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Among the most important problems now being considered are solutions

of the electromagnetic equations (Maxwell's equations) and the dynamical
equations for the motions of charged particles in various proposed accelerators.
The complexity of these equations and the 1ack'of analytical solutions have re-
sulted in the extensive use of numerical calculations to obtain approximate
solutions for particular cases. The magnitude of these calculations has
required the use of a large, high-speed, stored-program electronic com-

puter. Up to the vpresent, these calculations have been carried out almost
exclusively on the Illiac computer. In the near future it is planned to use

an IBM 704, In this report we shall discuss some of the programs already

in use on the Illiac, certain numerical formulas and ideas which might

be used, and changes and additions to these programs which might be

feasible or preferable for the IBM 704,

At the present time the two most important programs used on the Illiac are;

1. Scapocyl, which nrﬁduces (by the solution of Laplace's equation) the
magnetostatic potential -corresponding to a given pole and boundary
conditions: the output of this program is a mesh of potential values
corresvonding to equally svaced points in theégrv plane,

2. Stormesh, which makes use of these stored potential values to obtain
the field components by interpolation and differentiation; these field

components are then used in the solution of the equations of motion for

the orbit.

INTERPOLATION - DIFFERENTIATION FORMULAR

If the potential functionﬂg,h) or {3‘ is stored on a mesh %is stored because

it varies less rapnidly than £L itself) it must be differentiated in order to obtain

the field components. These diffefantiations are handled differenfly for the

D o

KL
£ and N directions, if..%is stored, since %—F— =n Sh n



-3~ MURA-~201
Thus storage of%%& requires intervolation as well as differentiation-
interpolation of the stored values to obtain the field components at points

other than the mesh points.

A condition which has been imposed on the intervolation and intérpolation—
differentiation procedures is that they produce continuous values at the

mesh voints. The procedure which has been adopted to obtain the function

and its derivatives inside a mesh interval is to avply a one-dimensional
volynomial formula, first in one direction and then the other. It was thought
that an interpolafion formula involving the 4 vpoints surrounding the interval
in which the function was to be evaluated would give satisfactory results

for the function.

To speed the computer program, it is desirable that the differentiation-
interpolation formula be the derivative of the interpolation formula for the
function itself. This is not necessarily the best formula for the derivative,
but it is more convenient. Then a third degree intervolation polynomial for
the function has the h.conditions of continuity at the end pointe and

continuity of its derivatives there also. This results in the formula,

given in LJL 8, pg 7-8.

Flareh) s fo + L (- £y )r L hr th -H 24 )il abinstit)) T

e Y alhe 4 -shor W g fahrsh6) T

wheve 04 ug ),
If one writes a general 2nd degree polynomial expression for hf’ (x°+uh)
hloruh)= a0 +2, U + a5 U™
and requires continuity of this function at the mesh points, then hf‘(xo)z a,

mist not be a funetion of the mesh point wvalue f2. Then the best wvalue for a,
f-£,) £
154' 1= "=/, but this has errors starting with the;;j’ term, if one ex-

presses f in terms of a power series about Xy o Thus the errors in the
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formula II may be quite large, compared with other interpolation-differentiation

formulas. A test of this formula for the function sin x has been made (this
corresponds roughly to the variation of.n- withe), and is given in Table 1.

The sine curve here goes through one complete cycle in 50 mesh steps, and

the interpolation and differentiation has been done at 9 points inside each of
two mesh intervals, from 38° to 520. The average absolute error is .000735

over this range, using formula II.

If one simply asks for an interpolation formula for f'(x) of a certain order,
involving certain mesh voints, and also reguires continuity of this formula,

but does not require that this be the derivative of any particular interpolation
formula for f(x), then one may obtain other formulae for f'(x) which are in

some sense better than II. One such formula has been worked out by H.

