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I. IntI' duction 
I 

In a previous paper we have treated the non-linear resonances 

that occur in the radial oscillations of a particle in an alternating 

gradient accelerator. The vertical motion was not considered. In this 

paper 9 the methods presented in the first paper have been extended 

to treat the two dimensional coupled resonances involving both radial 

and vertical oscillations. 

This paper treats the quadratic sum resonance 2'y	 . + Y x = N in 
y 

detailo Higher order sum resonances can be handled in a similar manner. 

The difference resonances~ like the 2V y - Y 
x

= 0 resonance, have an 

entirely different character and will be treated in a later paper. 

As in the case of one-dimensional resonances there are some points 

in the theory that remain to be cleared upo However, the agreement
'. 

of the theory with numerical calculations seems to indicate the general 

correctness of the resultso 

" '.II. General Description of the Method 

The	 procedure for treating the two dimensional coupled resonances 
l

is very similar to that presented in the previous	 paper (hereafter \ 
-.. 

referred to as Paper I) for the one dimensional radial resonances. 
~
 

The equations of motion are expanded about the equilibrium orbit.
 

If we keep terms up to terms of second order, the expanded equations
 
2 

of motion have the form 

t ';: L + f.' - ) ~ (e)} f == D(<9) A~}	 ( 2 . 1b)• 

~ is the radial displacement of the particle from its equilibrium 

orbi t and y is the vertical displacement 0 gI ( 6'- ), g2 ( ~ ), B( c;;. ), 

c( G) and D( 9) are all periodic in 9- with the period 27T/N where
• ,2­
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N is	 the number of sectors in the m3chineo D(S) = 2 C(G) since the 

equations are Hamiltonian, and gl(~) and g2(~) are defined by re­

quiring that their average value over a period be zero. 

As in the one dimensional case, we will investigate the stability 

properties of Eqs. (2.1) by replacing them by an eigenvalue problem. 

We will consider the slightly more general equations 

r'f!1""	 T tv - ~,( /}) }),{= 13 (p)t{'- + Cf~) 1'-; (2.2a) 

) ~~ +IN I - J. 1&) ] ~ -= D(e) M d- )	 (2.2b)L 9 .	 . .... 
I

and we will ask for what real values of Wand W do Eqs. (2.2) have 

stable solutions 

To solve this eigenvalue problem, we will consider the quadratic 

terms as perturbations. To carry out this perturbation procedure we 

must first know the solutions of the unperturbed eigenvalue problem 

which are the solutions of the following linear equations, 

-- o	 (2.3a) 

(2.3b) 

One can easily solve the eigenvalue problem, that is determine 

the values of E and E' for which Eqso (2 0 3) have stable solutions, 

since the properties of these linear equations are known (see Paper I). 

Equation (2.3a) has stable solutions only for certain values of 

E and for these "allowed" values of E, the solutions have the form 

(2.4) 

I"""	 corresponding to the E-value E}, = E( V ) 0 h)/ (9-) is periodic in e with 

period 2 1TIN. The allowed E-values are continuous functions of}) but 

- 3 ­
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there ;jTe gc:;ps i;~ them which OCCI..;r at Li := 1/2 N, N, 3/2N, 2N, etc:. 

Similarly, the stable solutions of Eqo (2.3b) have the form 

k (2.5) 

I 

corresponding to the allowed Ei-value Ek
I 

Each solution of Eqs. (2.3) corre~pondsto a set of values of 
, 

E and E'. and we will say that each solution corresponds to an E-point 

which has the coordinates (E, ['}o The 1110wed E-points of Eqs. (2.~) 

are indicated in Fig. 1. 

The gaps in the allowed E-points 

are indicated by the shaded regions. f:/ 
/ 1 ;.! ! i
i/ 

./

/ " l .\E: r· - -. / I t/ (

J~-~/ / r-;r<7 /';;->
I Eo ­
, Fig. 1. E 

For the motion to be stable in the linear theory, the operating 

E-point (Eo' E J ) must not fall in the gaps. One should also keepo 

in mind that each E-point (E, E' has a M -tune and y-tune associated 

with it given by ( V) /\ ) according to Eqs. (2.4) and (2.5). One 

might note that each E-point is fourfold degenerate. 

