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ABSTRACT: 

Hamiltonian algebraic transformations which can 

lead to extensive exponential y-growth are discussed 

in regard to the threshold for y-growth. Computational 

examples are given. 
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L Motiv~tign: 
i 

As is well known, non-linear coupling between the radial and 

axial motion ~n particle accelerators can lead to extensive ex­

ponential growth ·of the axial oscillations. The y-growth appears to 

be more rapid the further the x-amplitude is above a critical 

threshold value and the threshold becomes zero as a resonant relation 

between the radial and axial frequencies is approached. The amplitudes 

resulting from y..growth may differ sufficiently from those prevail­

ing originally that instability is soon seen tp develop, but in other 

case9 the y-growth is found to "turn.over" and stability, for at least 

a limited interval of time, appears indicated. 

Certain aspects of th~se phenomena have been studied both 

analytically and computationally. The computations may be based 

either on differential equations which represent closely those which 

govern particle motion in an actual accelerator or they may employ 

idealized differential equations which, it is supposed, contatn 

the essential significant features of the exact equations. In 

either case, however ~ the comput at.Lona I time required for the 

integration of any particular problem is sufficiently great as 

normally to preclude carrying a single computation beyond a few 

hundred "sectors" -- i.e., through perhaps 100 oscillations. 

It appears noteworthy that the y-growth and turn-over found 

by integration of differential equations for an AG (alternating­

gradient) accelerator may be replicated fairly closely by a suitable 

non-AG problem and that, in the latter case, the particle does not 

appear to enter during the computation all regions of phase-space 

which are energetically available to it. $ince some of the particles 
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which the computations thus indicate as "stable", in the equivalent 

non..AG structure under consideration, have sufficient energy to 

become unstable by t~aversal of a pass in the potential=energy surface, 

there is some interest in the ultimate fate of such particles. 

Because of the interest in more extended computations, atten­

tion is directed to the use of algebraic transformations, which may 

be performed with a speed perhaps two ord.rs of magnitude greater 

than typical for solution of differential equations. Although a 

close equivalence between the differential equations ano some specific 

transformation may be difficult to establish definitJliely, it appears 

possible to find transformations which describe well the general 

features of the solutions found computationally for the differential 

equations of in~erest. 

We consider in this report a particular type of algebraic 

t~ansformations which may be representative of mot~on influenced 

by the crx = 2 tTy resonance. The scaling features and threshold 

for y-growth are discussed. Examples of computations through 1200 

sectors, performed by the ALGYTEE program are also given. 

2. Statement of the Algebraic Transformation Under Consideration: 

We consider here a transformation in which the coupling is 

provided by the addition of y2 terms to the equations for x'?,x 

and by the addition of xy terms to the equations for y, ~y: 

"'/I." «"" ?I'.I/.-I r h-;r 1'#<n-I rph.)(t,,/k"j ) 't,,~
 

-f;t~ ::. ~7' ?<;JL-/ ~ ~ fJ~_1 +-P/o/(j;r/.,t~ )V;.I� 

{>I." at /n-I +.., -1""_1 r A ?f'''_1 'Yn-/ 

-1',,, :...c.-J 1n-1 +' 1';1"-1 + A(j~ 1-1)7('1-1 "y"-I 

( 1) 
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wi th /47f .t7')-:=. ,> / a.d- ~r J~ I ~ and the 

A:.,~ Jr ~1 J'j­
coupling terms selected to have coefficients which depend on a 

single parameter i1 to insure that the transformation be Hamil~ 

tonian* (as ~djudged.from the bracket expressions). 

If, for simplicity, we wish the diagonal members of the 

linear part of the x, 'fx transformation to be equal and likewise 

for the y,~y transformation (corresponding to the situation in 

whic~ the amplitude functions for the associated Floquet solutions 

are stationary at the point of reference), we may put 

and (2) 

(3 ) 

* The eq\lations actually iterated on the computer in ALGYrEE runs 
10..18 were strictly not Hamiltonian, but would become so by a 
trivial (non-canonical) tran$format,\on such that the y and., 
values ~mployed by the computer be each multiplied by the scaYe 
factor i:-<C. .1. to obtain the corresponding canonical quantities. 

i~1" . 
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This transformation is seen to be of the same form as (1) 

