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ABSTRACT: Calculations of frequencies of linear betatron
oscillations in the Michigan Model using measured
field values are described. The discrepancies
between design and measured values are resolved.
These discrepancies are due to the difference in
field shape as a function of azimuth caused by
the finite cross-sectional area of the pole face

current return windings.

t Supported by Contract AEC HAT(11-1)-384

* On leave from the State University of Towa



MURA-2-2
(2)

Introduction

When the design calculations for the Michigan Model(l were
performed,(2}(3)magnetic field measurements were not available,
Various conformal mappings for individual two-dimensional magnets
were combined to give a field plot. This plot was used to find
the pole geometry which gave the frequencies of linear betatron
oscillations considered desirable. Table I shows these design
frequencies and the frequencies measured experimentally(l)by two

different methods, static (sigma-testing) and dynamic (R. F.

knockout).

TABLE I
Design Static Dynamic
e 2.80 2.87 2.85
Vv, | 1.80 2,12 2,18
a

The static experimental measurements are only accurate to
approximately 2%, while the dynamic values are accurate to within
1% so that the two methods of measurement are éonsistent, but there
is clearly a disagreement of the order of 15% between design and
measured values of 12 . The present note describes in detail the
calculations done to understand this discrepancy.

I. Magnetic Field Measurements

Figure I shows in graphical form measurements performed by
C. H. Pruétt and R. O. Haxby's Purdue Group of the vertical component
of magnetic field in the median plane as a function of azimuthal
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(3)
angle at constant radius for three different radii*., The field 1s
symmetric about the centers of magnets. (The peak near the edge of
the wide magnet occurs because the equilibrium orbit does not lie on
a curve of constant radius and the field was designed to be constant

along an equilibrium orbit.) The field may be written in the form

/-/o (%})ﬁ%ft*) .3 /%(én} ?QZ/ i mé:’}’” C,oa,'})r\/(:f] (l)

e

which is the same form as the spiral sector field with ws 0.

H;:

The parameter k can be computed easily from any two points at
different radii and the same azimuth. Table ITI gives values of k
averaged separately over the wide and narrow magnets. Points of low
field near the center of the straight section are very inaccurate and

are not included,

TABLE IT

k between k between

r = 39.5 cm r =44.6 cm

and r = 44.6 cm and r = 49.7 cm Design

curves curves Value
Wide

3.254 3,371 3.36
Magnet
Narrow

3.346 3.346 3536
Magnet

The value at small radii in the wide magnet is conspicuously

different, which is due to the details of pole-face windings, since

this region includes the radius where the second layer of pole face
winding begins, where fluctuations of k had been noted experimentally.

This difference probably has a very small effect on frequencies, since

—— e — o L O R e o o

* The measurements have been carried through only half of one wide
magnet and half of the adjacent narrow magnet (with other magnets in
place) leaving some doubt about whether this is a representative
half-sector.
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\);does not depend strongly on k, while 17; o '\/ k + 1 and the ratio

of V; with minimum and maximum k (supposing they extend over the

\/ /| + 337/
Vo4 3.25%¢ = 1,014,

which might be masked by errors of measurement.

whole sector) is

It is interesting for purposes of comparison with the spiral
sector machine to Fourier-analyze f1e), From the curve at r = 49,5

cm.we find

gl = 49426 95 = 00225
9, = - 2:11% 9g = - 0,005
g5 = 0.024 9,9  0.001
g, = 0.473

The flutter ( =4/ %?j:-, neglecting orbit scalloping) is
4,933, in contrast to the values 1/4 in the sinusoidal and ¥ 1 in
the separated sector spiral sector machines. For our purposes, it
might be remarked that the usual analytical methods of approximating
the equilibrium orbit converge rather slowly for such large flutters.
In addition, higher approximations become laborious because of the
large number of Fourier coefficients. Because of these difficul-

ties, we have done the whole calculation numerically.

IT. Methods of Calculation

The equations of motion can be derived from the variational
principle
e =
%/(ﬁ+gﬁ)“@‘o
fath (2)

EPE ds e
= 5 ) (pL+ &G h)de=0 (3)
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so that if © is used as independent variable, the LaGrangian is
L prds . 8 48
’f}a’g - s (4)
In the median plane,

e e Foe e

3
and 7o has a @ -component equal to r. Since the field has only

a 5 -component, the vector potential has only a & - component

: & BEd
Ae = —g—"—l-‘ (£ £c6) (6)

+e Yo
SO that e . ,&*-& -
. QHo Y.
= S el 2 (Jn) (Qi)
L ﬁ[ ? Tzln) T
e

or, introducing Y = ,:—: and A, = eH,

3 = bt
£ e pr[ v+ B L] o

which is equivalent to the Hamiltonian

£+ 1
5‘6=,M[>/1/f—3"'— /-}"%+ (e)J (8)

The equations of motion are, from (8)

s/ = ;fg/i*’ o) — V1= §* (9)

NN § 4/
Vv
The equations (9) are equivalent to equations (11) of reference
3 with 5 = sin 96 . We put (9) in a more convenient form for
numerical integration by the (non-canonical) transformation

fet1
Er & . Then we have

il /g; j’rf}o) w4 1=
5
$'s = (k) ==
Vi- 5>

We have integrated (10) numerically, first by hand using

(10)
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Milne's Method ) and later by a program prepared by one of us
(H.K.M.) for the I.B.M. 650 of the University of Wisconsin, using
the Runge-Kutta Methodo(4) One may take advantage of symmetry; the
equilibrium orbit is even about the centers of magnets. Thus we
integrate through half a sector and the equilibrium orbit is that
solution which has zero slope (% = 0) at both magnet centers.