Now that the unperturbed eigenvalue problem of Eqs. (2.3) has 

been solved, we will try to solve the eigenvalue problem of the 

non-linear Eqs. (2,2) by using a perturbation procedure. We will 

show that the perturbation will cause two new gaps to appear in 

the allowed E-points as is shown in Fig. 2. These gaps occur around 

those E-points whose tune lies on the lines V + 2 K = Nand )J -2K 

= o. 

- 4 ­
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Fig. 2. 

We will see that the width of these gaps depends on the amplitude of 

the motion and will be larger for larger amplitudes. 

The question of stability is answered by where the point (E ,Eo') 
a 

falls in Fig. 2., since our particle motion is given by solving Eqs. 

(2.2) for W = Eo and W' = Eo'. If (Eop Eo') does not fall in the 

gaps, the motion is stable. However, if the amplitude of the motion 

is increased, the gaps become largeI' and (Eo' Eo!) will eventually lie 

inside a gap and the motion becomes unstable. This will determine 

the stability limit amplitudes. 

To solve Eqs. (2.2) for M and y we will expand M and y in terms 

of the solutions .AjJi ( 9- ) and V1<. 9- ) of the linear equations 

(2.3). As in Paper Is we form a discrete orthonormal set out of the 

functions My and 'fJ< by impos1.ng the boundary conditio:1 that 

they be periodic between 6- =.. 0 and G := T where T is some arbitrarily 

large angle which we will eventually let become infinite. 

The solutions of the linear Eqs. (2 0 3) can then be written as 

J t:.e "., 
(2 0 6a) 

.. f\ 0 (2.6b) 

and they form two orthono~mal sets, 

~ ,',-" (2.7a). j .' ,.... .! .t~ . '"'....-to>­..It.. ~) f i: .V ,'-") ""IT 
1::-1 v",. , )Ii I '". i ,1 (I , .. 

o 
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( 

-3"" 4;," , 
) 

if hv (9) and f k ( S) are so normalized that 

..!..V ,2-	 (2 08a)IV!N d 6 Ifl v,:..T( 
/	 I 

and 

(2.8b) 

Now expand M in ~V and y in YK 

M -= .z 0 l! )A V (£9)	 (2 0 9a)
VI.. • . I 

IV\ -= L 1)< (, 1 ,~, '/9)	 (2. 9b) 
~ I( i. 

and by putting this" expansion in Eqso (203), we get the equations for 

r' a JI and bJ( , 

IW -f,t.) a~. =: .2' (2,10a)i,e­
bl(

'} 
bK.e. 

J
and 

(2010b) 

where 

and 

Now we will solve Eqsc (2.10) for d y and b,k by a perturbation 
I 

procedure. Consider the E-point (E Si E of the linear equationsI 

(2.3)	 which has the tune (V s 9 Ks), and which corresponds to the 

- 6 ­
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solution AA ::: a M~ + a* M_~ , y ::: b to- k~ +. b* ~ -I<,s Thi s E-point 

will be shifted by our non-l~near perturbation. To find this shift. 

we will solve Eqs. (2.10), by assuming that in the expansions (2.9) 

forM and y, only <'ills ,a_~ and are large 

1 "and 311 the other d ~/ and bl( are Sma.Ll.
 

Thus to first approximation Eqs. (2.10) become
 

~.I 5 1 5 i, (2,14a.) 

I 

• ,.! _."(/N'- E:) hi. ~2 D(,5~) II a5,t)<.;I/ 
(2.14b) 

51 $" '" '-.­

In Eqs. (2.14) and in later work, we shall use the notation .t::)/ ::: , 

Es ' -Uv: ::: )./S , B v " V' - O. \ J< and - 'V" =- Y- In the sums of 
'j c; "a- N' - Do" ¢ .. s 

Eqs. \ 2 •14 ) , sl and sl/ can take on only two values) 5 and5=-:S 

The matrix element will vanish (see Paper I) unless 

h 1.1 lrI N t1 = 0 + ( + ...,V'h,er'e \All-]':::; '/) ,; - J - "" .' r 

Similarly CZI1 R.. will vanish unless 

V~· :- k, + k.e.. -+ (,\)"" (0 ](\
" ,~ v . - :) i

J 

and 0':1 g ~ will vanish unless 

(2.17) 

