lIIIIIIlIII"'iIIIIlI on il %5

0 11e0 oo38u495 2

MURA/NVN/L
A SHORT SURVEY OF DIGITAL COMPUTER RESULTS
FOR RADIAL MOTION IN F.F.A.G. MARK V SPIRAL
RIDGE ACCELERATORS
NILS VOGT-NILSEN#

University of Illirois and
Midwestern Universities Research Association®

June, 1956

ABSTRACT

General remasrks are made pertaining to the graphical
presentation and interpretation of numerical computations on
non=linear one dimenaioﬁal motion. A survey of numerical
results is then given for the radial motion on the median plane

in a set of large =scale F.F.A.G, Mark V Spiral Ridge accelerators.
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INTRODUCTION

During the last 3/l year an investigation of the
radial motion of charged particles in the medlan plane of large
scale F.F.A.G. Mark V Spiral Ridge accelerators has been per-
formed using the fast digital computer (Illiac) at the University
of I1lincis. The Illiac - progrem used is the so-2elled "Ridge
Runner"l which solves the exact equations of motlion on the
'median plane in a megnetostatic field characterlzed by the

median plane vertical component of magnetic Induction

ga=B (%) [ + Fsnlbhe £ -15)]

(1)
e = radial and angular coordinates 1In medlan
m, plane
Flw = radius of reference circle

field index.

e

flutter factor

gpiral index

number of magnetic fileld periods per
revolution.

proportionality constant.

P

The computations are exact in the sense that they contain no
approximations other than those inherent in the Illisc method

of solution. The investigetion 1s by no means claimed to be

1 see: J. N. Snyder: The MURA programs for Illisc, p. L48.
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very extensive; nor can it be sald that all interesting
features of the motion has been systematlically looked into.
In the "Ridge Runner™ program the gquantities computed

ars the csanonical conjugate variables (x, p) defined by

7T
A= [T
o d x
A

\[é +—x)2' + @%)2\

The numerical results may thus be presented graphicelly on a

(x, p) - phase plane.

General Remarks

The manner of graphical presentation now generally
adopted for non-linear motion of the kind here studled, is to
plot the positions of the phase point (x, p) at angulsr
intervals of g{;ﬁ , 1.e. at homologous points in each period
of the magnetic fleld structure. As discovered by J.L. Powellz,
each set of such phase points seems to define uniquely a
continuous closed invariant curve in the phase plane; provided

that the motion uncer investligetion ls a stable one. In fact,

for the interpretation of numerically obtained results for

non-linear motion, this property of the homologous phase points
is the only known criterium for stability. If the motlon 1is

unstable (in this sense) the phase polints may also be sscribed

MAC - JLP "2’ po?o
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to a curve, but curves of this category will not be closed, and
the veriasbles (x, p) will quickly assume values too large to be
handled by the Illisc-program used. Also, since the set of
homologous phase points in an unstable case do not densely
cover an unstable curve, these curves will not be uniquely
defined. One may in fect draw an infinite number of Invariant
curves through an unstable set of homologous phase polnts. The
term "inveriant" occuring above refers to the transformastion
taking the phase point through one angular period 29T. On
figs. 2, 3, and Lt are shown examples of stable and ;EZtahle
tnveriant curves. The homologous phase points through which
the curves are drawn are not shown. The unstahble curves shown
are the ones thet smoothly cover the initial set of phase points.
All graphs are plotted et the angles © = O, g;z, ggz: sevan
When the motion under considerstion héppens to be &
periodic one with s period of some multiple q . gzzd(q - integer)
of the angular field period, the steble inverlent gurve degen=-
erates into a set of q points. The equilibrium orbit in the
accelerstor has thls property with q = 1, end is thus repre-
sented by a single point (the "fixed point" marked F; on figs.

2, 3, and i) in the phase plane. An invariant set of q points

th

1s in the usual MURA terminology termed a set of "g order

fixed points"B.

The motion of & point with initial conditlons

3 The expression: "Periodic polints of order g" introduced by
J.M. Jauch (MURA/YNY/1, p.7) seems more precise.
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arbitrarily close to a fixed point may be stable or unstable.
If 1t 1s possible to select s neighbourhcod of the fixed point
such thet all initial points in thls neighhourhood leasd to
motiong arbitrarily close to that of the flxed polnt 1tself,
the fixed point 1s called M"stable™., If this condition 1s not
fulfilled we talk sbout an "unstable fixed point"u. Steble
fixed points occur occasionally on the graphs ss centres for an
invariant set of small closed curves ("pearls"). On Fig. L a
set of 19 such "pearla™ are shown. Each of these enclose a
19th order stable fixed point.
On the basis of the obtalned phase plots described

above it 1s possible to extend the definition of the constant

(r', known from the linear Floquet theory, slsoc to cover the
case of non-linear stable motion. J  may in both cases be
defined ss the phase advance of the oscillation per perilod of
the magnetic fleld structure, To obtein §° for a particular
stable motion one has to count the number YL of field periods
(homologous phase points) the motion must go through to complete

one revolution on the closed phase plane curve., Then

(3)

