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EXPANSIONS OF THX CHARACTERISTIC EXPONENTS AND THE FLOQUET

48

SOLUTIONS FOR THE LINEAR HOMCGENECUS SECOND ORDER
DIFFERENTIAL EQUATION WITH PERICDIC COEFFICIENTS,

Expansions of the Characteristic Exponents and the Floquet
Solutions for the Linear Homocgeneous Second Order Differen-
tial Equation with Periodic Coefficients.,

Nils Vogt-Nilsen MURA/NVN/3 5/1956

Expansions for the characteristic exponents and the
Floquet solutions for the linear and hsmogencus second
order differetial equation with periodic coefficients
are derived. The convergence of these series is establish-
ed,

Expansions for the charscteristic sxponenta end the Floquet

solutions for the linear and homogencus second order

differentisl egquation are derived. The convergence of theas

geries is established,

Introductlicon,

From time to time during the study of free betatron

csclllatione the nesd for relatively simple formulas express-

ing the characteriastic exponents and Floguet solutions of

the extended Hill esquation has bsen felt. In the following

an attempt is mede to meet this nesd. It is bellieved that in

most cesas the convergence of the derived expanzions will be

reapid enough to satiafly ihe demands of prascbtical czculations.
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I.CeA. Fallow from the Norwegisn Institute of Technology,

Trondheim, Norwey.
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The general linear homogeneous second order differential

equation with periodic coefficients of period T

4+ P +Q)x =0
Plt+m) = P(t) , Q+T)=Q(t)
may alwasya, by the subatitution

t
-4 [Peoet
(2) x:ge o §

(1)

be transformed to the following stsndard form, which will

serve a&s & bass for our expanslons?

([ &

(3) y' + [Fem)]y=o

Here 2
2 ik Pl Sl e
w + M,('t} L Q(t) 2 ' () o (-J )

() i
M(t+T) = m(t) , mie =

where the bar dencotes the mean velue over one period T,

The Floquet solutions to this equation will be written

of the form: L% > -%t
-t
- £} ) e
(5) e TS R % (t)
& c#;(t#ﬁj - Pt) , ﬁ’»t”’) ~- @ (t)
Here 'It'-':.-,'-'. are the characteristic exponents, 1i.e. ] as

ususl denotes the phsse advance of the oscillstion per
period T, snd ?(t)) 9!52(’_&) sre the two periodic Floguet
functions, The two solutions (5) will be linearly
independent if and only if cos G = 1'-1 . In the case’

of cos S =T ] there exists a solution
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Lt -

£
tés(.t) - I

T

R+ q&{t)] :

(6)
$,(e+) = H05),

which is linearly independent with the sclutions (5).

The corresponding Floquet sclutions to the general eq. (1)

are easily written down by using eg. (2):

(£ -

Xt) = e @ ()

_.'.;‘:-(‘{)..,;E)t
Xplt)= e % T77 ()

o (—m Pet) +¢.-')t [ ple) +y (t)]

gl= P (t4) = ¢ (e )e-’-f [F& - Pecjese (k-/.? 3),

(7)

where again x;(t), x,(t) are linearly independent if snd only
if cosS 3 * 1 , while the solution x3(t) exists only for

cos ¢ =+ |1 and is then linearly independent with xq(t)

and xz(t). Note that the first derivative term in eq. (1)

will not produce any damping or anti-damping 1f its coefficient

P (t) has zero mean valus over the period T.

Outline of General Msthod.

Let

4y=® , g@d=1 , ulo)=o
'J ‘V( (t) J '?(o)- ) "?_,'_(O)-I

be twe linearly independent solutions to the standsrd

(8)

differentisl equation (3). The generel solution and its first

derivetive are then given by
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Y(t)==M(t) Y(C)
- (t) tﬁ) J 1(t
; "AU’-) ) I :(ﬂ ) A?a.(t) ?

By well known results of linear theory one obtains cos &

a8 half the trace of the matrix M(T):.

