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ABSTRACT: This paper presents a method for obtaining an approximate 

expression for the equilibrium orbit of a fixed field accelerator 

having an arbitrary magnetic field. Results are given for the 

general radial sector (Mark 1) and the general spiral sector 

(Mark V) machines. It is believed that the results should be 

good to 10 or 20~ for machines being considered at present. 

The results of the theory are compared with results obtained 

numerically. 
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I. Introduction 

This paper is the first of a series whose final aim is to obtain expressions for the 

stability limits, due to non linear resonances, of an accelerator having an arbitrary 

magnetic field. The first step in this program is to determine the equilibrium orbit 

of the particle in a general magnetic field and this is the problem treated in this 

paper . 

. This problem has been treated previously by T. Ohkawa for a Mark I machine 

and the more general machine is being treated at present by F. T. Cole. Our 

procedure and results differ from theirs in that we will attempt to get an approxi­

mate solution which has an accuracy of 10 to 20%. This will allow us to make 

approximations at the very beginning which will simplify the equations and will 

give us a simple general solution. The solutiorsfound by Ohkawa and Cole will 

provide more accuracy. The solution found in this paper should have the advantage 

of simplicity. 

II. Results 

lnthis section we will state the results for two kinds of magnetic fields. We 

will give the derivation in section III, where the approximations involved will be 

explained. 

Results for the General Radial Sector Machine (Mark I) 

Let us consider first the general radial sector magnetic field (the Mark I), 

This magnetic field has the form, in the median plane, 

(2. la) 
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h'( &) is periodic in ~ with the period ~."/ AI and we will expand it in a fourier 

series 
(2. lb)h(e) 

I 

where W~ :hN. 

To find the equilibrium orbit, we expand the motion around a circle of radius, 

R , where R will be chosen to make the amplitude of the motion about this circle 

small. Thus we will write 

(2.2) 
I 

where R is given by ...l­

R- r; ! ~c. \ K+J 
(2.3)(eN r. ) ) 

and b is given by 

(2.4) 

A graph of b against' is given in Fig. 1. for the case ho= I and for h =-I.o 

The equilibrium orbit is given then by 

(2.5) 

The circumference factor is given by C max, the maximum value of C (9), 

where 

C (e) :::: I + b L hh e ~ (..JtI 9 I 
(2.6)

n~o 

If hh = 0 for h.z. ~ and the hIt are real,. then 

(2.7)c..,,~x = I+~hh, 

(See Appendix B for derivation of circumference factor) 
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Results for the Spiral Sector Machine (Mark V). 

For this machine the magnetic field has the form, in the median plane,
£r \t( co •

H~ -== - H\~ J z.. h~ e (, !AI., ~ (2.7a) 

h:-~ 1 
where 

(2.7b)ep = ~ - ;'AJ ~.J:....r;­
All the results stated above for the radial sector machine, will hold for the spiral-

sector machine if one replaces in the above formulas h11 by hh ' where 

(2.8) 

III.. Derivation of the equilibrium orbit. 

In this derivation, we will make two assumptions which will allow us to greatly 

simplify the equations. 

Let us expand the motion about a circle of radius R I where R is chosen to 

make the motion about the circle as small as possible. The method of chosing R 

is given below. Let us then write 

(3.1) 

The two assumptions we will make can then be written as 

(3.2a)(~~r4<1 
and 

, (3.2b) 

The first condition just says that the slope of the equilibrium orbit d r / d (9­

obeys the condition (J r/ cJ (}") ~ < r. The second condition says that the 

magnetic field does not vary much in the radial direction over the amplitude of 

oscillation in the equilibrium orbit; that is, (r? ')t / Hi-) ( ~ Hi- /~ 'r ) -<" I 

on the orbit. It turns out, that the above two conditions are fulfilled by a broad 

class of machines. 
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The equation of motion in the median plane is 

--e r Hi: .
1'<:. (3. 3) 

Using condition (3. 2a), that \""'/1..« r- 4 , Eq. (3.3) can be simplified to 

yll- y" -...!.... r'H (3.4) 
pc:. i- •� 

Eq. (3.4) can be rewritten in terms of X as� 

j(" _ O+-x) '= ~ ~ (14- X)2. H~ . (3.5)
P< 

We will do all our calculations for the case of a general radial sector machine 

for the sake of simplicity. It will be clear, however, that any other magnetic 

field could be treated in the same way with very little change. 

