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I. Intr.duction

In a.previous paperl we have treated the non-linear resonances
that occur in the radial oscillations of a particle in an alternating
gradient accelerator. The vertical motion was not considered. In this
paper, the methods presented in the first paper have been extended
to treat the two dimensional coupled resonances involving both radial
‘and vertical oscillations.

This paper treatsﬁthe quadratic sum resonance 2}/y~+)V x = N in
detail. Higher order sum resonances can be handled in a similar manner.
The difference resonances, like the 2)/y -y x = O resonance, have an
entirely different character and will be treated in a later paper.

As in the case of one-dimensional resonances Q%ere are some points
in the theory that remain to be cleared up. Ho@ever, the agreement

of the theory with numerical calculations seems to indicate the general

correctness of the results.

II. General Description of the Method

The procedure for treating the two dimensional coupled resonances
is very similar to that presented in the previous paperl (hereafter R
referred to as Paper I) for the one dimensional radial resonances.
The equations of motion are expanded about the equilibrium orbit.

If we keép terms up to terms of second order, the expanded equations

2
of motion have the form
4 = B(&) uz + Cloyn=
a_ - W = '8) U* + &) (2,1a)
5 +E. 3.{9)} o r

i Ao+ B - gy = DOy (2.1p)

M. is the radial displacement of the partide from its equilibrium
orbit and y is the vertical displacement. gl( & ), 92(9), B(& ),

C(Q.) and D(& ) are all periodic in & with the period 277 ’'N where
2.
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N is the number of s;ectors in the machine. D(® ) = 2 C(& ) since the
equations are Hamiltonian, and gl(69) and gz(éi) are defined by re-
quiring that their average value over a period be zero.
As iﬁ the one dimensional case, we will investigate the stability
properties of Egs. (2.1) by replacing them by an eigenvalue problem.

We will consider the slightly more general equations

_d/L' - o 5 g )
dg}fw }(@}M Biorux+ Clo) o (2.2a)
J* /9 le)ty = UIe) U ,

{ﬁ%jw 9, é)}\(} L ).,a 4 (2.2b)

and wé»Will ask for what real values of W and W, do Egs. (2.2) have
stable solutions

To solve this eigenvalue problem, we will consider the quadratic
terms as perturbations. To carry out this perturbation procedure we
must first know the solutions of the unperturbed eigenvaiue problem

which are the solutions of the following linear equations,

E_iiw -+ - q‘( 5 % W = O (2.3a)
1p* J ” ﬁ

4 fea e = 0
ZTL;LAFE Jl'&f; } 4 (2.3b)

One can easily solve the eigenvalue problem, that is determine
the values of E and E! for which Egs. (2.3) have stable solutions,
since the properties of these linear equations are known (see Paper I).
Equation (2.3a) has stable solutions only for certain values of

E and for these "allowed" values of E, the solutions have the form

Y B
My (8) = € ,ﬁy(g)/ (2.4)

corresponding to the E-value E, = E(V ). h,, (&) is periodic in & with

period 2 W/N. The allowed E-values are continuous functions of ) but
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there are gaps in them which occur at ) = 1/2 N, N. 2/2N, 2N, etc.

%

Similarly, the stable solutions of Eq. {2.3L, have the form

iR N
/} . ‘) w2 ' T B (2.5)
corresbonding to the allowed E;-value E2, = E/{ﬁ)a
Each solution of Egs. (2.3) correzponds to a cet of values of
E and E;, and we will say that each solution corresponds to an E-point

which has the coordinates (E, E’}g The allowed E-points of Egs. (2.7)

>/’ P R )
are indicated in Fig. 1. ;.4 a {/// M4Q~w@m‘~lv//
The gaps in the allowed E-points % /}////) .
[ S
/ / ‘ / ,/ / ”" ’

are indicated by the shaded regions. ZE‘/

~

i
~
SEANAN
N

For the motion to be stable in the linear theory, the operating

E-point (E_, E ') must not fall in the gaps. One should also keep

0
in mind that each E-point {E, E, has a 4 -tune and y-tune associated
with it given by ( V, Ko according to Egs. i(2.4) and (2.5). One
might note thét each E-point is fourfold degenerate.