(10) cos & wm -.‘5‘- \__Q‘L’T‘) A “Q'z('r)]_

Due to the periodicity of the function M{t) the following

relation is easily eatablished:

(11) ¥ (T)we K (-T)"1

or written out _
[ T, L) o), ~ LT
[l , ) ) T\=TED, m )

(12)

Hence we slaoc have

£23) cos § = é [ﬂl.m‘) +* ﬁl(‘m)]c

Knowing the valus ¢f & , we may proceed to determine
the periodic Ploguet functions. By eqgs. (5), (8) thers

exists a palr of constants A;, By, not both zereo, such that
%

(=t
() A, nl'(t) + B, n?z(t) - T 96’&),

Sirnce *(t) is periodic these constants mdY te datelmined
/




by inserting t= O, T : MURA/NVN/3=-5

S A= 400

s
Al i/ (r) + B, ’?z“') wE 4’: (0)
Choosing
(15) ¢ (o) = 7,(7)

one obtains

Al - ﬂzz(m)
B, = e (7
and, by eq. (1}4):

S 4

(16) ¢ (t)= et {'?;w)”?.(‘)* [’-Lc“ “7.('")]"?:&)}.

In exactly the same manner the #ecordFloquet function is

obtalned:
(3t -l
(17) plt)=e § {P’lzw) L6+ [e' ” “?.Wﬂ "?z(“)} |

In the cases where cosS = Y 1 one must use the third
solution (6). Then there existis a pair of constants A,
BZ’ not both zero, such that

' LE: =
aEs A&+ By )me | [mB)+ a]

where cé(t) is already ietermined above. Again Az, B> are
determined by inserting t = 0, T:
Ag™ ¢, (o)

Ay + By = &% [4(0) + #y00)]
Choosifig

$ié) = 0,
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and using eq. (15)¢

AR
Bz=' e_c_c'
Hence, by eq. (18):
(19) P (k) = < e nlt)- FPlt)

The three Floquet functions determined above ere somewhst
specisl in that their initiael values at t = C are chosen. One
, ond C, + 0,
the following set of Floquet Functions will serve equally well:

@,(t) it ﬁ(tj
_ )= Cotelt)
o) B )= C, b, (¢) +Cy b (¢).

realizes that if Cl, 02, 03, are constants, C

A Lemms On Convergence:

In what follows we shall repestedly make use of the
following lemma:

The series of functions of the real variable t

ylt) = ;filt)a where

t .
£,.0¢ -\L-f.‘(-c) Flat)de | (k=013 ...),
will converge esbsolutely snd uniformiy in any finite

(2!) internel \t_l("t‘) T>o0 i1 fF‘(faf.J t )l and

E.(t)l ere bounded for |«| and \t| < :
Likewise the seriss 3‘&)82 E‘l(t) will converge
k= O

sbsolutely and uniformly in the same interval if

2FLx,t)
2t

Proofs Consider the complex function of the real

1s bounded for |{«| end |tle® .
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variable oL

fl2) = l'F(‘-)|€»L)~L&) 3 /A.Loc) = real.

Then: . . i
l S;FL«\M\?— l So | € ()] C‘.e&/u.ewluc -+ L fo\{‘t-\)\s&»\/u.a} -lo(\
= t X
< \So \'F(d\lc.os/lu(ut} a\q\-«-\gcl’\otﬂ)lsw/uh)alot \& 2\ So H‘(ﬂ)\c(o(\.
Hence,
+ +
(22) \S %«)A«‘! = 2§ | fe0] [de .

