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% Introduction

It has been foundl that the strong focusing alternating gradient
type of high energy accelerator has resonances which are due to non-
linear terms in the equations of motion of the particle being
accelerated. In this paper we will consider just the radial betatron
oscillations of the particle about its equilibrium orbit. We will
present a method for solving the non-linear equation which governs
the radial oscillations. The method predicts the location of the
resonances, calculates the stability limits on the amplitude of the
radial oscillations and also gives the stability limit orbit. The
results of the theory will be compared with those of a numerical

calculation. The agreement seems quite good.

IT, General Description of the Method

The general equations of motion are rather complicated and it is

customary to expand them about the equilibrium orbit. The lirmear
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equation for the radial oscillations of the particle has the form

+ =
pres n(@) Su=0 (2.1)

M. is the displacement of. the particle from its equilibrium
orbit. n(@) is periodic in ® with the period 2 /N, N being the
p 2
number of sectors in the-machine. If n(®) is chosen properly”, the

solutions of Eq,'(2.l) are stable and have the form
PR |
M= € 4(e) (2.2)

where,ﬂ(&} is periodic in @ with the period 2 77 /N. )// gives the

-number of betatron oscillations the particle makes in going once

around the machine.

It has been found that if J/ happens to be near 1/3 N, thenrthe
motion may become unstable. This resonance is due to the quadratic
term which was dropped in Eq. (2.1). There are many other possible

resonances but we will limit ourselves to the z/ﬁ: 1/3 N resonance.

" The methods can be easily extended to the other resonances.,

If we include the quadratic term the equation of motion becomes

do*

g +N(@)}-XJ =Ble)u?* : 2 B e

where B(@ ) has the period 27/N. : ‘ :

It is more convenient for our method to re-write Eq. (2.3)

- <. ¥ (#) B(&) M 2
+ - = ‘
d@ o it )2.4)
where we have put n(¢ ) = Eo - g( G ) . Eg and g(#) are definedly

requiring that the average value of g(@) over a period be zero..
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Before presenting our procedure for solving Eq. (2.4), we would

like to review the properties of the linear equation. In the linear

theory xcﬁév obeys the equation

——-2— + £, "j@)}/« 0

d86

(2.5)

For our purposes, we will discuss the solutions of the slightly

more general equation

{75—2-_—4_5 j@)qu 0

(2.6)

and consider the solutions of Eq. (2.6) for all values of A; i

It is known that Eg. (2.6) has stable solutions only for certain

values of £ . For these "allowed" values of £

the form

Ay, (6) = s v (0)

corresponding to the value of£ ’ £U . ,ﬂ (0)
with the period 2 77 /N.
In Fig. 1 the allowed E-values, £y,
is plotted against )/ . Gaps appear
at V=0, 3N, N, K N...etc. E, is ~ Ep
the 6perating value of E, and for the motion
to be stable in the linear theory, E, must
not fall inside the gaps. In the linear

theory, the motion is given by

the solutions have
(2.7)

is periodic in &

Fig. 1

M =au,, (9)+d *ud (8

Now let us return to the non-linear Eq. (2 4)

considering a slightly more general equation

[J 4 w-j(e)} V=86V

L, " "/.._ e _..-Eo
e
\ A |
Y, aN
Y —>

We will start by

(2.8)
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and let us ask for what values of W does Eq.(333> have stable solutions.
We will solve Eg. (2.8) by using a perturbation procedure similar

to that used in quantum mechanics. Every solution.lﬁzﬂ9) of the linear

equation (2.6) corresponding to the E-value E ,, will, because of the

perturbation B(@ )W‘Z , go over into the solution %(@) of Eq. (2.8)

corresponding to the .hﬂ“ value, Mﬁ/ . We will show how a 1little later.

We can then draw a curve of the allowed W-values as in Fig. 2.

We will show that a new gap

appears at Y = 1/3 N. However, the W
Y

size of this gap will depend on the

amplitude of the motion; and it will be

larger for larger amplitudes 3 \/____;
Plg. 4.

The question of stability is answered by where E, falls in Fig.
2, since our particle motion is given by solving Eq. (2.8) with W = Eqye
If E, does not fall in the gap at b/= 1/3N, the motion is stable.
However, as fhe amplitude of the motion increases, the gap becomes
larger andWEé will eventually lie inside the gap and the motion

becomes unstable. This will determine the stability limit amplitude.