S eb s f -4 8 (o + 96 - for 5 i oo - r2rk=26,) I

wheve o4 u.él

This formula also has been used to calculate over the range 38~5209

sinx
dx
giving the results labelled III in Table I. The average absolute error here is
.000650, as compared with ,000735 for formula II. The only disadvantage
here is that III is not the derivative of a useful formula for interpolation
of f(x) itself, and therefore, if both interpolation and interpolation-

differentiation must be done, formulae I and II used together are more efficient.

fi-%
N

interval with the mesh vointe used, but it contributes in large measure

The term in both formulae II and III is reguired for continuity in the
to the errors obtained in using these formulae. If one uses an interval which
begins and ends at pvoints midway between the mesh points, continuity require-
ments still lead to use of the adjacent mesh values for the first term in fV,
but now these voints are much closer together. TFor a four-point formula,

if we want continuity at 1/2 points and symmetry, we are led to the

formula (covering 2 mesh intervals)
h-FI (F-—f).,.___ (7_F 4_33,':‘_‘/5-’(‘ +[1.{’ )+. (3-[ 39[+37f-/3‘6)ﬂ:
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Hereogq:sz;:orresponds to»&&u.‘:;én formulae II and III, and continuity is

preserved atus-zaml % o This formula, also derived by H. Meier, has
the additional advantage of covering two mesh intervals, and therefore one
might be able to do more than one Runge-Kutta step in the integration

of the equations of motion within the same larger mesh region which this
formula covers. Again, however, it is not the derivative of any very precise

or continuous interpolation formula for fix).

Discontifucus Derivative Formulae
If the requirement of continuity of the derivative is removed, one can obtain
more accurate formulae. It turns out that one of those for f!'(x) derivable as

best from the Taylor series exvpansion is Jjust the derivative of the Bessel

intervolation formula 3
Fe b, +7-(h+ CF -2 fo 2“-;)*‘*"’66-2,-»( +f,)+ %"ﬂ,‘-ifﬂ‘g*{,) i

Whe.rc, 0L w £ |
The derivative formula is then

ur o _zfp 2L -4
W ok )e f Lt b= 26 o a2y ) 5 (6354 366 ) L
Applying this formula to f(x) = sin x. the average absolute error is reduced

to 000062 (see Table I).

The requirement of continuity of the derivative on the mesh boundaries

was considered necessary because if a group of particles occupying a certain
continuous region of phase sﬁace were considered to pass this boundary,

the discontinuity in the derivative might tend to shred the phase region, or
cause the motion to apnpear unstable. However, when considering a finite
group of particles, occupying a region of measur¢® in phase space, it

is not clear that a discontinuity must be non-Liouvillian. However, it
clearly might have some effect on the eguations of motion, as this dis-
continuity behaves like a small bump, and the effects of bumps on the motion
can be appreciable. The discontinuities, however, are qﬁite small when

the Bessel formula is used, and therefore, it was decided to try changing

the Stormesh program to use formulas V and VI on a triasl basis, and to
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observe the effects on the particle motion, The Illiac program (overwrits)

which accomplishes this change in the Stormesh program is given in Appendix I,

The modified Stormesh program was Tum on several sample potentials, and
the results, for relatively short runs, were found %tc agree closely with
those obtained previously, both with the Stormesh program and the Ridge-
Runner. However, the old Stormesh results were obtained when 3 mesh
values were stored in one Illiac register; this packing did produce somse
errors. Therefore, it has been decided to run further checks on this
change to see if any significantly different results are obtained. Longer
runs will also be attempted, with checks against the other Stormesh
program as well as the Ridge-Runner program (for motion in the median plane).
If Zr motion is included, the program cannot be checked against the
Ridge-Runner. The Feckless Five program can handled; motion, but its
accuracy is unknown. One can only guess whether an improvement has been
made., If a previously stable motion case now exhibits instability, or
vice versa, then a serious investigation into the relative correctness

of these results should be made. Apparently. from the first results,
however, neither the discontinuity nor the increased accuracy have made
much difference in a short run.