By the conditions cslled for in the lemma (21) one may set

IFlet)) < LN(E)  for laland It] < T,

(23) >0
[B@) | < alr) for [t]< 7

4

where N(T) and Q(T) are positive numbers Then, by (22):
| e gp(u)F(«t)dotl“-ZS |m)HF(«t) |{d|

< N('r)f 1P| dx/,

and one ocbtains successively:

B | < Ne)[ “Ip o lidu] < NT) Q) It
qt
(B <N ) [ 1P|

< M)’k f t;ﬂlldec/ o N(z-)zQ(r) %_LL
P < N('c)j‘ R/ | de |
(3
L el = ey
and in general

k jet* K >k
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But since
'&- MKH (v) £ N(‘l‘)
L i - O
k-]
for finite 7. the series ZMK(T’) converges, and since each
K=

term My (*) is positive, independent of t and lsrger then the
absolute value of the corresponding term in the series

O
\a(;)— > PJ(t) , the first statement in the lemmas is true.
& m /

Now, if ib-,:e,g;)l( S(’l‘) SCT‘>O j;r || and ,U<

one obtains from eqs. (22) to (2l4):

o] =4 [Rearet)da] =

o

R ||Fee)

SP("‘)}F@ 1) foc ( < [ﬁN('r)-r y; S('t?] DAL E),

xX=0
@©
Hence, for the same reasons as above, the series ;j‘(-t_)-z P‘(,t)
K=o K

will salso converge abosclutely and uniformly in |tle= % .

Hereby the lemms is proved.

Expsnsions for M (%) and M (¢) .
N t2
If one confines oneself to the case w= O and treats
the term m(,t); in eq. (3) as a regulsr forcing term, the

method of variaticn of constants gives

v = Acos wt + Bsim wt
X m(oc)g(x) S w(« t)du

A, B being the arbitrary integretion constants. By an

(25)

infinite succession of iterations of this exrressio
one finelly ends up with the following series for the

general solutien te eqg. (3):
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00
- P
‘,j(ﬂ );-Zo 2Ct)
(26) Po(t) = Acoswt + Bsu eot

L
P, &) -;ﬁ—fm(«)sa wln-t)P()dx  (k=gLa,).
wE 0

By the lemme (21) thls series will converge absolutely
and uniformly in any finite intervel |t.|<’t‘ where Im(t,)‘

18 bounded. Term by term differentistion glves
%c

ye)= 2 R'e)

k= &
Pl(t) = —wAsim wt + w8 cos wl

(27)

*
5
Bite) = = meeos wt) Reod, (k=1 )
provided that this aerier converges uniformly in the interval

P

considered. Again this 1is - true by the lemms (21).
Compering these results with the egs. (8), it i1s realized
thet the basic solutions nz(-t)) n? (t\ are given for
i - g

bounded |M(,t)[ by the sbsolutely end uniformly convergent

series: =0
(m(t)=2_ V), Ult)= ceswt
(28) k=0 ;
\J,, ) -;';sf mlse) Sam =t ) Uple)do , (k0 1,2, 1),
0(-6'
. e,
(t) = V() , Vit)=1s t
(29) " =a =~ L
I = :
Y, ()= L (e G coent) Dok, (kg )

ofwe &
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The above expansions for the solutions to eq. (3) will
hold for quite srbitrary real or complex wy¥¢® and m(t) .
Thus m(;t) need not be pericdlic nor have zero msan value in
the above equations.

Similar formulas may be derived for the case W= O ,
However, since the solutions of eq. (3) will be continuous
functions of the parameter w5 , it will be far simpler to
darive the formules for cos € and the Floquet functions
in this case by performing the limit operation W0 in
the corresponding formulas for the case W= 0.