To solve Eq.(Q-B) for y’ we will expand y’ in tems of the solutions
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-~ /”y(ﬁjof Eq. (2.6). The solutions ny@) are a complete orthogonal
set, They are a continuous complete set. It is more convenient to make
them a discrete set, which we can do by imposing the boundary condition
on Lfy ((9) that it be periodic between® = 0 and & = T where T is
some arbitrary large angle which we will evenﬁually let become infinite.

The solutions of the linear equation (2.6) can then be written as

s 0)> F= €04 (o) e
9

where /= ZX i} g=0, Z L3223
The values of 7/ are now discrete and the A{V (0) form an orthonormal

3
foda A, ) A ©) = oé’vj (2,10)

if,ﬂy(o) is so normalized that its average value over the period

~. 27r/N is one a
9 M 2
EY 4 ['gda [Ay]” =1 (2.11)

Now expand 4/ in /d/y (@)}
l/)-.-_ 5 d]{ /(/u; (0)I (2.12)

(B
and by putting this expansion in Eq. (2.8) we get an equation for the 4,;

where

y ¥
Ez/g) U_& Yy = [0/49 /(/y(_' E,J/VT /4)/,(. (2.14)

Now we will solve Eq. (2.13) for the 4%/ using a perturbation pro-
cedure which is very similar to the "weak binding approximation" in
solid state theory.

Consider the particular real solution of the linear equation

~ a/uy}“' Q*My‘_s, which corresponds to the E-value [,/5 Through the pertur-
bation Bf9]',, this solution will go over into a solution of Eq.("J, ?)
with a value of W which differs slightly from El{s . Thus to find the
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solution of the non-linear Eq. (2.8) which corresponds to the solution
Jﬂ(;,s-f-ﬂt(/_vs of the linear equation, we will first assume that in
the expansion Eq. (2.12) for y/ : onlycfys , and ﬂ_ps are large and all
the other a;/ are small. We will see later that this is not always true.

Thus to the first approximation, Eq. (2.13) becomes

(N—E,:)a,:-‘: 5:',55 ﬂsz‘ +'v?-8£,5§4;>45' 7"5::,5; 45‘2' (2.15)

where we have written Eys = £s ) /é/Vs=ﬂs and - VS=)/_; for
the sake of brevity.

Let us notice that the matrix element ﬁ‘)é}{ will vanish unless

Ve - I/Aar + Uk + Wy (2.16)
where wn =”N,L(/: A/ , and n is any positive or negative integer.
! ‘W, 0
This follows if one expands 8(@), which is periodic, as 3@)‘”2 gpe “
and puts the expansion into Eq. (2.14).
Thus the matrix elements B ss, Bi s5 £ 5Z will vanish unless
Yy =2 +wW, oF V= wy,
We will see now that the levels Eg do not get shifted unless M ==
j‘_}g Wy, . The two levels corresponding to }/5 = i}g/wn will get
split apart and a gap appears in the allowed E values of the non-linear
Eq. (2.8) around )/5= ré’% as shown in Fig. 2.
The shift in the level E, is given by Eq. (2.15) by putting

2 =g and =8,

(w-E,)As = 55, S (2.17a)

since gsJ 65 = Bs,ssa C by Eq. (2.16) unless )/s: (,()n which we assume is
not so.
Also for = '5", we get

(W-£Es) s = B'_;; ss > (2.17b)

Now Bs‘;; = (J unless 7/5-_-73% by Eq., (2.16). So if
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—~ VS #+= é’ Wn) W:[;; that is, there is no level shift.
For ) - i}é‘wg,gs,;‘f #¢ » and
we get a splitting of these levels which we can find by multiplying Eq.
(2,17a) by Eq. (2.17b) and find that

(w- £5)= ¢ |Bs 33 Jld.| 15,18

Note the splitting depends on /as/ the amplitude of the motion.
4 ; ? 3

For 1/ ~é Wy but Y —,(-/g w, ~We also get a shift in the
levels which is not shown by Eq. (2.15) since it turns out that for
1/51‘..}5 Wn but 7/5 #‘/5(/[)” Eq. (2.;;) is not wvalid as some other d,: besides
ﬂs and 45 can get iarge asnassumed, This case is treated in
“appendix A.

