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Non-linear Resonances in the Radial Motion

Ge Parsenw

I Introduction

The following is & doacription of a method for treating the
y= %3N, ((r- = fam) resonance in the radial motion,
Section II gives the general treatment and the general final results
are given by eqs, (17) — (19).

Section IIY contains examples applying the formulae and some
m simplified results obtained through them. .ﬁo numerical results

are given,
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II Description of the General Method
Write the equation for the radial motion in the fora
s . (1)
{_d/- + F, - j(s)'%u = By U*
de* ,
,g(a) and B(6) are periodic in & with period ar/N .

3(9) is defined by requiring that its average value over a period be

ZOro.

Before presenting our proo.dufo for solving eq. (1), we would like
to review the probortiu of the linear oﬁmtion. In the linear theory
M(©) obeys the equation .
A_’;_..E,-g(e)gu:w | (2)
46+ - ‘ | B
For our purposes, we will discuss the solutions of the slightly more

general equation

(& eE-awiaze

and consider the solutions of eq. (3) for all values of E

It is known that eq. (3) has stable solutiorsonly for certain valuss
of E . Por these "allowed" valuss of [ , the soluticns have the

form
vé : ' _
/Uv (9) = e ,2 (6) ().
corresponding to the value of E ’ E v ,ﬁ\ (9) is periodie in &

with the period 27T /N .
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the size of this gap will depend on the

F‘l»a- i'
In Fig. 1 the allowed E-values, E,,
is plotted against )/ . Gaps appear T
at V=0 ,+N N, 2N, . . eto. B, 1is Ey

the operating value of E, and for the motion
to be stable inthe linear theory, E, must
not fall inside the gaps. Iﬁ the linear.
theory, the motion is given by

M= a u,(6) + o™ U3 (8) -

\\ .
Now let us return to the non-linear eq. (1). We will start by

considering a slightly mdreai general equation

{.éf. + W*}le)}ly = B(s) ‘{"I' -

(5)

46™
and let us ask for what valuss of W does eq. (5) have stable solutions.

We will solve eq. (5) by using a perturhaf-;on précodure similar %o
that used in quantum nechaniea. Every solution My (ﬁ) of the
linear equation (3) corresponding to the E-value E,  will, because
of the perturbation B (8 ¥* | go over into the solution ¥,/6) of
eq. (5) corresponding to the W — value, Wy, + We will show how

a little later. We canthen draw a curve of the allowed W-valuss as in

Fig. 2. : ' ¢
Wy /
We will show that a new gap _ :

appears at Y = 1+ N . However,

amplitude of the motion; and it will be larger
for larger amplitudes, Fig. 2




The question of stability is answered by where E, falls in Fig. 2,
since our particle motion is given by solving eq. (5) with W=E, .
If E, does not fall in the gap at YV = & N, the motion is stabls,
However, as the amplitude of the motion increases, the gap becomes larger
and E, will eventually 115 ingide the gap and the motion becomes unstable,
This will determine the stability limit amplitude, |

To solve eq. (5) for ¥ we will expand ¥ in terms of the
solutions My (®) of eq. (3). The solutions My/(#) are a complete
orthogonal set. They are a continuous complete set. It is more
convenient to make them a discrete set, which we can do by imposing the
boundary condition on Ady [6) that 1t be periodic between &= O
and =T  where T is scme arbitrary large angle which we will
eventually let become infinite.

The solutions of the linear equation (3) can then be written as ,
My (9) B © A y (8)
where v.:%_%.[‘%) 1=D,t|ltp~,t3 ‘tcoo.oooooo-oo
The values of are now discrete and the My (9) forman
orthonormal set, :

-r .
fd.e Ay (8) Ay (8) = &y ™

ir ,Rv( ©) 18 so normalised that its average value over the period
2T /N 1is one, . |
‘ 2
A (Fas 1h)" =1 (8)
L L P ‘
Now expand Y in MUy (p),

\y‘: > ‘av.: /uv; (8) I (9)

Ve
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and by putting this expansion in eq. (5), we get an equation for the 41’;

(-Bv)dy = 5 Buyy ay dy
3K .
where . ‘ ‘
' o
g\h, Va‘f( = fdb .'UV: Eﬂy& -»UVK . (11)

Now we will solve eq. (10) for the ay using a perturbation
procedure which is very similar to the "weak binding approximation" in

solid state theory.