Now that the unperturbed eigenvalue problem of Egs. (2.3) has
been solved, we will try to solve the eigenvalue problem of the
non-linear Egs. (2.2) by using a perturbation procedure. We will
show that the perturbation will cause two new gaps to appear in
the allowed E-points as is shown in Fig. 2. These gaps occur around
those E-points whose tune lies on the lines ¥ + 2K = N and V -2/~

= Oi

-4 -
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We will see that the width of these gaps depends on the amplitude of
the motion and will be larger for larger amplitudes.

The question of stability is answered by where the point (EO,EO’)
falls in Fig. 2., since our particle motion is given by solving Egs.

N Y
(2.2) for W = E, and W' = EO .

If (EO9 EO/J does not fall in the
gaps, the motion is stable., However, if the amplitude of the motion
is increased, the gaps become larger and (Eog EO/) will eventually lie
inside a gap and the motion becomes unstable., This will determine

the stability limit amplitudes.

To solve Egs. (2.2) for 44 and y we will expand M4 and y in terms
of the solutions M, ( £ ) and yh, { & ) of the linear equations
(2.3). As in Paper I, we form a discrete orthonormal set out of the
functions »uy and Yie by imposing the boundary condition that
they be periodic between & = 0 and & = T where T is some arbitrarily
large angle which we will eventually let become infinite.

The solutions of the linear Eqgs. (2.3) can then be written as

e @ o § 5“ >
Ay ey 19 (2.6a)
- S e Ko oy (2.6b)

. _‘.',;;’gzm
and they form two orthonormal sets,
T

¥ Y N 2.7a
f d 5’ » ‘fj,«! p»‘ f// ‘, I"‘ J’{ ¥ FI SNV RS é‘ V ;) 4 ( )

]

-5 -
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’

¥ ,
ﬂgh (’ jlﬂgk' v/ o Y (2.7b)

if hy fo} and fi (&) are so normalized that

[
1
J.

N I/%%z‘49 iiﬂ 2 | (2.82)

< T / ¢ Py o = ) .
and i k’ﬁﬂf?v N

PR LRI B (2.00)

Now expand M4 in Aly and y in y,
Y= ? 0,),’ My (s (2.9a)
- 3 \ K, (o (2.9b)
A3 :;¢ }) ‘ ﬁjlﬁi )

and by putting this expansion in Egs. (2.3), we get the equations for

ay and bK ,

W Eh)a?u ) '}Zq_ Ve Ty T (2.10a)
Y L L K. K b, by
2 7K £
and 92 9’ s /
W E Vb= 2 Do vk, Au b
B )be = 2 Doy Ay b,
where
T ¥
Cx ke Ke = ]As u;‘ Cle) »y /}K (2.12)
) A £
and
D "Jo
Kclu;} Ke = | de /UK; D(,g) UVI} /?’ﬁe. . (2.13)
o s
Now we will solve Egs. (2.10) for a, and by by a perturbation
prccedure. Consider the E-point (Eg, E ! of the linear equations

(2.3) which has the tune (lis,}(S), and which corresponds to the

-6 -



solution X = aM% + a*M-\é sy Yy = b /\a'ks a8 b*’?..“} . This E-point
will be shifted by our non-linear perturbation. To find this shift,
we will solve Egs. (2.10), by assuming that in the expansiocnc (2.9)
for Y aﬁd Yy, only aVS ) a-lé ) st and b-,(} are large
znd sll the other Ny and by are small.