The shift in the E~point (E ' Es/ having the tune (Y s' I( s)s 

l~ given by Eqs. (2.14) by putting i = 5. For i ::: S 9 Eqs. (2 0 14) 

become 

(W-E~) 4; - L .. (2.18a)
Sj 

(JV!_~') bj = :2. 
S

! 
) 
• Ii 

- 7­
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Now using the condj tions (2.15) to ;' 2 .17), we wi 11 see that rna t ix 

elements will vanish unless the tunes (~ , k s) lies on certain lines 

in a (lJ,K ) diagram, which we will soon indicate. If the tune d e 

not lie in these line the matrix elements vanish and by Eqso (2 0 8)1 

I , the E-point ' Es ' Es I correspcnding to thi tune is not shifted a 

( t.v -E ) = W'-f/ = 0. If the tune ( Ys , Jl$ ) does ie in these s 
lines for which the matrix elements do not vanish, then by Eqs, 

I(2.18), the E-point Es ' Es '" correspon ing to this tune is shifted 

and we will see later that the E-point is split into two points. 

We will see that these lines on which th, E-points get split are the 

resonance lines at which the motion becomes unst ble, 

Using the conditions (2.15) to (2.17) one can see that 8j ,'5" 
J 

will vanish unless 

will va~ish unless 

will va~ish unless 

))s :t ;L:<5 =- W/.1 (2 0 21 ) 

The matrix elements also do not vanish i~' IS = W ; but as this 
n 

tune is already unst 'ble in the linear case, we will not con ider 

it. We will see that Eq. (2.19) shows that B &) 
. 

M. 
2 

term i Eqs c 

2.1) causes )J s - 3jW~ resonance, whiL:.. the C(t9- ) y2 and 

D( ..,,) My terms caus the coupled resonances 'j s ± 2 k s = W:-) 

The absence of a y2 term in Eq. (2 16) shows tr;a t there is n k sQ 

r- = (l/~) Wl1 resonance which has been chc;cked 1n computer calculations
3 

don~ Ly L. J. Laslett. 

In this pdper we w'll restrict our attentiun to the)) - + 2}(
s 

= {;J"" c.um resonance a Sum resonances due to higr,cr order term_ in the 

- 8 = 
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Eq~. (2.1) can be haed in the same way_ Difference resonances 

are consider1bly different in ch _ cter and wi~l be treated in a 

13ter paper. 

J)Let 1..( ~cons ider then the E-points (Es ' Es whose tune ( ~, K'.s 

lies on the line ~ +) Ks :-:= N _ We will trea t the C;:lse W n ::: ~ ::' /1/ , 

but the general W~ case is quite similar. The shift in these 

E-points is given by Eqso (2.18) which now become 

c:.'S, SS 
t 

D? S $­
I (2.22b) 

Most of the matrix elements in Eqs. (2.18) vanish because ))s+2K... ",;y 

and because of conditions (2.19) to (2.21). One should notice that 

1'. - ") ( b<y Eqs. (2.12) and (2.13) and since j)1t;);:--,j (tej
v~r~ -= I;( oS r ..~ 

, .I -;J -­

(w- £~) a'1d LIN '- E"; J) which give the shift in the E-point 
I 

(E s E<') can be solved ior fJom Eqs. (2 22). The magnitudes of0 

(\tJ-f> ) and (~'_ ~J ) are given by 

IW-' E;} ::= Ie 5, .rt) \ b; / as I 
I (2.23a) 

o 

\ W 1_ E>~} =- ') Ic~ s;- I ICts J • (2 0 23b) 

The magnitude of the shift depends on the amplitudes of the motion, 

b s and as. 

We will now show that because of Eqs. (2.22), (IN-E~ ) and 

( w -'F. 
) 

I ) must have the same sign. 

From Eqs. (2.22) we see that 

\~;1
'.

('$/ f"s (2.24a) 

- 9 ­
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and 

~ ( Iv! - f; ) :: ,tA CS ,J S S- -;; ~ - ~ (2.24bl 
Q, 

where ~ means the phase of as, and ph a =~ and ph b = ~ s s 
Thus ph (W-Es ) = ph (w'-e;') a'nd (W-F.s ), (W'_~J have the 

same sign. This h1s the consequence that the E-point (E ' Es 
/ ) fors 

given amplitude as and bs is split into just two points ·as is shown in 

Fig. 3. £' -~·'>-2~s'N..Q..."... 
Each E-point in the line 

is split into two points. A gap appears 

in the E-point diagram around the line 

'Is -+? t<,S = N. The size of the gap 

I:depends on the amplitudes of the motion 
J '"> as and b and is given by Eqs. (2.33)s E, E 

Fig. 3. 