The seriocusness of the errors introduced by requiring continuity in

the derivative of the interpolation formula involving 4 points raised

the guestion of the suitability of a 4 point formula under such

circumstances. A 3 point continucus derivative formula was found:

b#(xywh}-ﬂ +@‘2’€ *‘{")k, ‘éf“f—%— i
Z

which is continuous at the 3 points. This formula was alsc tried on
f (x)=sin x, and the results given in column VII, Table I. The
average absolute error is .001227, which is not much greater than for
the continuous 4 point formulas,

If one goes to a formula involving 5 points, and thus of 4th degcree,
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one obtains the continusuﬁ interpolation formula

Flotub)efor s (86-9£,+Fa-£)+ 22 le b +4,)-n b+ )-mh T
W " @ < .{‘2-&2{’/)_’,_.5" @f Vﬁ-f-{t)#'ﬁ -r)wl)cre_, Yzz

“hitah has il SontimBTR Beriviiive -4 £ u /—)é,

W (o tub )5 (5, - 56, +E 2~F) +25 ﬁ*@*f/)-ll(fﬂﬂ‘a)—wfj
G, 2 Fatdl )o@ Bfy i eEidih-L, T =

When this formula was used with f (x)=sin x, the average absoluta

error over the rangze 413° to 4830, the average absolute error vas

.000055. Thus, for continuous derivatives and covering unit range, we

have
No. of Average absolute-
points error
2 .001227
L . 000735
3 .000055

Thus the formulae involving an odd number of pointe seem more accurate,
per point involved, If, however, one does not regquire continﬁityg the
Bessel formula, involving 4 points, is almost as accurate as this 5 point

formula.,

Comparison of Speed of Various Formulae

The time required for running the present Stormesh program on the Illiac

is roughly 15-18 seconds ver sector. An 80 sector run requires 20-24

minutes, Longer runs will certainly be desired in the future, and the

speed of operation of the program is important. The IBM 704 computer is

considerably faster than the Illiac, by roughly a factor of 3 for fixed-

point pperations, and perhaps about the same speed if floating-point -

operations are used (of.course, thg use of floating-point operations

should reduce somewhat the number of operations for a 704 Stormesh program,

gince no scaling should be needed)., A further factor in the speed comparison
~1is the a;ailability of automatic cycle-counting and addrese-modification

instructions for the 704. Since all practical computational programs, as

distinct from data-processing, contain cycles of operations on sequences

of numbers,.and since cycle-counting and address modification often require



-8~ MURA~201
a substantial percentage of the time for these cycles, and average speed

improvement of perhaps 50% would be obtained. Thus, if one translated
the present Scapocyl or Stormesh program into a 704 program, using fixed
point overations, the 704 program might be faster by a factor of 4 or 5.
If floating-point is used, the program would not be much faster, but

scaling difficulties would be removed.

Another advantage obtained with the 704 is the size of the high-speed
memory. Two core memory banks, containing a total of 8192 registers, each
containing 36 bits, are expected for the 704, as contrasted with Illiac's
1024 high-speed registers of 40 bits each, With this size memory, it
would not be necessary to store part of a_potential mesh on the

magnetic drum, or store 2 mesh values in 1 register, as is done in

the present Illiac program. "This both speeds and simplifies the program.

However, this greatly increased storage cavacity also provides for a different
approach to the computational problem. One can now consider, for example,
storing the fieldig instead of the magnetoat&tiéf potential. This
requires storage of 3 times the number of items, and if only 1

component is stored per register, the same mesh sizes as are now used

( inn andé ) would require 6 times the present storage, with about lOi
decimal digits per number. Since at vresent a ma;imum of about 700

Illiac registers are used for mesh storages, the same mesh size would
require L4200 registers of the 704 or 4 the storage. However, if it is
also desired to store the field on a finer mesh, the high—speedlmamory
would be filled with the fine mesh if the present interfals were halved
in either direction. However, the drum storage associated with the 704
can provide this greater storage for finer meshes by storage of part of_
the mesh on the drum. Although the access time for single words

stored on the magnetic drums is very long, if one uses the drum only':
for ﬁfansfers of large blocks of numbers, the average access timg_is