(.?l ~ ;., / ~ "" now playing the role of ?t), with symmetry in the 

diagonal elements of the linear portion. By suitably choosing 

d\.. x and d., y' the off-diagonal elements may also be made equal 

save for sign specifically, identifying (1/2X ax + dx) = cos ~ 

~ ~ 7./ ~:z.~?(and (1/2X ay + dy) = cos "X' , we choose iX." = and ;::.~ •
:eJ( i 

As a result we finally obtain I. ~ 

X:n~ (.-v)X •• +- ("':"-rJ)1in.' +- ~ :;i'( Yl/~' 
. r . 

n

";\/ ~-d V'"
~n; -(~ lI)Zn_1 +~T/)~n_1 +-:r ~.,( lh-I (4) 

y;. :::. ~ 'X) Y,,_,+-~~) 'PYn_I + ~' X 11-' Y"-I 

'Pi. '" ~ (~ 1() r:; _/ +-~ 1() PY,J-/ + A"~ "?)).x:;;_/ '("-J • 
~ 

This conveniently simple form for the transformation is thus seen 

to be inherently as general as the original form (1) and will serve 

as the basis of the analysis to follow. 

3. Analysis Concerning the Onset of Y.Growth: 

A. Method: 

If we direct our attention to cases in which the axial-ampli­

tude is initially very small, we may analyze the trqnsformation 

equations in the spirit of Walkinshaw. The y;t.terms are accordingly 

ignored in the recursion relations for the radial motion, whereupon 

the radial motion becomes represented by linear difference equations 

whose solution may be entered as a prescribed function of n into the 

axial equations. It 1s recognized, of course, that this procedure 

destroys the Hamiltonian form of the equations treated and precludes 

drawing in this way any inferences concerning the eventual chara~ter 
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of the motion when Y may have grown to large amplitudes.� 

Proceeding to ignore the t": term in the rand 1!J: equations,� 

the solution for the radial motion becomes� 

.zn::.~ntJ).ro + ~ ?Ill) £0 ' 
This solution, when inserted into the remaining (axial) equations,� 

then gives� 

y,;. {tt>- 1f + '?i 'lie-- (Y/~/) '1/)r, +- (...:.. (n -1)---) f?r.J} '1";..;'" ~ 7{)l'Yn_1 

'Py" -:- [-~ 7(+ )'4~11~(n-I)-V)X •-I-~ (" -/}v)tl;<:j) Y,,-,..-~ >'()~./J 
which, it may be noted, is a transformation with determinant unity • 

. The two equations just written may, for the present purposes, be 

conveniently replaced by a second-order recursion relation involving 

only the quantities ~. :

"'1 -[;..~ 'f()..J. A'IJ<- l/'tIlzo+(.a;.,. n-v}1Z.g Y.: + Yn -I:; O. 
Since t'" expression within the square brackets may be interpreted 

as the radial displacement, it is natural to replace it by A cos ~ V-i-6), 

in which A represents the amplitude of the (prescribed) radial 

motion and in which the phase-shift € may be ignored for reasons 

of convenience. We accordingly direct our attention to the ~quation 

~+I-r;ClJ-1(+~'!~n-u]Ynr: ~-J: a 

B. Solution for Threshold by Use of Corresponding Differential 
Equation~ 

It is informative to note that, if ~ and 'A'A are taken as� 

small, the equation just obtained at the end of the preceding sub­�

section may be nicely approximated by a Mathieu differential� 

equation of a type similar to that encountered in other treatments� 

of y-growth. We note that� 

d~Y \/ - 2 y;, +- ~_Id ~ ~ 11'1+1 
n 
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and obtain I 
J1.Y + f?w (t,,~7()- AA~ tlr] Y ~ 0 
dn~
 

d~y
 + [*1(:J._ )/)~vn] y=.o 
dn~ 

or, with -zln S!5 ~r, 

;;~ + [(-~7rt- 'I~~ ~ :u:Jy= o. 
The stability boundaries pertinent to the er x = 20ry resonance 

( ~ = 2 1t) are then, for 4 ~ ....AI.,) 2 small, of course given approxi= 

mately by 

or 

In terms of the quantities involved in our original transformation 

(1 ), 

amplitude of x = A/~x 

=:14 A' IV~- (:l'1I() ')0/ 

C. Threshold of Difference Equations: 

It would be a more consistant procedure to derive directly 

the stability limits for the difference equations, without recourse 

to any allegedly-similar differential equation. It appears that this 

may be done by a variational method which closely parallels the method 

whereby we have elsewhere estimated stability limits for diverse 

Hill equations. 

