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'ABSTRACT :
Hamiltonian algebraic transformations which can
lead to extensive exponential y-growth are discussed
in regard to the threshold for y-growth. Computational

examples are given,

Contents
1, Motivation
2. Statement of the Algebraic Transformation

3, Analysis Concerning the Onset of y-growth

A. Method ,
B. Solution for Threshold by Use of Differential
Equation

C. Threshold of Difference Equation
4, Estimate of Lapse-Rate
5. Generating Function
6. The Inverse Transformation
7. Computational Example

A. Discussion
B. Method

* Supported by Contract AEC No. AT(11-1)-384.

*¥ On leave from Iowa State College, Ames, Iowa.



MURA -246
"Internal

1. Motivgfign:

| As is well known, non-linear coubling between the radial and
axial mofion in particle.acceleratoré can lead to extensive ex-
ponential growth'bf the axial oscillations. The y-growth appears to
be more rapid the further the x-amplitude is above a critical
threshold valde and the threshold becomes zero as a resonant relation
between the radial and axial frequencies is'approaqhed. The amplitudes
resulting from y;growth may differ sufficiéntiy from those prevail-
ing originally that instability is soon seen to develop, but in other
cases the y-growth is found to "turn-over" and stabllity, for at least
a limited interval of time, appears indicated. '

Certain aspects of these phenomeha have been studied both
analytically and computationally.‘ The computations may be based
either 6h differential‘quations which represent closely those which
govern particle\métioh in an actual‘aCCelerator or they may‘employ
idealiééd differential équations which, it is supposed, dontain
thg'essential siQnificant‘féatures of the exact equations. 1In
either case, hoWéver; the cémputational time required for the |
'integration of éhy particular problem is sufficiéntly great as
normally to preclude carrying a singlé computation beyond a few
hundred "sectors® == i.e., through pérhaps 100 oscillations,

It appears noteworthy that the y-growth and turn-over found
by integration of differential eduations for an AG (alternating-
gradient) accelerator may be replicated fairly closely by a suitable
non-AG problem and that, in the latter case, the particle does not
appear to enter during the computation all regions of phaée-space

which are energetically available to it. Since some of the particles

-2 -
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which the computations thus indicate as "stable", in the equivalent
non-AG structure under consideration, have sufficient energy to
become unstable by traversal of a pass in the potential-energy surface,
there is‘some interest in the ultimate fate of such particles.

Because of the interest in more extended computations, atten-
tion is directed to the use of algebraic transformations, which may
be performed with a speed perhaps two orders of magnitude greater
than typical for solution of differential equations. Although a
close equivalence‘between the differential equations and some specific
transformationvmay be difficult to establish definit¥ely, it appears

possible to find transformations which describe well the general

| features of the solutions found computationally for the differential
equations of interest.

We consider in this report a particular type of algebraic
transformations which may be representative of motion influenced
by the o, = 20-y resonance. The scaling features and threshold
for y-growth are discussed. Examples of computations through l200>

sectors, performed by the ALGYTEE program are also given,

2, Statement of the Algebraic Transformation Under Consideration:

We consider here a transformation in which the coupling is

provided by the addition of y2 terms to the equations for x, %x
and by the addition of xy terms to the equations for y,*7by:

An= Ay 7(4_/ + ]70,(”_'/ -f'()/z)(&x//‘“;() 7;,'_2,
Ton= % Zn-s* d, 709;1_,*/3/“)@/3'/"{’; )y,f’.,
fn = Yy Fes +j;q ., A Ay Gn-s
B0 Goes 7y i, 2y ) s

-3 -
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/dvr - £ /a; Ay |
with =/, =/ , and the
<x J;t | /éy J%

coupling terms selected to have coefficients which depend on a
single parameter';% to insure that the transformation be Hamil~
tonian* (as adjudged from the bracket eXpressionS).

