{3,0)

Yy = Vj,, Ve * 2VJO=/V, and 2 L) # Qz/yo =={V,

A (1) The location of the first stability limit of interest here is determined by
aid of the trial functicn
y = By cos 7/,9/'2 + B, cos 3149/2
+ Ry cos (2p-3) 24 8/2 + P, cos (2p-1)2{e/;
+ P cos (2p + 1) ;/x 8/2 + R, cos (2p + 3)1/)‘0/2 ,

R.,, and

although, as we shall see, inclusion of the terms with coefficients B 1

Z}
R, is unnecessary for the accuracy desired here. Insertion of this trial sciution

into the integral and formation of the appropriate derivatives leads to the following

simulfkneous equations:
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5,“) + C/ s — C (EP ,) —] — _d__ -
”U2£'x‘*'24‘82 [QVC}JE 2 ER‘ 0

( > dp _
bi‘ C/g B\' E:_Be - i P + [{_’p # awé(z_a_ Pa ‘_Z—Q,-—-O

D

- %8! - 2 ! 4
C b 2
:?5/ \?BZ "% Pz +(~L——(El;3) -a_]RE:O

It can be seen from these equations that Bg , Ry, and Rz are of the same order as ¢ and d and hence that
these coefficients will play no significant role 1n the first equation if terms of second and higher order 1n ¢

and d are ignored.

( ( (
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a 2 . ; . . . . _
If di(2p* 1! ), ov d/(2N%), iz neglected in comparison to unity, the ccefficients

Py and P, are then found to be given by

A

LB
/L/ - W”L:‘+’/P]B4
/v'X

and

- bii‘“/f%»r ' '
PR~ vl AR L

By use of the first equation one then obtains, if the upper sign is used,

Vi (a_,, bz); be d

— = = +
4 2ptvi? 2ty B )

1
“Vx <a ) bc
X R ) = _0C_
4 EN* P N
If the lower sign is used, one obtains instead

.\ . Wb
Lo ardn) = Fp v 4

2
Since, by “he results of Appendix II, 1{7 Z a t bz/(ZNZ) represents the
[

or
3

ol

square of the frequency of the y-oscillations for the case ¢ =d = 0, we may

conveniently write
2 . N
(vire) =%, & befeny + dp,

for the upper 8ign,

and

2

(%/e ) = % bC/(gN’) * "t/a )

for the lower sign
- 53 -



A second stability limit to the differential equation is similarly obtained in

A(2)
the same neighborhood by use ¢f the trial function

g= C smnv, o+ + Q,SIN(2p=1)vk &
+ QasINRpt NS+

In this case one finds
‘ b—- ¢/2 + e
Ql - 2P _/xz. E ] l

L rore ;:/2 [_""' '/P]CI

with the relations
2 2 .
Yy = (w/e) = befienty + 92,
for the upper sign
and
2 5 .
V4o = () E vbe /oy + e
" for the iower sign.

The associated stabilify limits discussed here [subsecticms A(l) and

A (Z)] may thus be summarized as follows:

5 cefm ed|

’wzw(Evm

when the upper sign is taken,
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and

H—lw) |2 2]hE - d

when the lower sign applies.

- ~
B. Higher-order resonances, as 1/% ~ Z/jo » may #nvolve the perturbation
coefficients ¢ and d to a higher power, but, with some additional algebraic
complexity, may be investigated in a similar manner.

We consider here the equation

3" r[a o+ b cos pve
+ (“e)cos (p=)he - (¢h)cos(pt)ws
+ dCCﬁ%QJa, =0

2
ot Sgé{\(’_[q_-fboos’nv,}g
T (/) eos (P“')‘/x o — (¢/2jcos (pr DV, 8
- |
+ dcos e_jg"} 06 =0 .
in which p represents N/ 1/11 , and seek the stability boundaries in the neigh-

borhood of J/x ~ V,_‘f" .