By Eq. (2.18) the gap shown in Fig. 2 has the width 9/8.; $S //dsz

' ')/szé'u“ If E,, the operating point, falls outside the gap, the motion is

stable. Suppose E, lies below the gap. Then by increasing 45 we can

bring the gap down until E, lies inside the gap and the motion becomes
p 0

unstable., This will happen when %s/ becomes so large that
Es-/gs)g.s_/ldsl;:[c
ov /‘ASI:' /Es-" Eol

7/5-‘-an ‘ | B35 5

(2.19)

where

Eq.(2:19) gives the stability limit amplitude; that is, the largest
permissible amplitude /dg/ before the motion becomes unstable.

The phase of ﬂs is also determined by Eq. (2.17a)

phase ¢ = 1/3 £ phase BS, 3 - phase (Eo —£L) )2.20)

It might be noticed that one can add.i.'.??}'/g to the above phase.
This is because there are three stability limit orbits which differ only
by a shift along O byi’ ,2’})’/3 .

Finally, let us notice that the equation of the stability limit
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orbit, which is the stable orbit having the largest amplitude, is

B gy s+ s M

where ”2/5 :é/wn i
Equations (2.19), (2.20) and (2.21) give all the genersl results about

(2.21)

the stability limit orbit. In the next section we will give applications
of the above general results.

One might notice that it is very easy to improve the result Eq.
(2.21) for the stability limit orbit by computing the other~4f? in
the expansion ¥ = ?:5?/;?}(@) using the result Eq. (2.15) and the
above results for ds :

III. Discussion of Results

In this section we intend to illustrate our general- results
Egs. (2.19) to (2.21) by treating a particular non-linear equation
which has also been solved by numerical calculation. We will also discuss
the points of the theory which are not entirely clear.

We will treat the differential equation which arises in the
discussion of spiral sector type of FFAG machine°4 For Eq. (2.8), we

will write

;_/_;.2-_ ,:-A—Qj,@oa/l/@]%: 28 pu Mo ¥ (3.1

We will choose the following paramters which are characteristic
of this type of machine;N = 40, 4E6/N2 = ,135, gl/N2 = =180 and
B,/N2 = ,090.
According to the linear theory the motion of the particle is given

by Y =dﬂ7/° /9)-}-&'*2/30 (0) wherelé(yo (&) is the solution of the

equation
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=
-ijz— +f .?5,Cas/l/<9}/c(.~.9 13.2)
For our parameler:, we find that 7/0/” = ,387.

Now to calculate the stability limit amplitude and orbit we use
Egs. (2.19) to (2.21). The stability limit orbit is given by Eq.
(2,21},

* *
Y=y, Ly +dy Uy (3.3)

where égr is the stability limit amplitude given by Eq. (2.19) which
we will calculate a 1little later, and ,AZV is the solution of the
linear equation for whlch';44@/ = 1/3. One should not confuse ,62%;
with ,4{76 , the solution of Eq. (3.2), which gives the motion for
small amplitudes.

/((}:3 may be calculated with an accuracy of perhaps 5% or 10%, by the

2
following formula (see Appendix B)

- (Y & !
ﬂy(@)—@.‘ {/___ . m/e':./ve

— / . {
—C%/"i' I+ 25 = .} -

We will now compute the stability limit amplitude, Cﬁg , which is
given by Eq. (2.19). If Eg = Ej/3 1s close to Ej, the operating E- value,

we can write

/E1/3-Eo/ = 33_5, /%-—';,’A// (3.5)

where an/a“] is evaluated at ]/ = 1/3N. Note the E here is
the E(Y/ ) of the more general equation (2.6). To compute 3E/3 ¥V,
we may use the formula “for E( 3/) (See Appendix B).

EW)=[r-8 (&) Jv*-4 22 (3.6)
Thus we find 2
°9E 4 [/—3(%';) _7\/

Vv | (3.7)
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The matrix element Bja SS which appears in Eq. (2.19) remains to

be calculated. B3, ss is given by.