quite short. For example, the average time required to transfer 1000
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words from drum to core memory should be about 8 1/3 milliseconds for the proper
point on the drum to reach the read-record heads, and then about 0.2 seconds
for the transfer, or an average of about 204 m.sec/number. If this does not
have to be done often during a computation, the lengthening of the program
time could be kept quite small., The Stormesh program is particularly suscepti-
ble to this treatment because the problem has been reduced to one of 2 coordinates,
and motion seems to progress monotonically in the {E direction, so that one
could easily split the mesh into a number of sections, storing all but one of
these on the drum, and writing the old section back on the drum, and bring-
ing.the next section into the high-speed memory as required. If the present
meﬁh size is made twice as fine, and the field—g'is stored, a maximum of
16,800 registers would be required. It would seem reasonable that the mesh
be broken up into 3 parts of about 5600 registers each® assuming 1800 registers
are sufficient for the new Stormesh program. Then 3 times each sector, 5600
worde would have to be written on the drum, and 5600 read from it, requiring
about 1.1 seconds each time, or 3.3 seconds per sector. If floating-
binary arithmetic is used, the computational time/sector may be on the order
of 8 seconds (since not all operations will be floating point and the cyle
counters will also help speed the program). If fixed-point operations are
used, the computation time might be reduced to 3 or 4 seconds per sector; in
this case the use of the drum would double the total time required to 6 to 8

seconds/sector.

If?!ij to be stored on a mesh, the proper valuss of-g.must be first obtained,
One method of doing this is to use the present Scapocyl program, énd add %o

it a procedure for obtaining the necessary derivaties of «fL or .Il./n. Since
this need be done only once for a particular problem, much more accurate inter-
polation formulas can be used. Since there are errors inJfL , however, these
errors may be propagated and become larger when the components of??are calcu~

- e mm s mm s mm wm em ms  wem e am Ge e m e S D

® with the use of an interpolation scheme involving a number of points, some over-
lap between these portions of the mesh would be needed,
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lated. An alternate method is to solve the potential problem for each of the 3

components of B, since all must satisfy a form of Laplace's equation. Here the
correct boundary conditions must be assigned for these components of_g and 3
times the labor of the present Scapocyl would be required. However, this system
has the advantage that the values of_% on the median plane and the pole faces
can be specified; those on the median plane are directly connected with the
equations of motion, while those at the pole pieces can be made in conformity

with practical design,

A more direct method is to use the Powell series expansion for B to obtain
values of its components at the mesh intervals. The coefficients are established
by the desired nature of the function on the median plane. The field‘g can be
calculateti with great accuracy by using a sufficiently large number of terms in
the exvansion: since these calculations need o:ily be done once, it does not

matter if these computations are quite lengthy.

In all Stormesh~type programs with_B’ stored, the analytic nature of—B? as a
function ofé and N is established by the interpolation formula used. If
? is stored instead of 42, continuity of B is given by continuity of the
interpolation formula. This continuity is ¢oncomitamt with accuracy of the
formula. ‘g.nd therefore continuity of —B-’, which was obtained only with con'sidera’l;ie
loss o,.f-_ acéuracy when L& was stored, is obtained (naturally) if—; is st-ore'd, 7
Howé‘%e;-. the condition that 7 :ﬁ' = 0 will not in general be satisfied by

the functign_lg as given by the interpolation formula and the mesh values. Then
no vectof potential?exists such "c‘nat_l?:. v z , and this implies that the
equations of motion will not be exactly Hamiltonlan, as they should be. No
simple technique for modifying?so that V¢ ? = 0 and so that ?i continuous
at tha‘meﬂh pointe and periodic in é across the mesh has been found. If some

way of modifying ‘l:hea_g> component values stored on the mesh can be derived which
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makea‘?’i% = 0, perhaps substantial time could be used to accomplish this during
the program which prepareg the me sh values. If instead, a method is devised
which is used during the operation of the Stormesh program, the operation

time for this program may be extended substantially,

A recent communication from L. J. Laslett® indicates that further tests using
the Stormesh overwrite program (with Bessel's interpolation and interpolation-
differentiation formulae) have checked previous similar runs made with the
original program. For motion in the median plane, the results with this over-
write are in better agreement with the Ridge-Runner results. However, at least
one case where y motion exists has blown up with both Stormesh programs, but the
motion is stable as given by the Feckless Five proegram. It still is not know
whether this is due to the nature of the Stormesh program (and the fact that

-9
Y .B # 0 for its fields) or the errors of the Feckless Five program.