Eqs. (2.18) seem to show that an E-point whose tune lies very 

near the resonance line 'is + :;. k',5= N is not shifted. This is not 

so. The situation is similar to·thst in th~ one dimensional case 

and Eqs. (2.18) are not valid for E-points very ~ear the resonance 

line but not exactly on the' 'resonance line. Some. discussion of this 

point is given in Paper I. We shall assume here without any further 

proof that these E-points will be shifted to someplace outsjde 

the gap computed by considering the shift of the E-points on the 

resonance line. 

We can now discuss the question of stability. If the operating. 
o 

pOlnt. (Eo E' ) lies outside the gap that ~ppears around the lineI> 
I 

Ys +?- t<5 -= N ,then the motion is stable. By increasing as 

and bs we can increase the size of the gap until {Eo' Eo', lies inside 

10 ­
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the gap and the motlon becomes unstable. The limiting case is when 
1 '" 

(Eo' Eo~) lies on the edge of the gap as is shown in Fig. 4. This 

" will happen when some E-point f:1 ,/'-:"~ V +' K5 =: N 
(E ' Es ) o~ the resonance lines 

I 
~' ~>/"'-- c.~~.),- ~"~z:!;:>'" s

o I '-<.. . .')i +- 7. Xs ~ AI is shifted -....:... ..f 

I t 

to the operating point (,Eo, Eo • I 
I _" :>­c__

Eo 
E 

Fig. 4. 

Which E-point (E ' Es ') reaches the operating point (E c ' E I dependss
 

on the relative size of as and bs according to Eqs. (2.3~). If the
 

amplitudes as and b are such as to cause some particular E-poi~t
s 

(E ' Es ' on the resonance line to reach the operating point (Eo' Eo'),s 
then the effective tune of the motion will have changed fr om ( ~) Xc j 

to ( ~ J 1<,5 ). 

There is then nor just one set of stability limit amplitudes 

1 , bs but many sets depending on which tune on the resonanc~ line 
5

( ~ ,) Ks ) the motion is driven to; which, in turn, depe~dc: 'on the 

relatjve size and phace of 3 S and b .s
 

The stab1lity limit amplitudes as' bs to drive the tune of the
 

motion to (~I X ) which lies on the resonance line ~ + 2. Ks = NS 

can be found from Eqs. (2.22) by putting W = Eo and W'= E
l 

Thuso 

we get 

(2.25a 

(2.25b) 

One should note that it is not possible to drive the operati,',g
 

tune ( Yo 
) 

1<0 ) to all the tunes in the resonance line. Because the
 

- 11 ­
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E-points on the resonance~can be shifted only into the first and
 

third quadrants as shown in Fig. 3, one can see that only the tunes
 

shown in Fig •. 5 are reachable. ['
 
To get some idea of how as and bs
 

depend on the tune ( Yj , Xj ) thqt
 

the motion is driven to, we wcu~ like
 

to give some approximate formula;;; 

Fig. 5. 

In Eqs. (2.25) we shall make the following approximations. We 
- , 'l.shall put Es '::t. ~.2, t: ':::! K and in computing c..'S/"$ ~ , we shall 

,.,../ s s
 
put My I fi).::::: e ~ y-;v, . /Od{(jJ/· ~
 

) '~I\IO) :! L Y -r- .
 
These relations would be exact if ~I/C) ': ~J,.{f:,}):, 0 in Eqs. (2.1)
 

4
and are roughly true in most cases met in practice. We then get

for a and b , 
s s 

N1.. Ji.:..Iq I (2. 26a )s= iZi tV 

Ibsl = .JY"'-- J'lV, x. f (j<,-ko)( g:us- (2.26b) 
i/.;I IY"I- V N'" .
 

where Cl is the first harmonic in the expansion of C( & ), C( (9) =
 

2. c.., e~ w.,. 9 and we have as sumed that ()I, J< 0 ) is very close 
~ ~; 

to the resonance line so thdt VI) + :L. Ko ~ IV. We have also
 

omitted all factors of 0, and shall do so hereafter, as all such
 

factors must cancel in the final answer.
 