B.(I). We first employ the odd trial function

' F,S/Nm/xe+ Fz sin 24 6

W, av (pr2)vx @ +VisiN(p- DV 6
+ USIN P S
L 4

Vo SIN (P )46 + W SIN(P+2)% B

2 . .
and, taking Q << f" 1/,‘ = /Vfobtain the simultaneous algebraic equations:

- 55 -
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f-r; Fz - %‘Wo +/oa'\&z(!-+)1\/. - -g— U =0

""%Fs "gV. *’f;'%cau —%Va =0
F, *E"Fa_ -%U +f>z’/xz(w~'f)\\,’& *‘%Wa =0

C & -t F d SN
4 e & = $Ve TPAH (R W = O

It appears appropriate to solve approximately the last six of these equations fer Fo, W W

1’ 2

in terms of the main coefficient F1 and then to substitute the result into the first equation to obtain the
location of the stability boundary 1in question. A guide to this solution 1s obtained by first solving certain
special cases, 1n which one or more of the coefficients in the original differential equation are taken to be

zero, and it may be helpful to keep in mind the result suggested for this case by the "smooth approxn( “tion'

( (

T

- 56 -
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i sieanlily ing coertain correction terms the

2 L . .
st 27 Tl close 1o 23'6 £ a,u,&,é» 2/1/2/02_?;»»}

approximaticn may be roade ths

method outilned in Appendix V

ich appears adecuate {or the present purpose is

ep v
U - [ C bC;j "‘l _ {in which the second term is not needed)
- SR TTE ~
L €pt v AN

<
¢
‘q‘.‘
;’\N
Lo B o}
m (\‘
o fo-
|
3
~ |
ad SR )
N
-~
<+
™o
LN
(CL
x
¢J
| S
mn

with the equation

Csima) — SR+ SWrw) + B V) - U0

vie.ding the result §Fa term bed/ ( EPSI/X"/ ) from U being ignored)

,z b 3 2 2 2
Ve - - poo S < b»’._i d_
2 ¥ 2 °
;?pzvx g Pvi* 2 pryl T @F3%7 * 125>

-

e

V- . 2 L be d ¢
~e 8 pyr " 02 !_ p3v%’ T ?,]
- 2.C0 L il ke, 42
= - +
&N ANYE vx] ,
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5 = G, + G eon v 6 + G, cos 2y 0
+ /'7,(205(?“2)”*/;(6+JCO$CP‘/)’\43 t Leospike
tJocos(pr)ke + Hacos (praywe

in which Gy represents the major coefficient.

The simultaneous algebraic equations obtained in this case,

taking @ (¢ pPk3, are:
~2aG, 4G -%I bl +5 =0
_ 4G +(w‘_a)6, "gG’a —-——Z—H, ‘?I %I % -0
’ggt"@"f‘“yc’e - 8K -5 7, -5z - 2 He =0
-5 6, — 86, p(-ETH -8 ] =0

25 ""%_ G +5Ge - %H**Pav‘t("?s)m “z - =
b- G, -4 7+ L -4 T, =0
26 36, -56 e pwep - 9H, =0
% G, “%C’a -4 7% *P‘vf(w%)’He =0

(

B+2). For the sccond stabifity boundary in the neighborhood of '\/X VoV, 1/3 we employ the even trial function
0

again

- 58 -~
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An adeqguate sclution of the ol six ol thosd qud Lons taken together witn the first

1S apparem!ly.

— N _ \
o= - L& O i - _ [ b d
Vo TLT S 54 —. |0 G,z | -2 + &~
T Cp R I 2 (0/93‘,/:(‘/ % jC
- A — ("L
Jy= Lre/p L%__ :)u b"{' _ 1 cd /,_
yoz'Vxl “ eH FS‘VX ZL/ ‘Vx"- N k)i

-V ol S Y 7 o —t,Gx
3

J2T Tpryr Lz TR T 2y

H, = z+qPLq . _bd ’{G‘

He = ’,?fi/f [‘

with the second equation,

- d’ C‘lo t+ (’an- Q,)G (d /2)62 - (C/q)( H,- Hg) (bIZ ><Jx

this gives

Y A A N N .3
* = - - e'oz.v,,b

et St

V-l L L g be 4Nt
50 BP"JXL [¥a F‘!-,’;S w]

- L -5 be. - d 72
8,\/7— 12 L N3 Vi ,

The results of subsections (1) and (2) can thus be summarized as

2 ¢ L ee @2
gw /2[,\/3 -/] 'V}"V 8’”2-*,2[_ 3*',',;‘] ,
—\/

for the zone of instability associated with the‘VQ resonance. It is noted

Jo

that the width of this resonance is proportional to the square of the perturbation
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coefficients « and d that! the vaouss o 3"‘2_‘,3 At the iimitg of s1ebiity are an
-

) . v : X Z )
general not situated symmetrically aboat Z{‘ and moreover that when the term

?