If 7, 18 non-integer one will have to estimate the fraction it
contalns; or better: count phase points not only through cne

revolution of the closed curve, but through a large number of

h "Labile fixed point" might perhaps be a better term, since
these points may perfectly well be stable in the sense that
any arbltrarily close polnt may never proceed to Infinity.
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revolutions, say S, and then (only roughly) estimate the
fraction. In this case

B
() = =
Clearly <O 1is obtainea with any desired degree of accuracy by
this method. In the case of a linear motion U will be the
same for sll curves ancé colncide with the ¢ of Floguet's
theory5. If the motion is non-linear, (J will vary from one
closed curve to the next, and hence be m functlion of the amp-~
litude of oscillation.

It follows from the fact that the motion 1is
Hamiltonlen, that a transformation of the invariant phase plane
curves through any interval in the angular coordinate ¥ a1
be a topological one. Hence, (O as defined above 1s a true
constant of the motion. It will be the same for any set of
homologous phase points belonging to the same particle. Also,
and for the same resson as above, the area enclosed by a2 closed
phese plane curve will be constant against any transformation
in ?SL ‘LLiouville's theorem), while of course the curves them-
gelves will change both in shepe and position.

It appesare "rom the foregolng that any motlon with a
rational value of the constant & will be periodic; its period

being some multiple of the field period 2T . The corresponding

S For caleulation of linear O~ see: NURA/NVN/3.
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vhese plot consists as ve have seen of a set of flxed polnts of
some order, This fact supplies the necessary Information to
locate the positions of expected fixed points on the graphs.
However, in most ceses the accompanying "pearls" simply feil

to show up; the indiecatlon *elng that they are either non-
existing or too small to be detected with the x, p - scales
applied.

The graphs indicate the exlistence of an important
relationship between the amplitude dependent constant 0 and
the 1imit of stability. The latter is then defined as the
closed invariant curve with the maximum enclosed area on the
graph; the underlying idea being that the set of phase polnts
homologous to any initial point inslide this area will selso 1lie
inside the area. In practicelly all cases so far Investlgated
gt the University of Illinols the 1limit of stsbllity runs
through 3 or L unstable fixed points corresponding to (j“;

Imit

= 2T or 27T . The points F
._3_. 3
points of this catsgory. However, R. Ghristian6 at Los Alamos

on fig. 2 are 3rd order

Scientific Laboratory has observed cases with 5 unstable fixed
points at the stability 1imit, and L. Jackson Laslett and
F. T. Cole! has discovered & case showing indicatlons of 7

fixed points at the stability 1limit.

6 Private communication

7 see: L. Jackson Laslett: MKURA NOTES, 7 Dec., 195%5.
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If one follows the variation of (J° versus amplitude
of oscillatlion in a certaln machine having a small amplitude
qﬂ' (the U of the corresponding linesrized problem) elther
21T

a little above or a 1little below one of the values or

ng', the normal effect of increasing amplitudes has been to
pgsh‘ G- -owards the resgpective value géﬂjor 27T, This value
1s reached at the stability limit. Increasing ;E; amplitude
further will of course give unstable motion. The effect 1is
shown on fig. 5.

As will be seen from the foregoing, the concept of
Invariant phase plane curves is purely based on experimental
Information obtained by digitel computstions. As opposed to
this it should be mentioned that from an snalytical point of
vlewB these invariant curves do not seem to exlst in a strict
mathematical sense - at least not as stationary phenomena. In
view of this the obtained phase plane graphs should be regarded
only as first approximations too coarse to show the finer
detaills in the actual motion. Furthermore the graphs are only
valld over a certain (so far unknown) length of time, after
which one must expect the particle to move gradually away from
the closed "invariant" phase curve and eventually reach the

unstable region of the phase plene. As a conseguence the

8 Lectures by J. Moser (Princeton University) and
R. d'Vogelaere (Notre Dame University) at the University of
Illineis, Fell, 195Et,
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definition of stability based on the Ilnvariesnt curves c¢n the
graphs should perhaps more precisely he termed "quosi-stebility”

or "short time stability".