We imagine that 1Y is commensurate with the interval covered 

by the transformation, in that a whole number of 
, 

radial oscillations 
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will fit into some whole number of transformation intervals. For 

convenience, then, we write 

1';/:::; rn. (~~~ wt-/;h tJ»J ;l7te.~f:,"".5 ((, ellen). 

By employing the" concept that periodic solutions of the difference 

equations corresp~nd to stability boundaries, we then consider 

~:,., -£~~ 1( +A;A ~i .2;-r)J '4 + Y;-I -:::. 0 

with )J+-p - 'rd. 
(Solutions conforming to the aforementioned boundary condition are 

thus periodic in the interval An '= 1'. ) 
The recursion equations written above are those which formally 

result from minimizing* the expression 

S:: ~ 1, -I- '0 }i + .. • . + ~'-I ~. + '1 r;.+1 r. · ·+ ~..t ~-, + ~-, r; 
-- ±Is c-« ~ +AAJYu ~
 

-{ [:L ~;4"" -I-A~ Ck..J fb'fn7{J Y; ~
 
,t ,,'" /: ~1'h'1( ) 7 ~
 
-~ [~~. ~~,1 A~ l.2. ? /.J Y2J 

-i {G ~ ~ of ':1/,4~ G· ~m/lt')J'0. z, .. -� ..., 
, ;; .2 In'?t)) 1 V a .-f#~~+)'ii~(((J- 1) -;;- '.J ';_1 r 

The connection between ?( , v and A at the stability boundaries 

can then be sought by the introduction of suitable trial solutions 

into 8. For the purpose of this report it may be sufficient to 

consider, in turn, the simple forms 
A ... '__ -trm 
~;t ­

?� 

*� A rigorous development of this method might better regard the 
"minimization" as causing a sum to be stationary subject to an 
auxiliary (isoperimetric) condition. The use of a Lagrange 
multiplier should then result in the equations with which we 
are concerned here. 
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and, alternatively ~ _ .c 
~ j. '1f~,Ii ­ I ?

which represent the dominant terms of solutions appropriate in the 

neighbor~ood of the ~x = 2~y resonance. 

With the first of these trial solutions, ~ becomes given by 

(r,)t=A ~ Y --k~7(--i ";j~J"B;~ 

and is II s t a t Lonar-y" (for 8;~ ()) when 

A- .s: ~ ~m --~-X]tI
~I is- I' ) 

similarly, with the second trial solution, 

(11)) ~ '" [i ~ -I( -{ ""'""' 1/;-f '4/1]c, ~ 
and 1/= fr L~ ~- --e-- '1r; ]. 

Recalling that ff~/f =V/2, we thus find the stability boundaries 

to be approximately located at 

IJ.:.. -fr /~7( -Ala--tVh )! 
=-h- /~ z (vI,,)-~ fI,(-n b.)!J 

A 
or 

=. ~ I~ a- (,;/11 )-~ :l-('7( /;1.)L • 
ampli tude of 1< Il 

With ~ small one notes that this result for the threshold 

reduces to that obtained from consideration of a differential equa­

tion (cited at the end of sub-section B): 

amp Li tude of ?f ~ 2/~ I-t/~- ~ -;r) ~/. 

* In terms of the quantities cos 7/ and cos I'( most directly available 
from the original transformation, this result may be written 
perhaps most conveniently for calculation as 

ampli tude of x '" {-/ II of-~.., - 7( /. 
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and, alternatively V~ _ C 
~;i '1{mt;,Ii ­ I ?

which represent the dominant terms of solutions appropriate in the 

neighborhood of the ~x = 2~y resonance. 

With the first of these trial solutions, ~ becomes given by 

(r,)C=f{. ~ Y -.-t~7{--f A'AJ~~ 

and is II stationary" (for B;=t: 0) when 

A--4 L~~rn -~~J; 
A ,p 

similarly, with the second trial solution, 

(11') ~ ~ it. ~ "'" -{ --- '!f~ -fAll] c, £ 

and II=- f L~ 'K-~ '1r; ]. 
Recalling that ff~/f =V/2, we thus find the stability boundaries 

to be approximately located at 

/I.:.. fr /~7( -~Gh)/ 
=+/~:I.(V/'1)-~~("I( b.J/J 

or 
,y =!/~ a.. (,;/11 )-~ :L("1( /2)L It 

ampli tude of /' rl 

With ~ small one notes that this result for the threshold 

reduces to that obtained from consideration of a differential equa­

tion (cited at the end of sUb-section B): 