Thus we will assume that 141:- is given by 
00 • 

(3.6)
)lit = - If ~t is>> hh e' 

where the quantities involvedaredefined in Sect. II. 

For this magnetic field Eq. (3.5) becomes� 

HR )K .1\+-7.. < J iW... ~
 ry." -(J+'X) =_.e _ LE..... (I +~) L. nl1 e . (3. 7) 
p~ l~ h 

Making use of the condition KX« J , we write Eq. (3. 7) as 

(3.8a) 

where 

(3.8b) 

(3. 8c) 
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and b is given by 

b = e H R (3.9)
Fe:. 

So far, the value of R and thus b has not been specified. As mentioned 

previously, we will chose Rand b to llRke X small. 

One could solve Eqs. (3. B) for 1 by expanding 't in a fourier series. However, 

we think it is more convenient to expand 'X in the flocquet solutions, L{JI (9o) 

of the equation 

(3.10) 

which is just the left hand side of Eq. (3. Ba) except that E's is replaced by EI' 
I 

and f~ may take on all values for which Eq. (3.10) has stable solutions. These 

,u JI can be made to form an orthonormal complete set (see the report MURA-ZOO 

for details) 

We expand 't in these flocquet solutions as 

x = ~ a2' AA I' (r:;) (3. 11) 
'2 

where ML(~) is the solution of Eq. (3.10) having the tune ~. and the E -value 

Ei . 

Putting (3.11) in Eq. (3. Ba) we can find the tJ.; using the orthonormality of the 

M t. The at are given by 

(3.12)'1. =� l Es - 1:.2 

and thus our equilibrium orbit is given by 

(3. 13)-L. [de' »t(&') f(t;I)
1:'

$ 
-£ 

I 
. 

Now we will chose Rand b so that the term in the expansion Eq. (3. 11) 

which correspond to 'Vi =0 vanishes. This means that b is determined by 
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the condition 

(3.14) 

where MI) lET) is the flocquet solution of Eq, (3,10) corresponding to )J= () 0 

The flocquet solution J.\ 0 (~) is given byl 

(3,15)~o(9) - J- 2 ,~ 
h~o t.ulol~ 

where '1{~J-= ~ C\ e,W.,lr and for the radial­
(J io'It" dtj I 

sector machine (Mark 1). '1\ is given by Eqo (3, 8c) as 

~YI -= - b ()(+-~) hn . (3,16) 

Substituting Eq. (3,15) forM. into Eq,(3, 14) and using Eq,(3, 8d) for f I~) • 

we get an equation for b 

1- b ho - ~ 6:4 Q<+~) L. _0 (3. 17) 
1'1.2' 

By solving Eq,(3.17) for b. we find 

(3.18)b~ t ~ J h~ + ~ $ 

where {3 ': Y ( k' -+ .<) ~ [\hn ,'2 / W.,4. J . This determines b. and now 
rtZI 

we can find R by using Eq. (3.9) 
..1- b...J-

1<+1h ': r: /..1''' \ K+-j • (3.19)
" '\.~eHr-;J 

In Eq. (3.18) for b. we chose the plus sign of the radical to get a positive b. 

We could also croOI:e the minus sign, which would mean that b, and thus p, is 

negative and this choice of sign will lead to the equilibrium orbit. for the particle 

going in the opposite direction. 

Now let us return to Eq. (3.13) and find the equilibrium orbit. Let us notice 

that since f (S) is periodic. only those ).Ii (~J appear for which V.· =01 ~ ~ t ~ N••. 