Numerlcal HResults

Twelve different sets (Tesble 1) of the machine
parame ters J% ,‘ag 5 'f and h/ in fermulsr {1) were chosen
for t' » survey. The corresponcineg twelve cperzting polnts on

the (T, Cry) necktle dlegrem? sre shown on fig, 1. Of course

Table 1
PolInt i
| % k w f N
1 160 232 .25 Lo
2 123 2368 .25 Lo
3 95 230l «25 1,0
L 6l 22,0 25 Lo
5 160 2302 25 110
6 128 22ho .25 Lo
7 96 2176 25 Lo
8 on 2112 .20 e
9 160 2176 .25 L0
10 128 2212 s 7o)
11 96 2018 o 25 Lo—ﬁ
12 & 198l .25 10
. ]

2y . Jeckson Laslett, July 30, 19t%,
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only the value of (T'x, pertsining to the radial motion, is of

intereat here.,

Some of the most consplcuous feastures of the motlon

are compared for the twelve sets of parameters In table 2.

Here

(X,,P)

a.

are the phsse plane cocrdinates of the lst order
stable fixed point Fl representing the equilibrium

orbit at the sngles © = 0, ZqTJ, &’ﬁd, SERE

1s the J -constant for a particle performing & small-

amplitude oscillation about the egquilibrium orbit.

are the minimum and meximum velues of the displacement

x at the 1imit of stebility measured at the angles

Q:O, eqT’ ﬁJ_’ L B -
N

i1s the @ -constant et the limit of stability.

1s the area enclosed by the limit of stablility
‘4nformation on this quantity is only included for

sbout half of the necktie points).
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Table 2
O;nt EZE o X  liom /4h- Remarks
qTJ P X T -/08
.
1 .79 -.000032 | =.000L 2/3| 87 Cese of 19
-.0072h42 | +.00031 pearls at
e %%. Points
7
scatter at sta-
bility limit.
Graph on fig..
2 BT -.0000298 | -.000043 /%1 0.3
-.007107 | =.0000175
3 56 - .0000287 | =.00075
-.006970 | *.00071
L L5 -.0000276 | -.0007 2/l
-.0068378 | +.00068
5 T - .0000308 | -.0004066 2/3 | 89 Location of 3rd
-,0072L52 +.0003220 order unstable
fixed points at
stability 1limit
(see footnote 7)1
x = -.000L066
-.0000121
—+.0003220
p = - 000561]..]4
-.0058299
6 .66 -.0000295 | -.00007 |2/3
-.007104 |t+.00001
;s .53 -.00003 -.001 2/l Points scatter
- .006G5 +.001 at stability
1imit
|
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# ok ” g:_."i. f‘]s... =
] | Ernar
T Te X | T |osgd] | omarks
8 iy - .000026 -.0009 2/h
- . 0068k +.0009
9 o 75 -.000030L -.000L0 | 2/3 |87 Graph on fig. 2
10 65| -.0000292 -.0001h | 2/3 |0.3 | Graph on fig. :
- .C07099 +.00009
11 5h8 | =.000033 -,0012 2/li 1710 | Points scatter
-.006960 +.00098 at the stebility
1imit.
12 Al =-,000027 -.00123 | 2/L
. -.00682 +.00123
j
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Notice that in some cases (Points #1, 7, 11) the
homologous phase points scetter at the limit of stability.

In these cases the points seem to define a closed band rather
then a curve; but there 1s no clear evidence of a real
instebility (in the sense that the phase point moves rapid’
outwards) during the relatively short lengths of time
(usually 80 sectors) used in the survey. Alsc in these cases
it has not been possible to draw smooth invariant curves in
the unstable region of the phase planse.

On fig. 5 one may study the amplitude dependence of
the constant O . Shown are curves of O versus the aree
of the corresponding closed invariant curve for velues of

T in the neighbourhood of 271, One notices the effect
mentioned earlier, that the (r'_E;-these cases tend towards
ZWTZ and also that the value of Al i3 smaller the smaller

m.
the difference lCT’- 27 ]. An analoguous effect is
o

noticed in the neighbourhood of (I; = 21T , but here no
calculations of area have been performed. However, from the
table one may conclude that the amplitudes of oscillation
at the stability 1imit are 3 or L times larger in the
neighbourhood of (J = 27 than in the ne 1ghbourhood of

o E

ot
(T; = 2 s

NVN: tr



NUN -4

0.5

[>)
o
=Y

O
-T

0.2
FIRST STABILITY REGION FOR

SMALL-AMPLITUDE OSCHLATORS
N MARK V FFAG ACCELERATOR
k »>» |

(CALCULATED — LESS ACCURATE
FOR ORDINATES ABOVE 4 )

0.




2000

G2 )

ot =N
9.12 = ™
091 = X
gL %0

2 9i4

—




z ‘9ia




2000+ 0 2000 -
_ | | |
e . v 914 800-—
\\\i!lll...._,. /
7 / G2 =} Ob=N
2ev2:="%, 091 =
T,
S
<P
~ A ]
// N
| | | Beoo-—
C C




70

@ 3 g R
i { | 1

64

Ol

40

S1INN NI v3d¥v G3SOTON3

C