We have used either 40 or 100 steps per half-sector. The values
of f”’) for each step were obtained by Aitken's Method of Interpola-

4
tion from the measurements of largest radius. Since the machine

scales, one may vary either To (the circumference factor) or 5(0)

Ao
on different trials.

The equilibrium orbit obtained from (10) is used to find values

(2)

for the quantltles in the betatron oscillation equations
jji- + ;(5) e ;ZI:: 7s) ._f-s.a ¢f5) 'Ld'c'/mﬁz (®)
(=3 v (ll)

[ . s ;.;-‘(’ Qc¢(s)+ _F’l“‘“sﬁjg

or thelr equlvalent

5 a_e"f- [? F(e) ‘“’(e) ?3(6 = -.(,_ SQC,QZ/E—(GH‘M OFSEC'éf-/f d;i'ﬁ-'?]

e | g 7 I < = F-
Jg E"(g)%csfﬁte) J} (,_l?see:.;é [”o‘@,rm +pd! rm]
5 s g —— 2
;Tézf b Ff@)/oo 7o /ﬂo ) Vo ¢ J l
11 d h f = + 45 'ﬁ
where nj an r0 are the values of n = 17 . I and r at the center

of the positive magnet, r ©-% is the radius of the equilibrium orbit
and F(9) = F® (;E) f(GJ is the field along the equilibrium

L
orbit normalized to F(0) =

Equations (11) or (12) were integrated numerically by the
(3)

L

"Coleslaw" program on Illiac, which is described elsewhere

(4) See "Introduction to Numerical Analysis", F. B. Hildebrand,
McGraw Hill (1956)
(5) The MURA Programs for Illiac - J.N. Snyder, p. 85
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Both (11) and (12) have been used, with identical results. (12)
is easier to use because the equilibrium orbit data are given in
terms of © .
ITL Results

The results are very sensitive to certain errors in the field
measurements.* If the measurements in Figure I had been carried
through a complete sector, it would have been possible to measure
the azimuthal angle more accurately from the symmetry. As it is,
there is an experimental uncertainty of 0.1 degree in the position
of the center of the straight section. This changes the magnetic
length of the sector and therefore changes the scalloping of the
equilibrium orbit, which affects the vertical focusing. Table
IIT below gives values of V- for maximum shift of €@ in both

directions and for zero shift, all relative to the experimental

data.
TABLE III
Shift of © »; x{;
- 0.1 2.94 2.22
0 2.88 .17
+ 0.1 2.84 2.02

The best calculated values may be taken as

= 2,88 £ 0.05

x
|

B
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* Lack of realization of this sensitivity on the part of both
experimenters and theoreticians concerned has been responsible
for the beclouded situation in recent months with regard to the
betatron frequencies in the Michigan Model.
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which are in agreement with the measured values.,

The agreement between design and measured values of the radial
frequency is considered good, since the field shape, which is not
well known for the design values, affects the radial frequency.

The reason for the large discrepancy in 1}} becomes evident when
one plots F(s)., as is done in Figure II. The measured field falls
off much more steeply in the straight section than the design field.
This makes the ig- terms of (l1) larger by about 20%, averaging
over the region wherej{g#o . This edge-focusing term dominates
the vertical focusing, so that one would expect this same order of
magnitude increase in the vertical frequency, which is what is found.
It may also be pointed out that the greater magnetic length of each
magnet in the measured field gives greater gradient length, so

that the radial frequency should be larger than the design value,

as it is.

It appears that the field falls off differently from the de-
sign field because of the finite size of the pole face current
return windings. In the design, these currents were assumed
concentrated at the magnet edges, whereas they take up about half
of the straight section, thus making the field fall off less
steeply near the magnets and then more rapidly at the center.

We can estimate roughly the effect on ‘U% of differences
among the magnets. The most important effect should be the
variation in thickness of the return winding bundles at magnet
edges, which are about 5/8" in diameter at the maximum radius,
with a variation of about 1/8" among them. Changing all the
bundles from O (the design value) to 5/8" changes V., from

>
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1.80 to 2.12. We might then estimate by interpolating linearly
that the maximum error in »5_ due to variation in thickness is
about %* 0,07. The r.m.s. error is certainly no larger than this
and has a small effect when added to the greater error due to
uncertainty in azimuthal angle.
We would like to thank R.O. Haxby, L. W, Jones, C. H. Pruett
and K. M. Terwilliger for many helpful discussions during the

course of this work.