The periodic function m(t) will usually be given as a

Fourier series

Co
(30) M (L) = Z (\AKC.DS kLt + B, Sim k&t)j Sz_--‘.gf.._
K / il

However, most of the formules to be derived will gsin

considerably in simplicity by using the equivalent complex

forms
e Lk DLt

(31) mlg) = 2_ ae : et
Ks = o 'T'
K% 0

Here:

| ;
x-a(Ax “B&)
(32) * . (k= 12,3, )
a.kt a(Ak"' : 8‘*)
Including up to second order terms in the coefficients
& we obtain by simple integration the following spproximate

k
formulas for o 2T) which occur in the general
. 7 (£7),7,(T)
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formuias for cos ¢ and the Floquet functions:

tTPsimeT 2=

f-zl('i: T) == CosT F

AN w
(33) _ Tamwl 2 ‘Lu'_ i
2 —r— T
e é'ﬁ:s:) T t‘g’ : Z a (krﬂ)(kt-ﬁ-l:!-rﬁt 3:)
g w a:-;;oo 5;-&: K4 (kS ')(Qi ")((kﬂj‘-—fw)
wp S (W*OJPH—-—"#f'nte_ggr)_

m sm';u?'r' Sy A,

+ ,,.;_
nz( 'P) 3mw'T'+ T "“%W

- + b o
(34) W’“""aosw ﬂ A Ay
81\""00" 71:3” Ka'-— P"
4 'T#swwm a k"f‘&ﬁ-ﬁﬁ —._;P
Bt e B T RN RN F)

* o5 (aeo, F-"f‘f}'r-i- f'mttgu)

Expansiones for cos S ,

By the egs. (13), (28) one may now write down the

following absolutely convergent series for cos S when LO#* O,

QoSG = L[t\q (r) +nr)(-'r")]

L co‘w’r’ + J:)S M () Stm w(ot-’T') Cos wu dot

LSt -]

Jth M{“)M("‘ )ﬁW\Wtﬁ 'T')\..Mw(ne,_w)c.aswua_ o!.-c d,‘

po (R

+ &Qoswr{’ +-—-SML°<. 3mw(u+’F)aas ool &u.

om0
-T .,

'I'a"{:; 3 oSNL«.\m(dz)-sww(am'PﬁMw(a d)QOSwuz&dJu+‘...
PO “umo

where the single integrals cancel since m(t.) - 0.
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Then, by reversing the slgns of the integration wariables

involved in the 123t series:
COLE = OS5 T

T eY,
+ é:i-::;ag g[_mb&a}m(«;)-r i« m(—:g,)] st 0ot ) S welr,)-

ek b  Coswoly dat ey
(35) LR
i L8 oy
i [T ity sty + ) e ma|:
‘a‘-D “Uwd AmO 3
.s;ww(_ur-"l“)&wua@fua)ﬂ" -bww(d.:oth_’)Q&S.wdg_d-dldli“ddk
R pUTERL (h=2,84,).

Adding the geries for q‘?ﬂf’) and '02'2(_’1") according to eq. (10),
)

one obtains the same series in a sllghtly more compact form:
cos S = cos T

T,
el () s e ) i o)t
®=0 A= D
(36) s
T o -
ey § Ml mls) e Ml eua o (o= T = ot )
A D HED m D :
caum s fagme, e Saa e {u och.,,)tﬁa,c{mt-v. &mk

¥viais (k= 2,2,4, <)
Introducing the function m/(t) by its Fourier expsension,
both series above for cos ® will come out as power series
in the Fourier coafficients of M(t) « Since this powar
series is uniquely deflined, the two series (35), (36) are
identicel,
By the expansion (35) it is immedietely seen that if

m{t) 1e en odd function about t = 0 #ll multiple intaf palw
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of odd order k = 3, 5, 7, esesses Will venish. By shifting

the origin of the time scale it is further realized, that if
there exists a time t_ such thet m(€) is odd about t =lto,

then alszo all odd order multiple integrals will vanish. In

such claﬁs (e.g. the Mathieu oqgation) cos @ 1is gilven as &

power series containing only even order torﬁs in the Fourier
coefficlents of Ay (€)

In the general case where there does noit exist a time
t=t, a8 described above, one will have contributions from
odd eorder terms in the expansion for cos ¢ . Hill's
equation and the case /?Laét) = Bcos 2t <+ Ccos Lt treated
in the Laslett,; Snyder, Hutchinson tables sre of this category.