I1f, for simplicity, we wish the diagonal members of the
linear part of the x,7ﬁ% transformation to be equal and likewise
for the Y’1’y transformation (corresponding to the situation in
which the amplitude functions for the associated Floquet solutions

- are stationary at the peint of reference), we may put

X %x
B . T |ax-dx ___....
zlj TW; Kz
Y d
P . = Xy~ _J-—- o
o '
4Y'¢7 2 y #4 , ‘19 ;‘ | |
In terms of the upper-case variables the transszfatlon then reads
[/ d 3 K [~ 4 2
Xn‘ 7r+zX + ok j,,&”_, +2 ;fi ‘&; -
[J’(‘X"‘"/XZJ /_Z *q;r J«E q3'+47 , -
h Az/@, - %X“y —7— Y-I
+d
Ak a R ALY jﬂ’n il Yn-

’P [1&71"43)) /Y *'d#’P +__L d’;-ra'? o K_’
Y o * A=)

VY oty g

and

(2)

(3)

* The equatlons actually iterated on the computer in ALGYTEE runs
10-18 were strictly not Hamiltonian, but would become so by a
trivial (non-canonical) transformation such that the y and
values employed by the computer be each multiplied by the scale
factorjgzj'i:Zf" to obtain the corresponding canonical quantities.

el
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This transformation is seen to be of the same form as (1)
(A'.-E Z/e.,x, now playing the role of A ), with symmetry in the
diagonal elements of the linear portion. By suitably choosing
o y and &y the off-diagonal elements may also be made equal
save for sign -- specifically, identifying(l/ZXax + dy) = cos 2/

v : 2 e
and (1/2(ay + d,,) = cos X' , we choose oZ = AV and K= .
e | T
As a result we finally obtain 3 /
, : +
O S CDL M C Y 3
1Dzr)'.' - M'V)Zn_, +@°V)En-/ 7‘4‘& demx  In- (4)

='é;w ’ﬂ} YGPJ 4—(6L;'7V)—;%%_I + z X - yﬁ)-l
?Yhz '(MW) K-/ + 604.1’)77}/"-, + )/(oth 7{).2;__’ ){_/

This conveniéntly simple form for the transformation is thus seen
to be inherently as general as the original form (1) and will serve

as the basis of the analysis to follow.

3. Analysis Concerning the Onset of Y-Growth:

A. Method:

If we direct our attention to cases in which the axial-ampli-

tude is initially very small, we may analyze the transformation

" equations in the spirit of Walkinshaw. The ‘Y/ terms are accordingly
ignored in the recursion relations for the radial motion, whereupon
the radial motion becomes representéd by linear difference equations
whose solution may be entered as a prescribed function of n into the
axial equations. It is recognized, of course, that this procedure
destroys the Hamiltonian form of the equations treated and precludes

drawing in this way any inferences concerning the eventual character
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of the motion when \/’ may have grown to large amplitudes.
Proceeding to ignore the Y’Q’term in the X and 'EC equations,
the solution for the radial motion becomes
-QETn’z(i;’“’7itﬂ)lKja> * ’4‘;"'”11) JE%'O ¢
This solution, when inserted into the remaining (axial) equations,

then gives

[ca,,ygv-h[fm,(n /)-u)I +(M(n—l)1') _Z} *(‘“""7")?)/,, -/
7?,;— pin %+ VK [l (3-1)) Zo"""’""‘“")’“)@,,]jﬂ-/ @x)g,-o

which, it may be noted, is a transformation with determinant unity.
"The two equations just written may, for the present purposes, be
conveniently replaced by a second-order recursion relation involving
only the quantities Y’
Yoo = [léw‘/()") [WM)Z +é””’“’) :7} :_0'

Since tWe expression within the square brackets may be interpreted

as the radial displaéement, it is natural to replace it by A cos b W€),
in which A represents the amplitude of the (prescribed) radial

motion and in which the phase-shift & may be ignored for reasons

of convenience. We accordingly direct our attention to the equation
V 4 .
= + 1{]7
){7,“ [5.60‘-7( )/W” Yn sl Yh“
B. Solution for Threshold by Use of Corresponding Differential
Equation: :

It is informative to note that, if X and A’A are taken as
small, the equation just obtained at the end of the preceding sub-
section may be nicely approximated by a Mathieu differential
equation of a type similar to that encountered in other treatments