We can use Eqs. (2.26) to plot Iq1J J J hs } against the tune 'X5
 

or we can plot J L's' 1 against Iqs j This las t curve is the more
 

important one and is indicated in Fig. 6.
 

- 12 ­
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\b\ 

Fig. 6. 

The maximum value of J41 is given by 

a 
~ 4.)' 

- N:: 
- 'C, I J(c. • C"Ii c:. J 

(2.27) 

where E measures how far ( 'Vc" J(0 ) is from the resonance line and 

is defined by t. = ..L 
1. 

, \ - VallV - '2 /(0/ IV \ 

The maximum value of \'1 I occurs at 'the tune (rs-ku)IN =c£ • 

The maximum value of \ b I occurs at the tune [<s - Ko'")//\/': t £ 

and is given by 

(2.28)b~ -=-0 v./~o a~"""
 
The curve shown in Fig. 6 has the equation 

..J­
a ) 1'~ (2.29) 

4~~ ) 
We should point out here that a portion of the curve in Fig. 6 

is not accurate. This is the portion near the origin where I b/c. '>'/1 . 
Because b$ --,) a~ , higher order terms neglected in the theory 

become important. i"'\ctually Ib I does not go to zero when IQ'''' 0 • 

However, it has been estimated that the breakdown of the theory 

occurs only near the origin for q ~< 4httJ.x. 

III. The Stability Surface 

The results of the preceding section for the stability limit 

amplitudes can be better understood by introducing the dea of thp 

- 13 ­
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stability surface which we will develop now. We will start by 

discussing the st3bility limit orbits. 
o 

According to the results of section II, there is not one but 

many stability limit orbits. The stability limit orbits have 

different tunes ( Y.r ), though all the tunes lie in the resonance 
J

Ks 
line Y + ~ K.$ :: Nand must lie in the region shown in Fig. 5.s 

The stability limit amplitudes, as and bs ' depend on the tune of 

the orbit and are given by Eqs. (2.25). The orbits themselves 

follow from the expansions, Eqs. (2.9), and are given by 

M = as lAs (9) + a}~' ))$'*(S) (3.1a) 
J 

'} -= bs ~ s ( &) + Ioj ;.gs·)f (p) . (3. I b) 

M' -:: d ~(/d e and l' = d d- / d 9- can then be calculated 

by differentiating Eqs. (3.1) 

Now each stability limit orbit, AI::~/f)), '~::JIQ) , M~M'I~), 

!) ~ ~.'(9) can be considered as a curve in four dimensional 

space. We will show that all the stability limit orbits lie on a 

closed 4-dimensional surface and they completely fill this surface. 

This 4-dimensional surface we will call the stability surfa~e. 

We will assume that if the motion is started at a point. 

( J.1) ~) M', d' ) outside this 4-dimensional surfa~e, then it will 

be unstable. Thus the stability surface will giv~ us the region of 

. phase space that is stable. 

We will now obtain the above results. In order to have a 

concrete example before our eyes, we would like to treat the special 

ca se with no AG .in the linear terms, which means j, (9) ~ ~ 1./t,» in 

Eqs. (2.1). Our results however will be quite generaL For this 

- 14 ­
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I t Y9- t Kfi.1 

case the linear soluti=ons are simple expotl 11: ,«IS M~::' e 'YJ~ ~ e , 
and f'~ ': Y1 ~ f l< '='. k 2., 

For this case the stability limit orblts are given by 

M- A ·,,(}I~+oL) (3.2a) 

t - B fA<J. (J<~ -f B) I ( 3. 2b) 

).J I ~ - IJ A ~ ( )I (; 4-oi ) 
(3.2c) 

~/:- -/( ~(k6l+$), 
(3.2d) 

where It : ;;;}cll 
, J 8 = :; JhI 

and' P ~ ~ b~ 

Let us note that the parameters that occur in Eqs.(3.2 are 

not all independent. V and k are related by Y+::lk:1y. A and B 

determined by the tune (V / K) according to Eqs. (2.2b). And 

« and ~ are related by Eq. (2.24a), 

(3.3) 