However, even in the genersel case it is easily under-
stood from ;q. {35), that only terms which are even in the
cosfficients B, (k5 1, 2, 34 «ods)y of the odd pert ol zyLit)
in eq, (30) can contribute to cos ¢ . From this fact it is
realized that the even end odd order multiple integrsls in
egs. (35), (36) will be respectively even and odd in the
cosfficients Ay, (k =1, 2, 3, ....) of the even part of
s (t). One must bear in mind here that the even and odd
parts of n(t) will depend on the choice of origin for the

time scale.

Of course the expressions for cos d must be even in
T and ¢ »

By the egs. (13), (33) one may write down the following
approximate formula for cos & which includes second order

terms in the Fourier coefficients for n(t):
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CosG = = E’W (M+ny ("ﬂ]‘ Cos e

(37}~ %mw'“ §
8 Tewtw Ke ~o0 kg-P
k+eo

('-'0 * o, F %T ¥ any integer k for which 0,4, * o)

Introdu.eing_ the real Fourier coefficients Avs B,

+a|\..

(k' =1, 2, 3; ¢c0s) from egs. (32) one obtains:
wT : . 2 p2
(38) For w#0, p= % ¥ any mte.serkf’w whiok A+8, +0:

D T' 2 <
= - 'l’ SAM D A +B
LosS = CoOs eyl — l(:,’i*‘ ’ Em. e

(39) For w+¥o, p= %T*mtea@r ik for whiak, A 5 o
ad
COSTm (~1) LI + W(AP*BP )} o

(4O) For o= O

oG = |-

- B 2 Ll

kw=
The two last formulas ars obteined from the first by applying
‘th‘o limits P -—~>» integer and w=» 0 respectively.
The above spproximats formulas for cos (§ havs been
derived alsc by W, Welkinshaw 1) at the Harwell Laboratory
and by F. T, Adler and D, Baroncini 2)  at the Carnegile

Institute of Technology.

y Private communication,

3) To be published in Nuovo Ciments?
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The third and higher order terms in the gensral
cos § expansion seem to be very complicated., For this
reason the cases whare higher order temms
gre needed are most sasily trested individuelly, DBelow
formulas for cos € including the third order term s2re given
for the case

(h1) Mk Bitos SHE + C gos 21t ., Siw ?'_z'_;.;

which is treated in the Lsslett, Snyder, Hutchinson tables
of April, 19552

T
For' 2R P"E%E'"* |,

a @
& T2 sim T 2 -
[42) COST == COS T v o ( TR i T

SECRE

+ 13 B BT
I Vi
’.4?.
For wwo, p= 5 =/
(43) tp2/ o2 ]
c,oSG'-:-'.imT.__E;flq-"rr Pt

(44)

rer 87 )
cos § /-,»W\C‘_ lm-ﬂ,v’,* ,,,,,
(e For co=0:
45 @ L. é %
b - S < 3L CcT
- Foe L S UL + i
(oscs = | /6W'(B+‘f Tt )
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These aﬁpr@ximat@ formulas for cos® have be:n fesced
gzZeinat a new and accurate gat of tablesd) prepared by
numerical integration on the digltal computor at the
University of Illinois by Ge Bslford, L. Jackson Laslett
gnd J. N. Snyder, The range of the parameters in thece tebles are
in the interval [=.5, +.5] for of and C and 1n [o, 2]
for B The result of this test is tabulated below, One will
observe that there is an excellisnt agreement between the
spproximete snd accurate velues of cos @ for small values of
the parsmeter B; while for larger B the accurate values ars
somewhat larger {(more positive) thsn the approximate ones.

The lsrgest error in the range tested occurs in the third

significent figure.