:
Bk ox ,/Jw,& 6) BBy 6)(6) .,

It is worth recalling here that we have used the standard box normali-
zation used in quantum mechanics to make energy levels discrete and T
in Eq. (3.8) will eventually become infinite and will not appear in
the final answer,

Using Eq. (3.4) we find that
Bgss-‘-‘é 8, (3.9)

to about 10%¥ accuracy. One might note that we dropped the factor of

/
v which should be in Eq. (3.4) and we shall omit all these factors

as they will not appear in the final answer.

Altogether, we may write for the stability limit amplitude &Y ,
1[? 8(‘3&-422;:74/2— 2/1 =?
/= AW e 0 / 3.10
layl= % A ¥ 4 (3.10)

For our parameters we find that /a}j/ = ,296.

The phase of ﬁé is given by Eg. (2.20). Since Es, 5,8 =

¢ / o £ .
g-'” = -] g,) phase Bs,?'s' z - 70 . Phase (Eo - El/3) = ¢ since

0
Ec > Ej/z as Ve /N > 1/3. Thus by Eq. (2.20), phase 4/3 = -30".
We now can compute the stability limit orbit using Eq. (3.3). The

orbit has also been computed numerically6 using the Illiac Computer
at the University of Illinois. However, the numerical calculatiorn was
done not with the Eq. (3.2) but for the exact equations of motion,
This means that the numerical computation includes the effect of the

higher order terms past the quadratl€ term kept in Eq. (3.3).



MURA-200
B 5 e

In Fig. 3 we have compared the theoretical and computed values ofﬁéfé&).
In Fig. 4 we have the same comparison for-dﬁ;/él@ . The agreement seems
fairly good and adds weight to the argument that near the-?/v resonance
it is sufficient to keep just the quadrati¢ term in the equations of
motion. It is possible that, in a similar manner, near the -,f,-/V reso-
nance, it is sufficient to keep just the cubic term and similarly for
other resonances. This last conjecture remains to be tested.

A simple, rough formula for the stability limit amplitude which
gives a measure of the largest permitted radial displacement and
which seems to work quite well can be obtained from Eq. (2.19). If
in Eq. (2.19) we assume that,d{gé)r: %G:MS/;) and thatE@/g)jf
which means we assume that the Flocquet solutions are just sine waves,

then we find for A = & /473/
A LT N
/ % .Z— /7\72 ,g/ (3.11)

The result of Eq. (3.11) was previously obtained by Drs. L. J.
Laslett and A, M. Sessler,

TV. Cubic Resonances

The method presented in the previous sections can be applied
without much change to the other resonances in the radial motion. We
will give here the results for the cubic term. We will treat the non-

linear equation

a2 4-5_3(69(//: C )y’ (4.1)

d6*

The method of Sect. II. when applied here will show there are
resonances for )J = j/’Y and for all integral multiples of #N We

will give the results only, and limit ourselves to the resonance
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The stability limit orbit is given by
, -+ 4

where[{,{}(@) is the solution of the linear equation (2.6) for 2/ /N
= 1/4. The stability limit amplitude d{/ is given by

ﬂ}.;/‘" [//c/;y/]}/ (4.3],

where Ej /4 is the E-value in the linear equation (2,6) which gives

Y = 1/4, and o C:;-'gss is defined by

=~
(s, s ﬂa// (6) Ce)u, ()i, (e) 4 (8)  (a.0)
with bé = 1/4N 1n complete analogy with 85 s¢ in the quadrafﬁc
resonance case.
The phase of d'/y is given by

phase ﬁ}? = 1/4 {P‘mg_‘,c CSJ a8 - Fh&se (Eo -£_<_. )} (4,5)
where ‘Vs' B .#N

The results for the 1/4N resonance have not been treated
numerically so far.
A simple rough formula analogous to (3.11) can also be obtained.