Thus to firs=t approximation Eqs. (2.10; become

(W-gc)ac= Z (Bessledo + Cooso b, b ) (2.143)
(W-E)b; == Dioond, fn (2.34p)
55 “ ' |

In Egs. (2.14) and in later work, we shall use the notation E)g =
Eg. M{/{ =M, BV;;%A;?V,{ - E)i”;,}( and - V% = Y~ . In the sume of

Eqs. {2.14), s/ and s’ can take on only two values, s and$F=L~5
The matrix element ng}g_ will vanish (see Paper I) unless

Ve = Yy + Y, + W, ) (2.15)
where W, = nN,n=o 1 +2
Similarly CZJ@Q, will vanish unless

VYV, = k‘{"’k}é,‘_—(- (AJV’/ {?0]{),
and B¢, ¢ will vanish unless

(2,17

KL:LV3+-ME4%~@-

The shift in the Etpoint (E Es’ having the tune (V S,K/“)

5°? S

iz given by Eqgs. (2,l4j by putting i = s. For i = s, Eqgs. (2.14)

become .
% -y - ‘{
(W-E;) 4; = Lo st, g e dgn =+ Cf, sis byt bs s, (2.18a)
(W"FSI) by = D os s by | (2.18p)
¢
s’y :
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Now using the conditions 2,15) to {2.17), we will see that mat ix
elements will vanish unless the tunes (]é R K’S) lies on certain lines
in a (VK ) diagram, which we will soon indicate. If the tune d-e
not lie in these line:, the matrix elements vanish and by Egs. (2. 8)
the E-point 'Eg, ES/) correspuonding to thi - tune is not shifted a
(W -ES) :W’~L:j’ = 0, If the tune ( )'3,/(5 ) does ie in these
lines for which the matrix elements do not vanish, then by Egs.
(2,18), the E-point Eg, ESL correspon ing to th:s tune is shifted
and we will see later that the E~point is split into two points.
We will see that these lines on which th: E~points get split are the
resonance lines at which the motion becomes unst ble.

Using the conditions (2.19) to (2.17) one can see that B;;gggu

will vanish unless

= 4 W
Y= m W (2.19)
C;,53‘/ will vanish unless
1,5 - Ks - ("')h 12.20)
S, %% will vanish unless
o 2K T W, (2.21)
The matrix elements also do not vanish it . = &/n; but as this

tune is already unst :'ble in the linear case, we will not con-ider
: . 2

it. We will see that Eq. (2.19) shows that B & )AL term i Egs.

‘2,1) causes )}s = . 3,W, resonance, while the C(& ) y2 and

D(“+) My terms caus the coupled resonances .

¢ ¥ 2!<S = W

The absence of a y2 term in Eq. (2.16) shows trnat there is n- Kk
=(1/§)U3n resonance which has been chccked in computer calculations
don: vy L. J. Laslett.

In this paper we w)ll restrict our attentisn to the YV . o+ 2/(5

= W, <um resonance. Sum resonances due to higrer order term. in the
- Q .
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)C

Eqs. {2.1) can be haniled in the same way. Difference resonances
are considersbly difierent in ch::=cter and wi.l be treated in »
later paper.
Let us consider then the E-points (Eg, Esl) whose tune (\é,kk )
lies on the line Y + ¢ K5 = N, We will treat the case W,z = A ,
but the general W, case is quite similar. The shift in these
E-points is given by Egs. (2.18) which now become
. N _ - _
(w-E) 85 = <455 b,

! ‘ =D, 5 d: bz
(W'~ E, )bj 5,55 45 b3, (2.22b)

Most of the matrix elements in Eqgs. (2.18) vanish because Vf+2K;?JY
and because of conditions (2.19) to (2.21). One should notice that
Ds,s"? = 2 C,;g re . by Eqs. (2.12) and (2.13) and since D)= (®;

@v»E;) afmiuuﬁ-E;’) which give the shift in the E-point
(E.. E.") can be solved 4$or from Eqs. (2.22). The magnitudes of
(W-F; ) and (W' - F.! ) are given by

o

lW*E;i = lCS,;S‘l \ L};/asll (2.23a)

\wi-g;] = 21¢,z5] 164], (2.23b)
The magnitude of the shift depends on the amplitudes of the motion,

bs and ago

We will now show that because of Egs. (2.22), (w=-F, ) and
( “Ei‘ ) must have the same sign.