~of y-growth. We note that

2
-3—%’-5 Yot -2+ Yo
n

-6 -
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and obtain

2\( +-Z}a<7—4wnJ7ﬁ) ‘k‘4C64414i7\( 0
dn?
‘JQ‘Y *_Z(;f - )AACcoﬁzthqj \’::;t?
dn®
or, with vh= 27,

:‘ff_f_ ,,[(27\’)’* ‘/ZJ WQJY_

The stabillty boundaries pertlnent to the oy = 2<ry resonance

(¢ = 24&) are then, for 4 )/A/z/2 small, of course given approxi-
mately by ,/4 4_3,)2,
or

—‘27\ /"/ -(a%) /

In terms of the quantities involved in our original transformation

(1),

1l

amplitude of x = A/g,,

7y v
7 |2 (ax)

C. Threshold of Difference Equations:

1

I

It would be a more ¢onsistant procedure to derive directly
the stability limits for the difference equations, without recourse
to any allegedly-similar differential equation. It appears that this
may be done by a variational method which closely parallels the method
whereby we have elsewhere estimated stability limits for diverse
Hill equations.

We imagine that ¢/ is commensurate with the interval covered

by the transformation, in that a whole number of/radial oscillations
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will fit into some whole number of transformation intervals. For

convenience, then, we write
#V=m [;17,»)’ with 7 m /'nlle-gzr.s é even).

By employing the concept that periodic solutions of the difference

equatlons correspond to stability boundaries, we then consider
, 2MrT _
3h+1 Zf;“”*“'*'*P:a /4(?Lym'51 2;7 Y/ | = 0
with \{‘)*‘P :Y.

(Solutions conforming to the aforementioned boundary condition are

7’ -

thus periodic in the interval an=-p,)

The recursion equations written above are those which formally

result from minimizing¥* the expression

S - YY+Y,)Q+..-+)/ Yf)/ ...+)¢1);_,+)¢-,Ya
- "[;c%wz 4<1ﬁ),4;7y/
-4 [amz'»'-;i z”ﬁ]‘/z
-—/[2&4, W*)Acow(zm/r)])/z

,/[z,cwrf+34cov/ ‘2;?’%)_7

¢ o e

v“é€1@i43&4J7V7L;)2L42ﬁ1/é;p ’) 7p4Z2;7 79 -

connection between % , ¢/ and A at the stability boundaries

The

can then be sought by the introduction of suitable trial solutions

intolg. For the purpose of this report it may be sufficient to
consider, in turn, the simple forms

. Am

* A rigorous development of this method might better regard the
"minimization" as causing a sum to be stationary subject to an
auxiliary (iSOperimetric? condition., The use of a Lagrange

multiplier should then result in the equations with which we
are concerned here.
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and, alternatively .
;:, %7,9
which represent the dominant terms of solutions appropriate in the

neighborhood of the 07, = 2%, resonance.
With the first of these trial solutions, f? becomes given by

($)S= [k <o G K emx-3 AT

and is "stationary" (for 3/¢ ¢ ) when

A=ty [orm T2 - o 7]

2/
similarly, with the second trial solution,
2
B L _ L awm _ LN
(i%?) é; ..Z{:z oo K -4 Foel f;;’ f»;)A{J7CL

/
Recalling that 7WWP = 2//2, we thus find the stability boundaries

to be approx1mately located at

/Acoo«7Y 4‘”4/(4;/&)/' )
Y
or .
g )y )
amplitude of .4 :_7'_./m //‘/) W:L/_z,/z)/‘
With A small one notes that this result for the threshold

reduces to that obtained from consideration of a differential equa-

tion (cited at the end of sub-section B):

amplitude of <« 2 5—’3 /*ua'—ézﬂ’/ 2‘/.

