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ABSTRACT: Data obtained concerning the convergence of a simple FOROCYL
potential problem are analysized, in keeping with a suggestion of
K.R. Symon, to indicate the lapse-rate which characterizes the
convergence on meshes of various sizes. Working formulas are
then given to indicate the number of iterations and the estimated
computation time required to attain a desired degree of con-

vergence in this particular example.
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I. Introduction:

We have previously reported, at a MURA sesquimonthly technical meetingl, the
results of certain tests of the FOROCYL computational program. 2 In these tests
data were obtained concerning the rate of convergence, with meshes of various sizes

2

for an azimuthally-independent problem with the exact analytic solution (k+ 1 odd):

|+ (wn)* @ren)/
k + being 3 in this work. Specifically, () = 2 (/= &»

3778974 872
As a result of considerations concerning "eigenpoles' © , Dr. Symon has pointed

out that after a relatively small number of iterations a solution may be expected to
converge exponentially to the final solution, with a lapse-rate characteristic of a
single eigen-solution. It was suggested that it would be of ipterest to present the
existing data in this light and that knowledge of the prevailing lapse-rate for a given
situation would permit predictions of the iterations required to attain a given
accuracy in other problems involing the same geometrical configuration. As Symon
has observed, the basic lapse-rate associated with a given pole-configuration might,
in fact, be most conveniently obtained in a short preliminary run with zero poten-
tial on the boundaries ( and some non-zero initial values within the mesh), since
then the convergence limit (o) is known in advance.

It should be noted that the limiting solution—i. e., the solution approached as
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the number of iterations becomes large--is the theoretical solution of the computational
algorism and may differ noticeably from the true solution of the differential equation

when a coarse mesh is employed.

II. Results:

The available convergence data, for tests involving meshes of dimensions (ax b )
25x 5, 50 x9, 100x 17, and 200 x 33, were analysized by semi-logarithmic plots
of the residual error vs. the number of iterations. The lapse-rates indicated by such
plots appeared, moreover, to be inversely proportional to the mesh-area, taken as

ax (b -1), as indicated in the following table.

Mesh Mesh Area Lapse-Rate .| Product

axb a x (b-1) Decades/Iteration | (Lapse-Rate) x Area
25 % 5 100 ©0.1541 15. 4

90x 9 400 0.0393 15. 7
100 x 17 1600 O; 010 16
200 x 33 6400 0.0024 15. 4

L. Correlation With € :
Ignoring any transient behaviour prior to the onset of a purely exponential decrease
of error, an initial error Ea is reduced, after I iterations, to

-z
E:LL; /0

J

/J representing the lapse-rate in decades per iteration. The computation proceeds

until the change of yalue in a single iteration is less than a prescribed € . The

requisite number of iterations may thus be estimated for the present configuration as:

-3 -
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7 - éozﬂﬁ/z)) + Zog//‘fo/é)

A

- 036222 4 ﬁ;ﬁ«&/g)
A

- o-oef[a x (F-1)][ 036222 + %j [/‘5’/5)]

-4 y
Similarly, supposing the speed of computation to be roughly g7 x /0 20 ’f"
Tteration . Area

the requisite time becomes '
- ) 29 + ﬁg /“Ea/é') .
77 . 0.7x/09[ax(/-/y 0"’6’22,“ c mea

= 4.5 % /o'?'a x(€-1)] 1[0-36.?.?.2 + 4; ﬁ(fo/g)] min,

with /a = /5.4 Ja x((,,)] decades per iteration.

We give below some examples of the application of these formulas, with £,

at the check-point('o; = 0.08) takentobe £, = 7.9/85 X /0-9_

Example 1:

Jo0 X /7 /lesh € - / Xx/0

- o
&//72{ 6()(/(-/):/{00) £0:7.7/£5’)(/01M/(=-0-0/ s

/70

[Ca-/c = 0'055 X /600 Xf’.?é = S57 4'/¢ra//o'h.r~5
Iaéserno( = Joé,

- -£
Teate = 45510 x (1600)x T26 = 60 mii

-~
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Example 2:
-&
200 x 33 Mesh, E = J x/0 .,
3
With a x (b-1) = 6400, _ -/ _ -
Eo = 7.9/85 X10 | and 2 =24 X0 ,

-an/c = 0065 X 4900 Xld = 900 /'fera,f/o.a.rl' ‘
-Z—OAS'ckuEd = 227.

-6 '
7:alc = 7-5x/0 ¥ (é?aa)zx,?./g = Y00 miay

T ohserved 22 360 mmser .

IV. Conclusion:

It should be emphasised in closing that the particular case considered here
represents an especially simple configuration. It is believed that Dr. Symon is
acquiring additional information concerning the lapse-rate which will prevail for

other configurations in connection with his study of eigen-poles.

V. References:
1
MURA Sesquimonthly Technical Meeting, Minutes #13 (January 4 and 5, 1957).

2 MURA Report-221, Internal, I.B.M. Program (February-March, 1957).
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