'amp Li, tude of ?f ~ 2'>' /-u-::L_ ~ -K) ~ 

* In terms of the quantities cos v and cos ~ most directly available 
from the original transformation, this result may be written 
perhaps most conveniently for calculation as 

amplitude of x =.-f11 1 +-;:-..1 --7<:/. 
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4. Estimate of Lapse-Rate~ 

An estimate for the lapse-rate to be expected when the initial 

radial amplitude is above threshold may be readily obtained by 

reference to the differential equation cited in Section 3B. The 

general procedure for obtaining such an estimate has been outlined by 

McLachlan 0'TheOry and Application of Mathieu Functions" (Claredon 

Press, Oxford, 1947), Sects. 4.90 - 4.91~ and has been applied in 

previous discussions of y-growth. 

In this way the lapse-rate associated with the Mathieu equation 

cited is found to be 

(A 'Iv2.)i,l/ it.. A~J,~~ nepers per unit increment of '7;; , 

or 
I

/'1 __ I 
nepers per iteration.-~ ~y,4 ~- A ~Jtr, 

In terms of the amplitude "alf for our initial variable Ifx", the 

corresponding lapse-rate is 

nepers per iteration 

or 

().JI115 ('}./1/) 16':.a:l" decades per iteration.
'i;-,. ... 

A procedure parallel to that outlined by McLachlan, if applied 

to the difference equations, suggests a lapse rate which, when 
I 

small, is 

f~ (71/~ ~~-a..~~". nepers per iteration 

or 
---?~ ~ ­O./ltS '1~ (v /:~.,JJ;~a2. . decades per iteration.

#,;.. 
This formula, which for,) small reduces to the result found for the 

differential equation, is presumably preferable for predicting the 

lapse-rate developed by the transformation. 
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For hand calculations we write 

A ...)a '4_ a.~ltr~ 
nepers per iterationLap s e- Rat e =- ;;:---;:=:;:::===~ 

I -14 (1-~ "1J) 
.:: ~., 5355 .1 -Iif. a. -A;;, "'. decades per iteration. 

y1- ~-rI 
5.� Generating Function: 

The transformation (4) may be written 

X" =-~v)Xn-1 -;-~ v) Ii n fl, 

~ ~(~..-eJ)X +~-tJ)'7~ -?\i'/~)(~-1()'r;,-1

n-I n-/ (..-< 'I .o-n 

~:: ~~) Yn-I +(~ 't()PyY1 
'R ,. (.4..- '1'f) tn_I -f ~ '?() "Pt" -A I ~ 7<) Xn-I Yn-I. 

Yll-1 

These relations may be derived from a generating function 

W(&Y1) 'PYn; Z. n -I; Y;:-I) 
:;. 1- (~v)Xn~1 +~V)}(I1_1 ~J, +~ ~-t/)1in ~ 

- (A ~)~ ~)~-I 'f;-I
2­

+.{ ~~) ~~ +-~ *) Y;;-I 7Yn -r~~ ~ )"PYh~ 

r;::::.� J IN'/) -PyI? 

p~ -I:: ~ W/j Yn -/ " 
It is possible that this generating function will be found 

of use in the further application of dynamical theory to ~rans­

formations reduceable to the form represented by equations (4). 

6.� The Inverse Transformation: 

The inverse of transformation (4) is found to be 

A-n_1 :: (~'U):z.n - (~-rJ) ~ 17 

(~) 
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1]:n-1 :. (~-v)rn 7- ~-u)t;1? -())J/~~'A')f(~~)~_(4"')ry~] 

~_I;;' ~~) Yt) -~ /() PYn 

1Yn -/ ~ (/J4 ~) Y" of ~ 'K) % . 
_~/(~ ~)g~ v)XY}-~ -&I) &n][{~~) Yn-~7S) PfnJ. 

As with the forward transformation, this inverse transformation is 

again a rational algebraic transformation of degree not exceeding 

two. It would appear that transformations of this degree could 

be synthesized so that a closer similarity of form would obtain 

between the direct and inverse forms. 