From Egs. {2.22) we see that

’FJ\(;}A\!.’ 5) - ‘Mq (:5#5-; -2 B - KA ) (2.24a)

-9 -
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and »
ph(i'~E; ) = (RORTT e K (2.24b)
Wﬁg;e ﬁdk means the phaéerf ag, and ph a_ =« , and ph bS = £ .
Thus ph (W-E;) = ph (w'-E') and ( w-E; ), (w'-£' ) have the
same sign. This hos the consequence that the E-point (Es’ Es,) for

given amplitude ag and bg is split into just two points-as is shown in

| N .
Fig. 3. . ; -)_/5+2K5=Nﬂkz~¢
Each E-point in the line 'E '
is split into two points. A gap appears El_ —
» 5

in the E-point diagram around the line
Y, +2Ks = N. The size of the gap |

depends on the amplitudes of the motion

V

\
oo ]
ag and b_ and is given by Egs. (2.33) E

Fig. 3.

Egs. (2.18) seem to show that an E-point whose tune lies very
near the resonance line Y5+-1!{S ='N is not shifted. This is not
so. The situation is similar to that in the one dimensional case
and Egqs. (2.18) are not valid fof E-points very near the resonance
line but not exactly on the”rééonance line. Sbme.discussion of this
point is given in Paper I. We shall assume here without any further
proof that these E-points will be shifted to someplace outside
the gap computed by considering the shift of the E—pointé"on-fhe
resonance line.

We can now discuss the question of stability. If the operaténg
point (E;) F‘ ) lies outside the gap that appears around the l;ne

]

-+ = N , then the motion is stable. By increasing a
Ve +2 K 9

/

S

and b, we can increase the size of the gap until (Eo, Eq lies incside

- 10 -
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the gap and the mutien.bécomes unstable. The limiting case is when

‘(Eo, Eol) lies on the edge of the gap as is shown in Fig. 4. This

A

;hwill happen when some E-point

(E Es,) o1 the resonance line

S?
Yo+ 2 Ks = A is shifted

to the opersting point (Eg, Eo,ﬂ.

Fig. 4.

Which E-point (E, ES’) reaches the operating point (E_, E’ depends

on the relative size of a_ and by according to Egs. (2.35),. I:! the

amplitudes ag and b_ are such as to cause some particular E-point

g/

(ES, ¢/ on the resonance line to reach the operating point (E

7/
(e X4 EO )

then the effective tune of the motion will have changed from ( M& K} )
to (Y K5 ). |

There is then nor Just one set of stability limit amplitudes
A b, but many sets depending on which tune on the resonancé line
( LQ) K} ) the motion is driven to; which, in turn, depeﬁdf'on the
relative size and phase of ag and b_.

The stability limit amplitudes s by to drive the tune of the

S,

motion to ()&KS ) which lies on the resonance line ¥ +2Kk =N

can be found from Egs. (2.22) by putting W = E_ and w= Eo/ Thus
we get / a
o] = lE.-E
’ 21¢ 30 ] (2.25a
v ’ + ; ‘
b,) = \£.-E ) ES-E/ (= -
| sl — (2.25b)

2
2 \65,5'5'}
One should note that it is not possible to drive the operatinig

tune ( \4)J<a ) to all the tunes in the resonance line. Because the

- 11 =
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o ine
E-points on the resonance,can be shifted only into the first and

third quadrants as shown in Fig. 3, one can see thét only the tunes

shown in Fig..5 are reachable. E;' N
. ~
To get some idea of how a. and bg -? “§J<quhqkle'TLﬁes
depend on the tﬁpe ( V¥, Ky ) that e L r\\\\\
. LA ~ Vo
the motion is driven to, we wculd like [ . N N
, | <2 \IHQ
to give some approximate formulas l S B
for a5 and bg. ° E;
| Fig. 5.
In Egs. (2. 25) we shall make the following approximations, We
shall put Eg )/ 2 ) Es‘ o K;" and in computing Cs/;’;‘ , we shall
<V cK® 4
ut 16) I : =
put My e "%/, ONOEN S o