The largest stable radial displacement is approximately given by

A |25 /7/0 _)// %,
el 7 4 ) (4.6)
where C; is the first Fourier component in the expansion

C[&):én o

T would like to thank Drs. Sessler, Laslett, Cole and Ohkawa of
the MURA Group for much discussion of their results for the radial

oscillations.
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APPENDIX A

The method presented for finding the shift in the E wvalues of
the linear equation (2.5) caused by the non-linear perturbation
B( & ﬁyz is not quite right., This is because tHe levels of Eq. (2.%§)
are degenerate and we used a non-degenerate type perturbation theory.
However, the method happens to be right when'p/ is exactly equal to
1/3 W), and when 1/} is far from 1/3 Wy,

We would like now to correct our method so as to obtain the correct
equations for the level shifts for all values of L/ .In perturbation
theory, we have a degenerate case if tﬁere are two levels with E - values

E; snd Ey for which Eg = Eg* and for which the matrix element of the

s
perturbation which connects these two levels does not vanish. In

our case the relevant matrix element .is Bs',ss. If this situation
occurs thén in finding the shift in the level_Es, we must assume that
not only 4@ is large but also C?;' .

At first glance, all the levels seem degenerate since for any
lgvel Es there is always the level )/s' = —2/ " for which Bat = Eas
However Bg / ,ss will always vanish unless )/ = %-Lo%. For /¢ = 1/3
Wh« the case is degenerate and therefore both4_ and 4{5’ should be
treated as large. However, both & ¢ and &s' = 4'3. were considered
as large in our treatment and our method for Ve = %;Udh. is satiss
factory.

It would seem that the case ljs = i/3 Wnis the only degenerate
case, However, the case where 'v/s is close to 1/3 Wy is also
essentially degenerate for there exist other levels Eg’/ for which
Eq? is close to Eg and for which.the relevant matrix elements do not

vanish. * This situation is very similar to that which occurs in the
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weak binding approximation in solid state theory.
Indeed, it turns out that in this sense the levels 1/5 ,v(l/B) n
but 1/5 *Q/S)'wware not only degenerate but many-fold degenerate;
that is, there are many levels E./’for which 6?5’ must be considered
large as well as C? g fhis makes it very difficult to find the shift
in the levels in this case., :
Fortunately, it does not appear to be necessary for our purposes
to be able to solve the case /g ~(l/3)£ul but 9/ ¢ -_?!_-(1/3)(.'.)_1, Never-
theless we would like to present the following approximate treatment
which should not be too far from the truth but whose accuracy is a little

uncertain.
Since we are interested in finding the shift in those levels for
which }/s is close to 1/3 Uﬁv we may assume that V%f-Vé where
U/ =1/3 Wy. Now we will linearize our non-linear equation
2
(2.8) by replacing one W in the W term by ¥, the solution for 3/,

= 1/3 Wy. Our linearized equation becomes

j g +W-5(6)}4= C(e)y (A.1)

where (@) = B(®) Y-(& ), and \}’r = iy At /6) +4,—,. /0? (9)
Now we proceed as before and expand Y = 24” (a) and get
the equation for the dﬂ "

o i I (A.2)
(W [L )dc é Ct’.g Jr

%
{4y =f</t9 Ai C iy, 8]
Note that [,"} =0, unless ¥ = )/; + U + W
We wish to find the shift in the levely/; where /. "’L/& =

where

L/deh, First let us notice that this level is degenerate. Let us



e MURA-200

restrict our attention to the case /. = 1/3 W) = 1/3N. Then it is
clear that the level 2/2/ =-—-;ys =y * W] is degenerate with+/
and we must consider not only'éé and 4%( Z4§="L& ) as large but also
C?s'and 67;’ + [ Be and Esf are not exactly equal but they may be ery
close and the levels are essentially degenerate.

By retaining only d? ¢ and CZ ' in the right side of Eq. (A.2)
we get our perturbstion equations for the d?’.
If in these equations we put e g B -, s/ we will get the
equations for the level shifts. Thus we get for i = s,

(W-£s)ds = Cs % 43“, ()

=7
and for i = s

(W—£g)§gr"-—" L35 Ha | (A.4b)
Note that C ¢ 3T’ = Bs o 4?*
' /

and that (( -/ = it rs dr-

Thus the level shift is given by

(W-Es)(W-Es'>= /Br\/?"?/:—/d*l? (A.5)