7. Computational Example: 

A. Discussion: 

A transformation equivalent in form to (4) has been run on� 

the I.B.M.-704 computer by aid of the ALGYTEE program. Denoting the� 

variables employed by the computer as~, ~ , ~ , and ~ ,� 

the equations directly iterated (Runs 10-18) were� 

~:; ~. /~R4-1 +;. 7~J/ ~ -r-. //S'g'l7!f ~'J-~
 
/) 1'/-1 ~ 

5~¥~ -. I~e ~ - .oo S~R&~R~_/ 
~ = r:» (,,-I ~"_I 

... TA _ .7'1~ +2"J,tJ~ +.18~_/~1J-/ 
':r~ - '1-1 '~I1-1 

-e =. _. J7'1~_1 +- .. '7f~ -J-. 22e24:./ ~_I./-r; h-I 

These equations may be put into the form (1) ~see footnote,·� 

section 2~ by the substitution (change of sc~e)
 

1;'::; 'X.,i 215' =;'1'/;· JjS~ 'I 
~,:.~. ~·=!!1JIJ·9S~Y 

to become of the Hamiltonian form: z, 

;<n ~ -./~8 7"_1 -I-~ 7 ~y I'~ III_I -f. :<b/J, ~h-I
 

-f>~ =-. 51, 'I ?t~ ..1 - "/~~ "~n-I -" 0 19Z j 2."_1� 
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t".� 
~ • 1'1 -#n -I +- e2.. ·~d f/A-I ~ , 7R ;;(;'_1 #11_11n 
;;. -, /'1~ Yn-I +, 7~ 1/11 - 1 -1-, 2:2,2~" -I ~ J') - / Jt/~ 

'Idt~ ;1 -.:; • 78~' ~ 7/ :::. -,/;l.JJ 41k/ A:tku it"::. , '1f. 

From t~e results of Section 3C we expect the threshold x­

amplitude for this problem to be 

d.r hr .� :::. ~.~"i[;' '1~_ -11/. Y3ij 
=0- ¥/ . 

The computational results to be reported suggest 

d-� , :. O. .38gg ().31elJ r 

for this transformation, affording what may be regarded as a 

satisfactory check of the theory. (The approximate theore~ical 

result, obtained from a differential equation in the limitin9 

case� of small "1(, is t1!{t~'I'. =. O. IfS5 , in somewhat poorer aqz-eemerrt 

with� the computational result.) 

Likewise, for the lapse-rate, the results at the end of 

Section 4 suggest 
o. IS 355 )f t>. '18_I: ~ 

decades per iterationY".8'lN fa -1JI,-tAr.2­

or decades per iteration 

(to employ the computational result for the threshold amplitude). 

We tabulate below the lapse-rates calculated from this last formula 

and the corresponding values observed from the computations. It 

may be noted that the form of the theoretical equation suggests 
2,that the sguare of the lapse-rate will grow linearly with a for 

values of a ~ athr~ , a prediction which appears to be substantiated 

by the computations. The theoretical and computational results for 

d(~~)/da2 are, respectively, 00016 and 0.014 (decades/iteration)2. 
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CORRECTION - To MURA-246 (Int.) 

"CONCERNING THE y-GROWTH PHENOMENON 

EXHmITED BY ALGEBRAIC TRANSFOR MATIONS II 

1. We have detected a slight numerical error in the calculations to an example given 

in Section 7A of MURA-246 (Int.). On p. 13, the expected lapse-rate should read 

2 20.15355 x O. 78 I a - a� decades per iterationthr . 
";1.128 

or 0.11277 -Va2 - 0.1505 decades per iteration when the computational result 

for the threshold amplitude is employed. 

2. The theoretical and computational results for d Cf4 2)jd{a2) accordingly are 

0.013 and 0.014 {decades/iteration)2, respectively. 

3.� The table on p.14 should read 

Lapse-Rate (decades per iteration).%0 I ?<:.o - Q.Mr.\ 
Calc. from Theory From ffiM Computations 

- 0.4 Q.Ol 0.011 0.0116 

- 0.6 0.21 0.052 0.055 

- 0.8 0.41 0.079 0.084 

- 1. 0 0.61 0.104� 0.11 

4. Similar results, giving a computational value of d(p2)/d{a2) just slightly greater 

than the theoretical value, have also been obtained in subsequent computations with 

a similar transformation for which cosv =-0.125, cos 1( = 0.75, andA =1. 

L. Jackson Laslett 
March 25, 1957 