For example, if E is below the resonance line, so that 
o 

~ (E co ~)::: 7T , and if C Ip):: :< le,)~ N6l, 50 that fI, C, ::- -.~ 

then we would get ~ +- "j ($ =- 7J l~;, , 

Thus there are only three independent parameters in Eqs. (3.2) 

which we can t~ke as ~ t;. and t>( Eqs. (3.2) can then be 

considered as ct set of four equations for ~?)M:)'involving three 

parameters ~ v)~ and are thus the parametricepresentation of 

a surface in the 4-dimensional space of M I ~) M~I ~ J 

Theoretically" ~ p) and -< could be eliminated from Eqs. (3.2) 

to give a single relation between ~ I 'J ,'\/ J and. ~I. Thus we have 

shown that the set of stability limit orbits form a surface. 

- 15 ­
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In the next section we will present w~ys of picturing this 

4-dimensional stability surface. We would like to remark here that 

we have not really shown that the surface we found is the true 

stability surface in the sense that every point outside the surface 

is unstable. However 9 as the surface is made up of the stability 

limit orbi~s: it seems plausible that either it is the true stability 

surface or it is very close to the true :tability surface. 
I , 

IV. Sections of the Stability Surface. 

One way of picturing the 4-dimensional stability surface is to 

pass a "plane" through the surface and examine the curve which is 

the intersection of this plane with the stability surface. For 

example we can take the' plane defined by M' = ~ ,= 0, and '{lie can 

find the points on the stability surface tLat lie in this plane. 

The two dimensional curves we so obtain should give us some idea 

of what the stability surface looks like. 

These sections also have the advantage of being closely connected 

with stability calculations as done on a computer. In the usual 

computations done on a computer like the ILLIAC to measuro the stability 

limits, such a section is usually traced out at least partially. 

To illustrate these sections we will treat the special case 

mentioned in Section III where C\ (9)7" '; 9,1,,,< 0 in Eqs (2.1)
d 

I 

" 

Let us now find the section defined by the plane ~~ ji~0 • 

The stability surface is given by Eqs. (3.2) w~th the added restriction 

that 0< + :l tJ .-= /;;( Let us just find those v~llues of -zl;~) d" 

which make M J:- \~) I;;; and then we can find those ~)oj_nts in the 
I , 

surface that have A:c d' == 0 

.- 16 ­



To make MJ~d I,:: D ? the parameters V, & I and I>( must obey the
 

conditions,
 

)I{)+o<':t> lOY" ..".} (4.1a)
 

!<t.l + ~ ::' 0 t)r Ti 

Let us first assume that }) B -+ ~ =.: 0, and J<. (; + r; = 00 Then 
<:\ tlc1 

multiplying Eqo (4 0lb) by two~adding to Eq. (4014), we find that 

(Y+J J<) FJ -+ (b( +;; 8) -::: 0 Now using the relations V+ ~ 1< ::- N 

and 0< -t f3 -= 7i/~ ,we find that N f) ::- - 7T / ~ This means 

that at the angle N(;} ': - If/';).., , there are points on the stability 

surface at which AA': 0 1-= 0 and at these points M=Aand Y= B. 

. Note that A and B depend on ).J according to Eqs 0 (2.26). Thus as 

Y is varied we find the points M, ~ shown in the first quadrant
 

of Figo 6.
 

This curve is just the b against
 

a curve of Figo 60
 

By treating the other possible
 
--+--~--~'-------?---~ 

cases according to Eqs. (401) M 

we find the rest of the section 

0AA '":' ~ I;: () as shown in Fig 7.
 

One might note that each point in
 

the curve has definite ~ associated F i9. 7 0
 

with ito
 

The curve in Figo 7 is instructive for the calculation of
 

stability limits on a computer o If in the computer calculations,
 

one starts with initial conditions of .M I ':: ~ 1,= () at $::: 0
 

then one will be unable to find points on the stability surface
 

since according to Fig. 7, the points on the stability surface
 

= 17 = 
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having M' -= d-! -= 0 occur at N EJ -=- .:t-f Computations on 

the computer are done by starting wi t.h M'::: "q 1= 0 c:.+ ~ =0 and 

at some (.-4 9 ~ ) whi.ch is outside the stable regiono One then 

moves (.M, /'d'") in towards the stable region until one finds a 

stable motion o Ihe point so found will lie somewherefuside the 

stability surface, since the points in the surface have N~~± ~~, 

We would like to also present the section corresponding to the 

plane A..f '= 1 1: Co Thi.s is shown in Fig 0 80 The curve a 

plot of B against Vh, and can be 

(
" 