*¥ In terms of the quantities cos ¢/ and cos A most directly available
from the original transformation, this result may be written
perhaps most conveniently for calculation as

amplitude of x :_ﬁd—_ /—/_'/'—»Cd-_:::} - Lo '7(/.
a
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and, alternatively .
»/3 _C aen 4 T,

;=" 7
which represent the dominant terms of solutions appropriate in the

neighborhood of the ¢7, = 2cr§ resonance.
With the first of these trial solutions, f? becomes given by

)E= [t con ™2 —hcown-£ 11T B*

and is "stationary" (for 3/=:t 2 ) when

Ao 7 [ooo TP - o7

similarly, with the second trial solution,
(/f)S [4 cown -k we L2224 ]CF

and Ay— Z[— -

->

lf
Recalling that 7Tm/,o = 2//2, we thus find the stability boundaries

to be approx1mately located at

2 z(éﬁ' 2 ‘/
- s * (ufy) - e
_f;T_/,zoyv {./@
or |
¢ s
. X :-éi-/a“”V /;Ogh)'ﬂafvuafgf/%)l

amplitude of 2

With A small one notes that this result for the threshold
reduces to that obtained from consideration of a differential equa-

tion (cited at the end of sub-section B):

amplitude of & 2 22 /4/ 91) /

*¥ In terms of the quantities cos ¢/ and cos A& most directly available
from the original transformation, this result may be written
perhaps most conveniently for calculation as

amplitude of x =“5‘£' //_1-7;:«—/ - oo ~7(/
¢ [ 4
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4, Estimate of Lapse-Rate:

An estimate for the lapse-rate to be expected when the initial
radial amplitude is above threshold may be readily obtained by
reference to the differential equation cited in Section 3B. The
general procedure for obtaining such an estimate has been outlined by
McLachlan [ﬁTheory and Application of Mathieu Functions" (Claredon
Press, Oxford, 1947), Sects. 4.90 - 4.9{7enuikms been applied in
previous discussions of y-growth.

In this way the lapse-rate associated with the Mathieu equation

cited is found to be
Vo )T R '
() v A Aen nepers per unit increment of Z ,

’
% )//4 2 422;" nepers per iteration.

or

In terms of the amplitude "a" for our initial variable "x", the

corresponding lapse-rate is

——52;7 ya,""va..f,,,_ nepers per iteration

0 275 (2 /‘l/) ')é’:,a,é’hh decades per iteration.

A procedure parallel to that outlined by Mclachlan, if applied

or

to the difference equations, suggests a lapse rate which, when

small, is

2
Favn (Vo) 7&2—60‘:.“, nepers per iteration

or

2
0.1085 7m7)a’;ﬂ;h; decades per iteration.

This formula, which for ¢/ small reduces to the result found for the
differential equation, is presumably preferable for predicting the

lapse-rate developed by the transformation.

- 10 -
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For hand calculations we write

2
JaE = Aen”

Lapse-Rate-’——' nepers per iteration
7"" (I-CMU 1))

= 015355 4 4‘”““,,,,,, decades per iteration.

Vietoa v
5. Generating Function:

The transformation (4) may be written

_-(/%V)Xn—/ "'Wv)?zcn
=(ﬁm/)z,, ;7 ﬂeo—u) “a,’/z)(%f)}/

Y (ﬂ&o%’) Yf)/ '1“(,2” W)(PY
F = () Voo v lote, %) By~ (owe ) Kot Yoo

These relations may be derived from a generating function

W{E’Z’n} ?Yh)' n-/y Y"')
._._, (mv))( + MU).X/; y %/&éﬁm-f/)?

—-(3);47X2«v %C):X:—_, Y/_/
L (lin #) V2 + (o) Vot By # (o )R,

employlng

=, VK/Q Vo= o MC/Q_F;E
7?(”_, =J W) )(,,_, Py = dW/D Vo

It is possible that this generating function will be found
of use in the further application of dynamical theory to trans-

formations reduceable to the form represented by equations (4).