Among possible improvements and changes which might be considered in rewriting

the Stormesh and Scapocyl proerams for the 704 computer are the following:

1. Two-dimensional interpolation formulae can be devised which incorporate
in them, to some extent at least, the requirement that the functions which
they determine be solutions of a particular partial differential equation,
ag Laplace's equation. This simply gives certain conditions on the co-
efficients of the polynomial used. To satisfy these conditions and
continuity requirements (as well as periodicity ing ) is difficult. How-
ever, continuity, per se, may not be as important as hitherto regarded.
One might be able to improve the situation in regard to(?hE?at the expénse
of continuity ong itself at the mesh points, but the above-mentioned
results indicate that this may not be %too critical at present.

R e

* Letter of 23 August, 1956.
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2. To obtain greater speed and accuracy in finding values of Llor B, it might

be possible to store the coefficients of an approximation function for these
quentities in the N direction, instead of mesh values. For the potential
function fL near a pole edge, variation of £2 with#, was found to be quite
rapid, too much so to fit well with a simple polynomial. This fact makes
somewhat dubious the use of.ﬂ-fn instead of £ in hopes of obtaining better
results for interpolation and differentiation, except perhaps very near the
median plane. For if f(x) can not be represented very accurately by a
polynomial, f(x)/x can not be either. In view of the additional complica-
tions introduced by the storage oqu_fyl , such as needing an interpolation
formula in addition to one for intervolation-differentiation, one might simply
try to use the optimum differentiation-interpolation on the stored values of

JdL , rather than a formula which fits the function itself well.

For functions which vary rapidly at a certain point, curve-fitting by a

quotient of polynomials is often better than by the usual power series. One
reason for this is that the ratio P(x)/Q(x), where P and Q are polynomials in

x, can be fashioned with singularities where needed. If such a rational
polynomial expreesion were to be used, by storage of the coefficients of

these polynomials, the storage requirements might be no more than those present-
ly required for the mesh values, and the problem of continuity would be satis-
fied automatically. The time required to calculate such a quotient is only
roughly one division time more than that required for a polynomial of degree
equal to the sum of the degrees of P and Q, and this time should be less than
that presently required for the interpolation formula. If this function should
fit the potential well encugh, its derivitive, which can be obtained analytical-
ly but which would require more computation time, could be used, and again the

requirement of continuity is met,
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3. The present Stormesh program output consists of a table of values of x, P,

y and py for a point in each sector. These results are then plotted on phase
diagrams, and from these plotsb} and[.:! are determined. - Since these 4 's

are important factors in the selection of suitable designs, their values are
often sufficient to determine that some changes in the machine parameters will
be necessary. The ldbor involved in these plots and measurements is considerable
and the source of delays in proceeding to new trial designs. This suggests

that some conslderation be given to automatizing these procedures and incorpora-

ting them into any new Stormesh program for the 704,

The scope output of the 704 suggests itself for automatic plotting of these
phase diagrams. Since 4; and ﬂ; are determined by the ratios of the numbers of
tim s these points move around the closed phase diagrams of the number of
sectors traversed, one could labéﬁ each point as it is printed on the scops.

by printing a small number or symbol near each point as it is priﬁted. How-
ever, one might carry this process a step further, and by tranéferfing to a
coordinate system whose origin is at the £ixed point for the phase diagram,
compute the points in polar coordinates about this center. By counting the
change in @ in revolutions, the computer can calculate 0;( and {5 without
necessarily plotting the phase diagram at all, although one would probably want
to do this also, as a check. Also, this method presupposes a closed phase

diagram, and one might use the phase diagram to verify this.