Consider the particular real solution of the linear pquation.
a My + a* »u-v, , which corresponds to the E-value 'E& .
Through the perturbation Brs) , this solution will go over into a
solution of eq. (5) with a value of W  which differs slightly from
E ¥, o Thus to find the solution of the non-linear eq. (5) which
corresponds to the solution dMy, + a* /U-\!, of the linear equation,
wewlll first assume that in the expansion eq. (9) for ¥, omy d y s
Q -y, are large and all thp other (), are small., We will see

+his
later that'\ic not always true,

Thus to the first approximation, eq. (10) becames |
W-E) A = Biss 0 + 3B, ss 4,45 +Bossds a2

where we have written Ey5 =F, , My = /L{, and -l =) for
the sake of brevity, |

Iet us notice that the matrix element E ¢) 4K will vanish unless

: 13
Ve = VQ+VK+‘4)0 (13)




~ where Wy = nhw s W= N s and n is any positive or negative integer..
This follows if one expands 8'(9) , which is periodic, as [ (o) = ; B, e° %9'

and puts the expansion into eq. (11).

Thus the matrix elements Bc’,ﬁ, 85,55,85, $5 ., - will

vanish unless V. = + 2 )fs +W, eovr Ve = Wy

Yo will see now that the levels Eg do not get shifted unless ), ~ ¥ £} Wa
The two levels corresponding to )/’ = % F W, will get split aplrf. and
a gap appears in the allau%d E values of the non-linear eq. (S)
around YV, = t .+ W, u shown in Fig, 2, | |

1

The shift in the level i,i. 1s given by oq’. (12) by putting i=s o
_ a4 11
CW—-E,)C{S:: B‘SJS'; ds‘ | | | C )

since Bs):; = _gf,ss <O vyeq. (13) unlese Y, = Wy which
we assume is not so, |

Also for ¢ = .S— we get

2 (1)
S - a '

W-g)az = Bsiss &

Now Bg s 8 =06 unless \{s = ?W» by eq. (13). 8o if

Y, # -sl-w,,, : W= E; 3 that is, there is no level shift,

For X =¢';‘G)"’ BS,VES-»*O » and :
we get a splitting of these levals which we can find by multiplying eq. (1k)
by eq. (15) and find that |

W-8) = = |Bysrllas] aé)

Note the splitting depends on [ q ‘] the amplitude of the motion,




For Vs ~ o3 W wt Vo ¥ 3 W,  wealsogeta
shift in the levels which is not shown by eq. (12) since it turns out that
for Y, v L oWy but Y, # + DJ}, eq. (12) is not valid as some

3
other . besides Cl..j and 4; can get large as sssumed. We will

e

not demonstrate this point here.

By eq. (16), the gap shown in Fig. 2 has the width 1|B$, 5’—1 IQ:‘ 3

)/5 = '%' Wy e IfE,, therperatipg point, falls outside thé gap,
the motion is stable. Suppose E, lies below the gap. Then by increasing
dg we can bring the gap down until Ec 1ies inside the gap and the
motion becomes unatablq; This will happen when Ms | ‘becomes so large

that |
|Bs,§3‘llq5) = E. |
or  |d4) = | E-S—E L - an

“i

men Y = 3 W °
Eq. (17) gives the stability limit amplitude; that is the largest
permissible amplitude 'qsl before the motion becoms unstable.

The phase ¢ Q P is also determined by eq. (1&)/

T ey R

Tt might be moticed that one can add * 27 /3  to the above phase,
This is because there are three stability limit orbits which differ only
by a shift along O by * 2mw/>3 .

Finally, let us notice that the equation of the stability limit

orbit is given by
\P: d_s /u; '+' a; /u;— (19)

where vS - L wn .



Equations (17), (18) and (19) eivc all the general results about the
~ stability limit ordbit, 1In tho next section we 1111 give applications

of the above goneral relultao

T  specializedFormulae and FExanples

For a sine wave apiul uotbr nohim, B( 6/ toa rair tppruxmt.ton :
is g:lven by

B(s) = £ MNB' , | (20)

M

To determine the stability limit orbit, we use squations (17) - (19)e

‘We calculate B s, § ’

Ji7 = 4o e *““&Ji A5 hs B Y

In eq. (21) we have specialised to =;* W, ~—3‘- /Y resonance.
We get a very simple and fairly acourate result by asmiming A, ~ J} ;v
in (21). '
So that o | ”
le s = E f | : (22)‘
where [, 1sdetined®y B(9) = ? E’n@‘%&

F = ~ p _ —2
or B(e) (-f/:hr‘-) oy , B = -1 'F/?W" |
The amplitude of the stability limit orbit is given by eq. (17), thus,
L~ 1 ’
[ds] = ‘L%f.. IE;—-'E,\ (23)
The simplest possible answer is goﬁten by assuming that for the
solutionsof the linear equation £, = V' , mw E = ), =t W'

, _ - 9
and the operating point E. = Y, °

Then

IALREESUAE S I
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Bq. (24) is the lLaslett-Sessler result.
~

Finally the phase ds 41s given by eq. (18) and phase 4, = 30° in

this case, .

The actual stability limit orbit can now be calculated using eq. (19) and

the 4, calculated above. One must know the Flocquet functions M. () to
s S

use eq. (19).

I am indebted to Drs. Sessler, Laslett, Cole and Chkawa for much discussion
of their results for the radial motion case.
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