These relations would be exact if ‘3,./0) = 93(9”) T o0in Egs. (2.1)
and are roughly true in most cases met in practice. We then get4

for a and bc,

~

NL )\/:} k}’ - v,\/‘\

,q$| - .Cl W WI\TW / (2,.26a)
“95’ = ’EN:T J 1Y, Ko V! LK;‘KG)( Y~ Vcé) (2.26Db)
i ' F.

where C; is the Eirst harmonic in the expansion of C(& ), C(&) =
i Cn @':w*‘ e , and we have assumed that ( )/6' Ko ) is very close
nto the resonance line so that V, + 2LK.~N . Ve have also
omitted all factors of J-;, and shall do so hereafter, as all such
factors must cancel in the final answer.

We can use hqs. (2.26) to plot]qJ) )Lkl against the tune ){5 ,

or we can plot ib;l against lqu . This last curve is the more

important one and is indicated in Fig. 6.

- 12 -
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bl

ay

Fig. 6.

The maximum value of ]4' is given by

= N K .o
aV}lA)("'lc'l 7\/""’5,

where § measures how far ('Val Ko ) is from the resonance line and

is defined by & = 'J:'.' V= N = 2K /W)

(2.27)

The maximum value of |4 ] occurs at the tune Q(S—K(Q/N =&£.
The maximum value of \b| occurs at the tune Q(S’K‘D/’V: +1¢

\5 VolK, amwx (2.28)

The curve shown in Fig. 6 has the equation

b _
b o Qi am,x (l %,;;,) ’g& (2.29)

We should point out here that a portion of the curve in Fig. 6

and is glven by

is not accurate. This is the portion near the origin where lbﬁa‘;i?/,
Because b, 4y , higher order terms neglected in the theory
become important. ~ctually |b| does not go to zero when lq)—)o.
However, it has been estimated that the breakdown of.the theory |

occurs only near the origin for 4 L< a%x

I1II. The Stability Surface

The results of the preceding section for the stability limit

amplitudes can be better understood by introducing the dea of the

- 13 =



MURA-217
stability surface which we will develop now. We will start by
discussing the stability limit orbits.

According to the results of section II, there is not one but
many stability limit orbits. The stébility limit orbits have
different tunes ( Ve, Kg¢ ), though all the tunes lie in the resonance
line )/5 +9-K5-’—'/V and must lie in the region shown in Fig. 5. |

The stability limit amplitudes, a. and by, depend on the tune of

5
the orbit and are given by Eqs. (2.25). The orbits themselves

follow from the expansions, Eqs. {2.9), and are given by

M - as US (9) + q;é /MS%L/9>' (3.13)
M= b M (0) + LS 4T (8D (3.1b)
W= duldg and %' = d “}/d & can then be calculated

by differentiating Eqs. (3.1)

Now. each stability' limit orbit, M= AM/e), Aa =) [9) , M=u'lo),
,9;:w?f($)  can be considered as a curve in four dimensional
space. We will show that all the stability limit orbits lie on a
closed 4-dimensional surface and they completely fill this shrfaceg
This 4-dimensional surface we will call the stability surface.

We will assume that if the motion is started at a poinﬂ
(M,%,m', 4’ ) outside this 4-dimensional surface, then it will
be unstable. Thus the stability surface will give us the region of
phase space that is stable..

We will now obtain the above results. 1In order to have a
concrete example before our eyes, we would like to treat the special
case with no AG.in the linear terms, which means 3,19): 9./6) in

Egs. (2.1). Our results however will be quite general. For this

- 14 -
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2 ' Ve ‘Ko
case the linear solutions are simple expon:n‘'ais M,,‘-“’@L y YK =@ R
and E, = V? ; E.= K*

For this case the stability limit orbit:s are given by
M= A ~(VOo+d) (3.2a)
~M = B c (KO +5>, . (3.2b)
M::_)/A}M(VA&-PX). (3.2¢)
: ' (3.2d)

where A=3}q,§ 8:916/ , o(—.'b[,a
and g = /p#‘ L. d.