1 G. Parzen - MURA-200 
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We will assume that f s """ IY 4 or according to Eq. (3. 8b) that 

bkhCl IN1 .<.c I. This will turn out to be guaranteed by the condition KtX « J • 

Then in Eq. (313) we will drop E'~ compared with f;, as £,. ~ })~ ~ so F.,,-> N7 
Further, the flocquet solutions ,.u i (S ) in Eq. (3.13) for V/ =W.., 

i Wtl 9Y\ t t> J can be taken as just e (see Appendix A). 

Thus Eq. (3.13) gives for the equilibrium orbit 

I'f, = b 2 h~ e ~ VJ~ e (3.14) 
11$0 W: 

Now that we have found the equilibrium orbit, let us find what restrictions 

conditions (3.2) put on the magnetic field. The condition Ld 'X I d& ")1...("<:: I gives 

(3.l5a) 

and the condition I< "i .t.~ J gives� 

(3.l5b)� 

In Section IV, we will show how well these conditions are fulfilled. 

The above derivation was carried through for the general radial-sector� 

magnetic field. The general spiral-sector field goes through in much the same� 

way. The results are given in Sect. II.� 

IV.. Comparison with numerical results 

We will compare our theoretical results with numerical calculations for two� 

radial sector machines. Machine I is a "small" machine with IV = 12. Machine� 

II is a "large" machine with N= 54.� 

We will find 't at t1 =0 on the equilibrium orbit which is the'stable fixed point". 
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Let us introduce the variable ::z defined by 

(4.1) 

-
~ is the quantity computed on the ffiM 704 and it is related to "X in our paper by 

r. (I + ~) '= ~ ( \ + 'X) or 

(4.2) 

If the momentum P. and Hand r, in Eq. (2. 7a) for the magnetic field. are so 

~ - ~ 61<+/chosen that f<: :: e H r; then by Eq. f2.3) 1\ - r I and Eq. (4.2) can be 
I J 

written as 

(4.3) 

Machine I is defined by IV = 12. I<. = 8. ho = 1 h, = 3.1� 

Machine II is defined by N =54. 1< =168. ~o = 1. h, =3.1� 

Comparison of theory and experiment is given in the following table� 

"X at 6'= o. 

Machine Theory Experiment 

I -.030 -.0376 

II -1. 74 x 10- 3 -1. 83 x 10- 3 

Let us see how well conditions (3. 2) are obeyed.� 

For Machine 1. b:=. 61� 

and Lb hi //\/ )~ -- . 
and b (1<1 N~) hi = • I 

For Machine II. b = . 6 

and (A ~ I rJ 9') "l. ~ I. ~ "$ )( I () - 3 

and 1< 'X "'" • , 
Thus we can expect an accuracy of 10 - 20lfO in our results. 
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Appendix A 

~ w., 9­
In Section III. we assumed that "ui (9) ~ e and that :t i. ~ ~~
 

when the tune V,, :' W"" . We would like to discuss here the error� 

introduced by these assumptions.� 

The error in the above approximations for ),J; Un and e' is of order 
l. 

/ N a. the q being defined by Eq. (3.16). The error is then of 
J� (),., 

order� b k h~.., / N ~ This error can at most be as large as� 

if there is a large second harmonic� 

Appendix B 

We would like to indicate here the derivation of the circumference factor results 

given in Section II. 

Let f (9) be the radius of curvature of the orbit and let f min be the minimum 

value. We define the circumference factor as Cmax = R/ pmin. Now since 

'If =e#t: /Pc. we can use Eq. (3.5) to eliminate »1 and we find for C (t; ) = R/ f(t;) 

(B. 1)� 

In Eq.(B.l) we have assumed 'X <' I and have dropped terms of order X •� 

Now using Eq. (3.14) for X I the equilibrium orbit. we find that� 

YJ e i. W., 9 J.� (B. 2)((~) -:::� I\+ b L h
h* 0 
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