2 L o f )~ T
in ¢” dominates as it will in our application with \&"—/75_ small the

unstable region occ ure exclusively for values of 7/«,{ below j/x'
g RO ;

J0
EL SV
C Q) An additional zone of instability, near ’)/ + 2 j/ »/V We write for

convenience N - ;1// and 7/ = /))/D whu"e}/ V- 2/ . The

equations
e |
¥ +§La.,+ocos%~/as

TleYees v, & ¢ (c/eycos an-w />% 5

AN

or

nof—
"
C)Q.Q

\}_
[ bcos ¢4 6

L‘"’"’_—\

t (L/2)cos g £ (c/p) cos(2¢-1)v% 6

t dcos (%-!)% e]f}d@

are then solved approximately by the trial function

y = B cosvep - T cos (2g~1) v O

*

+ To eos (26+l)v§, S .

The foilowing conditions are found to apply {(for either sign of the coefficient

of 005(2%_0,\/09) :



b

MURA-

o5

-

AN £
and, again noting -/, = & + )3‘”//(/ PN

) CANE

2 2 .
— V. = ¢/ ‘ 2
(%/Q) Vi, = 40 Dd/(EN ).
C{2). A similar result, with a reversal in sign of the entire right-hand side of

the equation, can be obtained for the companion stability boundary if sine functions

are used in place of cosine functions in the trial solution We accordingly write

Y

\ '
RSV B IEN EEE RV

[ (-7 - Cew yF [ ¢ 2 baype.

Summary of Stability Limits Found in Appendix III.

Stability limits for the equation
1}
8’ + [a+ bcoslve + (C/g\) COS(N’%)B
t (c/e)Cos (N+k) @ + dcos 8:{ % 0

are found associated with zones of instability as follows:

D |- ew)?| = 2] v o

)

when the upper sign is taken;

He

\VXL‘CZVQO\)ZI 2}% +J|)

when the lower sign is taken

(2
)Cz o[ be

2 2
——— -—’+-d-7< z-... : B—C-'-i.+._{._['b'e'+'21.
gue 12LW T S L B Tl Vi
when the lower sign appiies.

- -
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€ 2bd |

)2!:;{(:'? /y‘zi

for either sign of the term which
involves cos (N + 1{) 6.

(=

V=% - (e

(4) If we replace *& by ZVX in this last result, the equation

%“ +[a,+ becosve + (/) oS (N-2%)6

* N \ .
has a zone of instability defined by

| (N=24 ) (g@.>zfﬁ e+ £ } .
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ESTIMATE OF CREARACTERISTIC EXPONENT IN THE

UNSTABLLE REGION OF A HILL EQUATION

An approximate expression may be derived for the characteristic exponent,
A4, which characterizes the lapse-rate of an exponentially-growing solution in
the unstable region of a Hill equation. For this purpose we follow a procedure
analogous to that described by McLachlan. Lo
We dencte the even and odd characteristic solutions at the associated stability
boundaries by ¢ (8) and s(8) respectively. The solutions near the vertex of the
zone of instability may then be written approximately as
h s
4= e #e (et Se (e)]
in place of representing the Floquet factor within the bracket by expansion in a
compilete orthogonal set of functions. Substitution of tnis solution into the differ-
entlal equation
| ;
%’l + {:(a-se)‘a» =C
yields

Cc'tey £ Sa'e) £ E/ECC'@ t Sa'@]+[ 4+ f(a, 9)][C,t © t Sa (9)]: A

The eigensolutions satisfy
" _ u
> +{Caz,e>ﬁ =0 9 AL+ f\(dzve),& = 0.
and a; and a, are eigenvalues corresponding to the stability boundaries of the

problem. Thus ,
1 2y [ WNOF: 5A<a>’_] + C [#Bm-@]p @t S[#%a-a 2 |2(6)=0.