Let us note that the parameters that occur in Egs.(3.2 are
not all independent. V and K are related by Y+2k:/y.‘ A and B
determined by the tune ( V, )() according to Eqs. (2.2b). And
«{  and £ are related by Eq. (2.24a),

Phis-E)=pc -ai-« (3.3)
~ For example, if E_ is below the resonance line. so that

PA(E.-£ )= T , and if Clo)= 21<, Jain W&, so that gh€, = -% ,
then we would get A=+ " F = T /0. | |

Thus there are only three independent parameters in Egs. (3.2)
which we can tz=2ke as \/,9 and € . Eqgs. (3.2) can then be |
considered as & set of four equations for ﬂ,y)»u,'g’involving three
parameters V ¢,« | and are thus the parametric vepresentation of
a surface in the 4-dimensional space of‘/M,f\;)) M, !
Theoretically, V) ¢, and oL could be eliminated from Egs. (3.2)

!

to give a single relation between M, ™, " and 9 ' . Thus we have

shown that the set of stability limit orbits form a surface.

- 15 -
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In the next section we will present ways of picturing this
4-dimensional stability surface, We would like to remark here that
we have not really shown that the surface we found is the true
stability surface in the sense that every point outside the surface
is unstaple. However, as the surface is made up of the stability
limit orbkits, 1t seems plausible that either it is the true stability
surface or it is very close to the true tability surface.

/
'

V. Sections of the Stability Surface.

One way of picturing the 4-dimensional stability surface is to
pas§ a "plane" through the surface and examine the cufbe which is
.the intersection of this plane with the stability surface. For
example we can take the plane defined by M'= /\9 /=0, and we can
find the points on the stapility surface tiat lie in this plane.

The two dimensional curves we so obtain should give us some idea
of what the stability surface looks like,

These sections also have the advantage of being closely connected
with stability calculations as done on a computer. In the usual
computations done on a computer like the ILLIAC to measure the stability
limite, such a section is usually traced out at least ﬁartially,

To illustrate these sections we wili treat the special case
mentioned in Section III where 9.() ' '&i=ain Eqs (2.1)
and €(&) = 21<, ) A N8

Let us now find the section defined by the plane,ﬂ{f T
The stability surziace is given by Egs. (3.2) with the added restriction
that «(+ 24 = = /2 . Let us just find those values of ¥4 &
which make M'= j)'z'aﬁ and then we can find those »oints in the

—

/ b o,
surface that have 4 = g = {5
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To make iﬁ:rﬁ;f: ¢ , the parameters V, 5, and < must obey the

conditions,

Vo +x =0 or T,

]{9+g:9 ol Tr.

Let us first assume that V8 =+ K =0, and K6+ £

and .
multiplying Eq. {4.lb) by two,adding to Eq. (4.14), we find that

Now using the relations

(V+2KY6 + (% +28) = o
and A+ 8 = T/ , we find that NO = =T /g .

= 0.

(4.1a)
(4.1b)

Then

YV+2a K= AN

This means

that at the angle N@ = - T/a , there are points on the stability

surface at which 44'= 3‘ = 0 and at these points A4l =Aand Y’z B.
“Note that A and B depend on ) according to Egs. (2.26).

Thus as

Y is varied we find the points M, ﬁ} shown in the first quadrant

of Fig. 6.

This curve is just the b against
p

a curve of Fig. 6. \\\

By treating the other possible

\ Y

L

Ne

-I

cases according to Egs. {(4.1)

we find the rest of the section
Np = -

M= ﬂa“-‘» 0 as shown in Fig. 7. {

One might note that each point in

the curve has definite & associated Fig.

with it.