Thisfound from Eqso 2.26'0 

section was easier t.o treat 

in our computer calculat.ions M' 
as there are points in the sur­

face having M =- ~ , ': () at ~ '= () • 

Fig. 8. 

v ,g.9mparison wi th Num~I'i.cal Calculations0 

To compare the theory with numerical calculations, we treated 

the following set of equations, 

{L + Eo ~ »- == (501a)
d~~ 

~(lg)h1d-'	 (5.1b)1*~ +E'} '} ­
where we put t'3 ((9) '=' ~ IP,l ~ N~ 

I 

c. (~) '=' ;2. ICJ 1 ~ N S and fEu / IV 1. =', 0 !' 1 ~ I.. I 

Eo I / IV 2. = t l ~ 3:<' I and� 

I~) -= ]c I 1::-,D'i.5"� 

These numbers and the form of the equations� have been chosen to 
5

resemble the actual equat.ions for a spiral sector FFAG type of 

acceleratoro The only change was to omit the AG in the linear 

- 18 = 
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term which Wi": d:)ne ->:i) ,,-o:mp.lL the ca~,ulatlms. 

For +he above DJmbers "I, ;,J= .2426 and KolN ::; .3(;')1 ~o that 

and we are close to the ~ +- U,", !Y resonance. 

lfsing the ILLIAC computer at the University of Illinoi c we 

have traced out the section of the stability surface corre ponding 

The results a e shown in \ 19. 9. 

Since it ~ convenient to start the calcula~ ons on the computer 

at 9 = Op we can find points in the section #hich 1~2 in the se ond 

and thi r d guadr"n t of Fig 0 9. The sectio~i=,point the first and 

fourth quadrants corre;pond to lYe = 7T ~nd when thE computer 

approaches the stability reglon starting ,rom the rIght of it~ 

it can only find points well inside the surface as i~ shown. 

We can 31so make a comparison between the stability limit orbits 

as predicted by the theory and as computed on the computer. If 

we start the motion on some point in the stabil1ty surface 9 then 

the particle will move in a stability limit orbit which lies en~ 

tirely in thi~ surfacE. The equation of this orbit for Eqs. 

(5 1) are given by Eqs. (3.2). The stab:lity limit orbits are0 

simple sine curves for thjs case. 

In F1gS. 10 and It we have plotted M against Sand y against 

&- foI' the stability limit oEbit which the pJrticle will follow 
i

if it is start.ed a.t the point,.t.4 :::: O? y = .185 9 M =: ~o0652~~ :::: ° 
which 1S a point in the stability surface, This is the stabiLity 

limit orbit in which y reaches its Ldrgest value. According to 

Eqo (2.28)? the largest stable value if y 1s .20 for our case 

which 55 to be compared with the computed value of 0185, This 

or011: has the tune (,~ K \ /N::=' ~/~ =,011../ ',nd (V5 - v~ IN:= 0027 

accordj.ng to theory, and the computed tune agrees fally well as the 

curves show. 
., 19 ~> 
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Fig. 9. A comparison of the theory with numerlcal calculations 

for the section of the stability surface corresponding to the 

plane ~ = J = O. Th~ curves are theoretical the pints are 

computed numerically. The points with a dot n them do not lie 

on the stabllity surface but indicate the stability boundary at 

f) = 0 0 

,~ 20 ~ 
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Fig. 10. The stability limit orbit corresponding to the initial 

conditions Ai = 0, '( = 0185, ,.ul = ~.0652, ~/= O. The radial 

displacement ,A.t is plotted against (; The solid curve is 

the numerically computed result; the broken curve is the theoretical 

result. 
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Fig. 11. The stability J.imit orbit corresponding to the initial 

conditions M = 0, I'd = .185, ,-{Ai = -.0652, ..~ J = 0. The vertical 

displacement y is plotted against & 0 The solid curve is the 

numerically computed result; the broken curve is the theoretical 

result. 
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