The coefficients of the even and odd functions in this approximate identity

may be related by multiplying through by ¢ (8) and by s (8) in turn and inte-
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grating, making use of the orthogonality of the (per.odici eigenfunctions which

correspond to the two distinct eigenvalues a) and ap In this way one obtains

C[/ae*a'"af]<cz> *'2/0-6(';/0/) =0

2/¢LC ey ¢ S[_/A2+a,—a.zj e5S =0,

where ( > denotes that the average value is taken. An approximate solution of the

resulting determinantal equation yields
2
LZ (a-‘a-r)<a2.*a-) <ct> < D
/l Y (& c_’> <C 4 D ’

If the parameter 'a'' lies midway between the two eigenvalues a; and a, the

[1¢

lapse~rate will thereby be maximized.

e N <08y [ap-a]?
/Avl'mdx. — | /
lac! Yy 4
‘ for a = Caﬂ*a.a)/e‘

The foregoing expressions for /u_,a may readily be applied to estimate the
lapse-rates associated with the resonances which form the subject of this report,
employing the estimates for their respective stability boundaries derived in
Appendix III. For the eigenfunctions c¢(8) and s (8) it is convenient merely to
take the cosine and sine functions which constitute the dominant terms of the trial

functions employed in estimating the stability boundaries.

Summary of Expressions Derived in Appendix IV for the Lapse-Rate

The lapse-rate, « nepers/radian, characterizing unstabie solutions of the

differential equation

8'” + F(Qx)@)& - O
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ie given in terms of the eigenvaluss ay, a; ana eigentfunctions c (8), s{6)

associated with the boundaries of the unstable region:

e

1

_ @-a)(ae-a)LctyLar)
Hlaey¢eatd ;

/u

ot = <& yedy P_},T
g .

mox {Re’y e al)
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APPENDIX V.

SMOOTH APPROXIMATION METHOD

It may be reca}ledsa that Walkinshaw applied a type of "smooth approxi-
mation' to an equation of the form
%,"'+ i:a,+ a((b\ + Dees (Né*h(@))]g =0,
in which the coefficient of y is slightly modulated in amplitude and frequency by
the relatively slowly-varying (periodic) functions g(8) and h(8). The procedure

followed appeared essentially to replace this equation by

' + 8) + bl =0
% +[a, %‘(9) 2[/\“. h'(e)jz‘]‘d'

and perform an expansion of the last term to obtain

L . b* h'(8) 7, -
8' +[O.+ ..QKJ-L-»%(G)" R ]\,{-O

With the elimination of the high-frequency component, a simple Hill (Mathieu)
equation is thus obtained

It may be of interest to carry through a similar procedure for the equations
considered in Appendix 111

A(l). The equation
8'“ + [a,+b cos N6 + (¢/2)cos (N- V)6
+(C/Q) cos (/Vf-‘/x)e + d CO% Vy 6] 8, =0

may be rewritten for the present purpose as

9" +[@ + dcos vk + (b+ccosv,(e)cosue]ta» = 0.

In this case it appears reasonable to replace this equation by

" (b+cCosyy)
% +[a.'rdcos‘\/xe+ SN X -:'46, -C
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or
] r 2 b.‘ -
7, 4t / ’ |9 ]
g + 1 Vy - ";“i'/”d‘) COS“./xe_j =0,
: b ‘alo ~ N
This simple Mathieu equation will exhibit instability for 7/;0 near 1/,,_/2‘
with the stability boundaries ziven by (see, for example Appendix 1)
* 2 2 . be
— SN - <+ )
ey | = 2]t ]
in agreement with the result of Appendix III A.
A{2) Likewise the equation
3" +[a+rbcos N@+ (c/a)cos(N-Vx)e
—(c/p)cos (Wevk )6 +deosrke] br—O
may be written

8'”"'(:0'*‘ beos N& + ¢ SINVOSIN NO 4+ dCOS‘L&e]g, =0

or, approximately

" [ardcos e + beos (WE - SNV &)y =0

If the suggesed smooth approximation is now made, one obtains -~
e

" : L o 1, =0
‘6 + [ﬂ‘f‘ dCosttB* = [V'VXCC/E)COS’\/xe]Z JL{

1 — 2 _
& +La’+2'bﬁz + (ﬁ‘,\—%v‘d)cosvxej*;@

8” r [ﬂ/g + “/’/VQC +d)cosvxe] o O.