The curve in Fig. 7 is instructive for the calculation of

70

stability limits on a computer. If in the computer calculations,

one starts with initial conditions of M=y 'z 0 at ©=0
then one will be unable to find points on the stability surface

since according to Fig. 7, the points on the stability surface

- 17 -
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having M'= ?’;—; o occur at N@ ‘-‘i’_?ZL: . Computations on
the computer are done by starting with y'= «e': o qF & =0 and
at some { M gﬂz» }] which is outside the stable region. One then
moves (M, ?r} in towards the stable region until one finds a
stable motion. The point so found will lie somewhere inside the
stability surface, since the points in the surface have Np‘zifﬂZQI

We would like to also present the section corresponding to the

plane Al=”'%26. This is shown in Fig. 8. The curve is just a

plot of B against'VA , and can be Ng,{,

found from Eqs. {(2.26). This

section was easier to treat

in our computer calculations

as there are points in the sur-
face having M:Aa'so at & =0 . No=o0~
Fig. 8.

V. Comparison with Numerical Calculations

To compare the theory with numerical calculations, we treated
the following set of equations,
2 — 2 ‘
4 4 ETu= By ut+ By
de> /
} 45

(5.1a)

+E'}/‘3,= 2C(e) uny (5.1b)

de*
where we put [3({8) = 2181 /34‘,,_\/\/9.’
Clg) = 21C,) 2 N8 and E /N =,05 336,
E,S//N? = 1232 and

g) = |&)=. 0886 -

These numbers and the form of the equations have been chosen to

resemble the actual equations for a spiral sector5 FFAG type of

accelerator. The only change was to omit the AG in the linear
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term which wae done +o cimplity the calculations,
For the above numbers Y. /A= ,2426 and K, /N = .351 <o that
Kot Vs T 9494 N and we are close to the Qs +¥ = /¥  reconance.
Ifeing the ITLLIAC computer 4t the University of Iliinoi«, we
have traced out the section of the stabiliiy surface corresponding
to the plane M = “g‘f"@ ; The results a.e shown in ¥ig. 9.
Since it is convenient to start the calculations on the computer
at & = 0, we can find points in the section which l:e¢ in the se ond
and thi:d quadr:nts of Fig. 9. The sectiovni=point - .. the first and
fourth quadrants correszpond toN® = 7 and when the computer
approaches the stability region starting irom the right of it,
it can only find.pointa well inside the csurface as i: shown,
We can 3lso make a comparison between the stability limit orbits
as predicted by the theory and as computed on the computer. If
we start the motion on some point in the stability surface, then
the particie will move in a stability limit orbit which lies en-
tirely in thie surface. The equation of this orbit for Egs,
‘5,1) are given by Eas. {3.2). The stabzlity limit orbits are
simple sine curves for this case,
In Figs. 10 and 11 we have plotted M against 8 and y against
B for the stability limit orbit which the particle will follow
if it is started at the point M = 0, y = ,185, M = -.0652,4 = 0
which is a point in the stability surface. This is the =tability
limit orbit in which y reaches its iargest value., Acco:ding to
Eg. (2.28}, the largest stable value if y is .20 for our case
which is to be compared with the computed value of .125. This
orbl* has the tune l, K ‘//N = 2/2::' olY  =and (V5-“’f;; ;/N = ,027

according to theory, and the computed iune agrees faily well as the

curves show,
.19
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Fig. 9. A comparison of the theory with numerical calculations
for the section of the stability surface corresponding to the
plane M =‘ﬁ = 0. The curves are theoretical the p ints are
computed numerically. The points with a dot n them do not lie

on the stability surface but indicate the stability boundary at

& =o0.
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Fig. 10. The stability limit orbit corresponding to the initial
conditions M = 0, # = .185, M= -.0652, ’}sz 0. The radial
displacement M 1is plotted against & . The solid curve is

the numerically computed result; the broken curve is the theoretical

result.
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Fig. 11. The stability limit orbit corresponding to the initial
conditions M = 0, # = .185, 4= -.0652, §'= 0. The vertical
displacement y is plotted against & . The solid curve is the

numerically computed result; the broken curve is the theoretical

result.
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