6. The Inverse Transformation:

The inverse of transformation (4) is found to be
X”_/ = (/Céﬁa\r/)xn - (ﬂdiyv‘l/)?z.h

- 11 -
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zn_, (M v)I 'f'(&xu-u) (2/2.%47)[(%@1)}’ (e %) K :]
ég"“ w) Y'-(:u;u'z) f§1>

PY»I (a"”'ﬁ)y*(@‘”w)ly
o x>[c~»v)z (w) ) -Cem) Py ]

As with the forward transformation, this inverse transformation is
again a rational algebraic transformation of degree not exceeding
two. It would appear that transformations of this degree could

be synthesized so that a closer similarity of form would obtain

between the direct and inverse forms.

7. Computational Example:

A. Discussion:
A transformation equivalent in form to (4) has been run on
the I.B.M.-704 computer by aid of the ALGYTEE program. Denoting the
variables employed by the computer as #, Za , AL~ , and 7&%“
the equations directly iterated (Runs 10-18) were
L= = 28R FTH I . W34 78 AP\,,,,

—. —,00848 W/b?'/*
7 - 5¢9, /2970_/ 247
&,
£y = =717 4—,7&/7%_/ #2224, A8 .

)
These equations may be put into the form (1) Zféee footnote,

7Y A, +2-é04}~l . 78/:-/ -

n

section 2J7 by the substltutlon (change of scale)

=7 o= 4y /) 2y
7oy 72y /3; =y ) Fs T

to become ot the Hamlltonlan form 2

Kp = =128 Fny +/ 7YY P, T 2l Fn
Py = =5 Ay~ 128 o — - O/72 9%

- 12 -



MURA -246
Internal

’ yn = .7#?}7-/ + .40 ﬂ,,_, +'/7‘? 7("/ ;”—/
/0

Gy =~ 1794 , T 7 Py, +. 222 %, 4n-s,

with Q= .78 <o v 2 —/28 gp) coas %= - T

From the results of Section 3C we expect the threshold x-

amplitude for this problem to be

d’fhr. = -—-——'6.‘{7‘? Je. VV‘W/

=0-%

The computational results to be reported suggest

Aypp, = 0,388 0.37
for this transformation, affording what may be regarded as a
satisfactory check of the theory. (The approximate theoretical

result, obtained from a differential equation in the limiting

case of small X, is 4¥6r;;o,455' , in somewhat poorer agreement
with the computational result.)
Likewise, for the lapse-rate, the results at the end of

Section 4 suggest
0.15355 X0, "8 S
NN 7/@2_¢“r 2 decades per iteration

or 0.12826 Jp 2_ 5. J£o5 decades per iteration

(to employ the computational result for the threshold amplitude).

We tabulate below the lapse-rates calculated from this last formula
and the corresponding values observed from the computations. It

may be noted that the form of the theoretical equation suggests

that the square of the lapse—rate will grow linearly with a2, for
values of a 77 ay,, » @ prediction which appears to be substantiated
by the computations. The theoretical and computational results for

2
d( A )/da2 are, respectively, 0.016 and 0.014 (decades/iteration)2.

- 13 -
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CORRECTION - To MURA-246 (Int.)

"CONCERNING THE y-GROWTH PHENOMENON

EXHIBITED BY ALGEBRAIC TRANSFOR MATIONS"

1. We have detected a slight numerical error in the calculations to an example given

in Section 7A of MURA-246 (Int.). On p. 13, the expected lapse-rate should read

0.15355 x 0. 78 /az - a%hr_ decades per iteration
Vv 1.128

or 0.11277 m decades per iteration when the computational result
for the threshold amplitude is employed.

2. The theoretical and computational results for d guz)/d(az) accordingly are
0.013 and 0.014 (decades/ iteration)z‘, respectively.

3. The table on p. 14 should read

o X - a Mr.l Lapse-Rate (decades per iteration)
Calc. from Theory | From IBM Computations
- 0.4 0.01 . 011 | 0. 0116
- 0.6 0721 0.052 0.055
- 0.8 0.4l 0.079 0.084
-1.0 0. 61 0.104 0.1

4. Similar results, giving a computational value of d{u 2) / d(a?) just slightly greater
than the theoretical value, have also been obtained in subsequent computations with

a similar transformation for which cosq) = -0.125, cosX = 0.75, andA = 1.

1.. Jackson Laslett
March 25, 1957