: e B.@.?:W%ﬂ

where we have put BS, F 3
Eq. (A.5) gives the shift in the levels Eg and Eg/ , one of
which lies above E; and the other lies below Ep , for a given
amplitude of the motiond r.
The accuracy to be expected by using (A.5) is probably not very
good. Linearizing is a dangerous and tricky procedure. However
the results do give a correct picture of the level shifts. As

we mentioned previously, we do not have to be able to solve this

particular aspect of the problem to establish the main results of

this paper.
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There is one'point in the method which is not clear and is worth
pointing out. In sblving the non-linear equation (2.8) we say that if
E, happens to fall in the gaps shown in Fig. 2, then the motion is
unstable-and if it does not fall in one of the gaps the motion is
stable. It is not clear what is meant by unstable here, It does not
necessarily mean that the solution will grow expontially as is true for
the linear equation. Ali the theory can say a2t present is that if Eo
falls in a gap then the solution can not be represented by a simple
combination of only a few of the solutions of the linear equation,
and thus it is very likely the motion ha: departed greatly from the

motion given by the linear equation.

Appendix B

In this appendix we would like to obtain the formula for the
Flocquet functions used in Section III.- Various people, Drs. Laslett,
Vogt-Nilsen, and Adler have developed methods for calculating the
Flocquet functions with good accurécy. The formulas we will give have
the particular advantage of being simple in form which being reasonably
accurate whenz/|/N is not near .5 . which is usually true in-our
calculations,

We wish to solve the equatlon

{z-h#-é j@)j,é{ 57 (B.1)

We will first give the results. The Jolutlonsféﬁyﬂé)are given by.
b\fa Qn / ‘
My = € =& i Wne (8.2)
. 11 2V
r)"“o" n*
Wﬂ (uw

Where 3,, are the fourier coefficients in the expan51onj/9) igh /c( "9)
and W, = nN. The formula (B.2) holds best when ) (N <<]) and Wlll
do farily well for V//V,;i -
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The allowed E - values, E(L/), a® given by
=3 ' 22
E@)- {1-82 zz/“} 2 /%1% (.3
| ) / ne=/ /U/ﬂ‘" =2 E’a __1-9:' )

Wn
Formulas (B.l) and (B.2) are easily established by using the

standard perturbation theory of quantum machanics. We take as the

unperfurbed equation,
d@* +£} ¥ =H (B.4)

which has the solutions 9%/ = 4 /l JIGJ
and the £ - values ,5;, - ke
We can make these solutions discrete by box normalization and by first

order perturbation theory A¢G/ is given by

= @y + i— T__g_ﬁ?:/;y : %’ (B.5)

which gives Eq. (B.2) lmmedlately.
The allowed E(~/)) is given by second order perturbation theory as

};6/)— Ev+ Z ‘v 0f*
Evy "(f/ (B.6)

(B.6) says then that

Fly)-v*+ %

{B.7)

E(7)-Y *+ ;’{ / 9nj? _L__Q}(B.s)
U’-l (0, > UV (y-th)
If we expand in powers of _’7/“,)—“ and keep terms up to (p/w,,)?' we get
the result Eq. (B.3).
The accuracy of Eq. (B.3) for E(y/) can be observed in Table I.
In this table, E (3/) has been computed both by Eq. (B.3) and exactly

for the equation
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Fig. 1. A comparison of the stability limit orbit as found
by the theory and by direct numerical calculation. (1/2.3)4 is
plotted against N# /3. The solid line is the numerical result.

The broken line is the theoretical result.
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Fig. 2. A comparison of the stability limit orbit as found by the

theory and by direct numerical calculation, (],/2,3)4,,/‘{9 is
plotted against N®/3. The solid line is the numerical result.

The broken line is the theoretical result,
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Eq. (B.3) and exactly.

LR o
4E / N°
2
gﬁ '/A/ V/A/ Theory Exact
.1278 .0600 .06
0.2 1974 + 1501 cdD
. 3196 4014 .40
e 7 .95025 090
.0948 - ,0935 - .09
«2092 .0281 .03
1.00 3632 .3366 .30
4058 4910 «90
1474 - ,2188 020
L1:9 2461 - ,1070 - ,09
« 3526 0763 .06
4270 . 2431 19
Table I, The E - values of Eq, (B.9) as computed by the theory,

The exact values were taken from the tables

of Belford, Laslett and Snyder, Tables pertaining to golutions of a

Hill Equation, MURA Reports,
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