Thus a simple Mathieu equation is again obtained, with the stability

boundaries of interest now given by

l“\/xe— (21/&)21: 2 ﬁ(—/\—/%g" rC/R )

in agreement with the result found in Appendix IITA for this case.
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— 4 e PRI + iy * " PN . . H 3 ;o
B On 're has.s of the differeniia. equation whi b resulted in Sed tion A 2) {rom

apptication of *he smooth approximation it appears ithai a narrow zone of insta -
bwlw',‘ , 1d 5 . y == y 3 - 3
ity would be expected near #y 4, for the equation
(4

o' e - ‘ =0

Zf T]Q +Dlos NG +CsIN B SIN N8 + d cosVy 6] F -
To obtan o jJuantizative description of this resonance, the smocth approximation
must be applied with somewhat more care however, than sufficed in A (2), since
the perturb.tion coetficients ¢ and d now enter in a mmore subtile way.

We commence by rewriting our differential equation in the form

X : 2 2
"y [as o (;+—£f—:53 S 2% 8)cos (N6 - S sw%8)

fdcosw/xejbr =0

a form which is equivalent through terms in c? Application of the''smooth
~~ approximation' in the manner employed previously, to remove the rapid

variation arising from the argument N6, yields the ''equivalent’ Hill equation

Cz * 2
b* (/+§5‘t5W%6)

PV ' A ”/.@ =O)
N (/ cos%@) oo ?f

a," + A+

ar

4

8"* a+§é~[ 2b"</+3 )]+%+J}cos%9-ﬁl(—3 )cosen/,}é 0.

At the 1{, = Z/JO resonance, the terms involving cos 1/’( & can contribute
C
to the width of the unstable zone 1o second order in the coefficient [:ﬂx/ba' f‘d ]3

the terms involving r“Z, on the other hand. can contribute directly and their effect

—
wili actually dominate in our application (“ﬂ;fﬁ_'; M‘M) . We proceed by
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application of the resuit of Appendin i ¥ with

S I Ay -]

?r‘\/zL‘ 2 p* M2
- V‘bi{. t
A s v d
T , kS
Y . C o 2V
v 3J'1>
w; ’1/;( .
et by
1/a ' ent
to obtain, in agreement with Appendix [11 B,
. g2
Bc_l —‘/L i b 2 2 z C '\/1. rb
L< Yy [ & L dT - <~——~;+J) 5 v L
8”‘(” /v‘) /2LN3+WJ SV VS 8»/2(’ e )t LN’ Y

as the condition for instability.

This result gives a width of the unstable zone which is proportional to the
square of the periurbation coefficients ¢ and d . U is noted that if the term in
CZ dominates, as it normally will in Qur application, the instability associated
with this resonanre will appear only for values of 7/440 below M . Since

J
z :
£'e /V is presumably quite small in this approximation, the correction terms

which involve this quantity might be dropped.

C. With respect to the resonance for which j -'/V considered in
Appendix HIIC, it will suffice for our application tc consider here the simplified
equation -
3”1'-[0. r bcoswe + (¢/2) cos(N- —mej a, =0 .

Regarding the term in cos N8 as definitely more rapidly varying than that in-
volving cos (N-—if,/() 6, it appears natural to replace this differential equation by

[a+ %;R + %COS(N-V}JS]K

or

1]
O

+[‘\/£ + % cos (N‘Vx}e:}j
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Again the stability boundarics of irterest are expectaed to be given by the

condition

I(N“W)z«— ’\2/3/9)2{ = < )

which {s consistent with the resuli of Appendix IIC when the cocflicient d is

sufficiently small that its effect can be neglected.

Summary of Results of Appendix V

Application of "smooth-approximation' methods is shown to lead to resuits
for stability boundaries of a Hill equation in agreement with those derived by a

variational method in Appendix III.