One can store both the Scapocyl and Stormesh programs on the drums or tape
units, so that both are quickly available for further runs, with desired
changes in parameters made in some standard way. Whether the output of the
Stormesh program could be used to modify the parameters for the Scapoeyl, and
restart it automatically, is a possibility which might be considered as the

ultimte goal in this direction.
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TABLE T
ERRORS (xlOmé)
fx) = sin % h = 7°
#(x) = ¢o8 X E 0,110.1)
Correct Four-point Formulas Three-point Five=point
X fT1x) I I IV VI¥ VII
38.0° ,788011  -1958 -1958 -488 £95
38.7 . 180430 -938 =1274 =435 -82
39.4 TT2734 -139 -735 -380 -65
40,1 . 764921 441 -341 -323 -43
40.8 « 7196995 800 =94 -267 ~-19
41.5 . 748956 Q37 6 -212 6 =460 6
42 .2 . 740805 850 ~44 ~160 31 ~938 74
42,9 . 732543 539 -243 =110 o o -1305 96
43,6 . 724172 2 -594 ~-66 76 =1562 83
44,3 . 715693 -762 -1097 -28 94 -1712 46
45,0 . 707107 -1795 =1755 2 %%%O =1795 -1
45,7 .698415 -852 =-1149 25 -96 ~1692 -48
46 .4 .689620 ~143 -670 36 =77 -1525 -84
47.1 .680721 374 =317 37 -54 -1255 =95
47.8 .671721 696  -94 25 =28 .884 )
48.5 . 662620 822 0 0 0 -411 0
49,2 6953421 751 -39 =42 27
49.9 .644124 481 -210 -99 54
50.6 634731 12 -536 =175 78
81,3 625243 -659 -955 -270 98
52,0 615661 -1532 1532 386 %i}/
Av. Absolute 739 650 170 62 1227 95
Error

*Derivative discontinuous at mesh points,
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APPENDIX I
—
Stormesh Overwrite for Bessel's Formula (discontinuous derivatives)
00129K Directive
129 IS 6F foy f=fy+au+ a2u2 # a3u3
LO 3F fo - f-l hfl =y ¥ 2asu + 3a3u2
40 2F fsz_l¢72F
50993F 143 i Q 3F. f_y
73 2F l/3(f2—f_l) 4F. f
L4 4F l/3(f2_fﬂl) + fo 5F. fy
LO 5F 1/3(f2-f_l) + fo—fl 6F. f,
10 iF 1/6(fy-f_;) + 1/2(f -f))=ag 8F. u
40 2F 2=y 2F
LS BF iy
-~ L4 3F fl+f_l
10 IF l/2(fl+f_l)
135 LO 4F 1/2(f1+f-1)’f0 = ag
40 1F apb —» 1F
L5 SF £,
Lo 3F f1~f 4
10 1F 1/2(f1-f_;)
10 2F l/2(fl-f_l)—a3 = flml/Sf_l -l/2fo - l/6f2 =3,
40 OF ay—> OF
50 2F
7J 8F agu
40 2F agu =2 2F
140 L4 1F azu + a,
—~ 40 1F agu + ap —» 1F
00 1F 2aqu + 2ap
14 2F 3ajzu + 2a,

40 2F 3agu + 232——7'2F
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50 8F

73 2F 3a3u2 + 2au

L4 OF 3a3u - 2a2u + ay = hfl

50 1F agu +ay —» Q

40(12F) store hfl in 12F (later 13F, 14F, 15F)
145 73 8F agu® + agu

2

L4 OF a3u + asu + ay

40 2F a3u2 + asu + al—? 2F

50 8F
147 26 991F out to patch

40 (16F) store f in 16F (later 17F, 18F, 19F)

00991K Directive
991 7J 2F - RS

: agu a,u 1u
3 2 -

L4 4F agu” + asu e alu + 8, f

50 2s3 load Q register Patch

22 147F return to right side of 147
993 00F 00333

1/3

333 333 333J

00 11K Directive

Ké 991F

constant for stopping loop

40 20F

Q016K Directive
16 FO 1L

36 19F

26 12F check for mesh size

00 678F

26 12F

00( )F

24 999 N

starting instructions
24 500 N