O

£ be pudliishad #4 @ NURA report.
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T=W
Cos o
Mg g% ¢ =0 c= +.5
FORMUILA | ACCURATE] FORMULA | ACCURATE] FORMULA | ACCURATE
12 erfy5)|  VALUE |(hder{yS) |  VALUE l{idarlS) | VALUE
0| L.osoll [L.59us fhe6ELT | L6645 fL.S9hiy | L.595
& | hoh7or 40707 J1e5298 | 4.5297 fLUNB2 | hlLiB2
;| +8 ] 4.0996 |L.1006 beo1249 | L.1263 §L.0096 | 4.0108
['3.102 3.1810 | 3,487h | 3.h502 | 3.4578 | 3.2787 | 3.2858
i !1.6 2.6150 | 2.6366 | 2.5056 | 2.5301 | 2.2553 | 2.2794
2.0 1.5016 | 1.5558 | 1.2911 | 1.3512 | 0.9396 | 1.0000
0 0,961, | 0.9616 | 1.0000 | 1.0000 | 0.961L | 0.9616 |
| o | ©0.8720 [ 0.8721 | 0.9013 | 0.9014 | 0.8535 | 0.8537
¢ i) 0,6037 | 0.,6046 | 0,6052 | 0,6065 | 0,5297 ’ Ce5307
¢ 142 0.1565 | 041618 | 01117 | 0,1183 {=0.0101 |=0.00L1
1.6 ) =0.4696 |-0.4518 [-0.5791 |-0.5583 |-0.7657 |~0.7h56
2.0 | =1.2746 |=1.2296 |=1.L467h |=1.4167 [-1.7373 |-1.06866
0 1 -0.6215 [-0.6213 [-0.6057 |-0,6057 |-0.6215 [-0.621% |
oli | =0.68L6 120,685 |=0.676l |=0.6763 [=0,6998 [-0.69%56
| 8] -0.8740 1-0.8733 1-0,8885 |-0.887L |-0.9346 [=0.9337
= 1.2 | =1.1897 {=1,1853 [=1.2420 | =1,2365 |=1.3259 |=1,23212
166 | =1.6317 |-1.6168 |=1.7370 |[=1.7296 [=1.5739 |-1.8572
2,0 | -2.1999 |-2.162l |-2.3733 |-2.3309 [-2.5783 !-2.5362
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Expansions for the Floquet Solutions.

It is & simple matter %o write down sbsolutely and
uniformly convergent series for the Flogquet Solutions 33(&)
(J =1, 2, 3,) defined by egs. (5), (6). By the results (14)
to (19) and (26) the specisl set of Floquet solutions with
initiel veluss y,(0) = yZ(QE = ”?Q(T)g yBiO) = 0 are

given for W == O by the recursion formules:

Y= Z (123)

4o Y, 9= & ;;QwMMM(-«wt}Y deddm (ke g3, )

Ya L&) = ", (T)eos et +.L Eﬁ -y Wﬁ o

-
!

Y (€)= @?(,T')c;@s,wtao-mﬂa mﬂz(jr*){
\T;Q(K) v—&) Jﬂ'&&»sugtf T =4q7.

Similarly, series for the Flogquet functions ?J_t),
(k = 1, 2, 3) ars given by inserting the aeries (28), (29)
into the squetions (16, (17), (19). These functions mey
subsequently bs Fourler-snalyzed if desirsd., However, in
the presence of a fairly complicated function n(t), these
compulations sre apt to be very involved. There is also
the possibility that there exist simpler series for the

Floquent solutions and functions that do not depend exrlisity

on the constant § eas do the series (L,6),
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Outling of e diffsrent method.)

By intrcducing tha new dependent varisble z(t) defined by

j‘ =(e)d¢

(47 %j‘% gt : ‘Co - &réxtrﬂf;; Qbo:tut;

inte the basic equation (3) one c¢btsins Ricceti's differentisl

equation

(L8) 2! = Za‘-&- w2+ MC‘&);

Hence, the genersl soluticn of the basic eq. {3) i3 intimately
connscted with the ganarml sclution of the first order
non-linear Riceati'’s eouatlon {48).

Now, for some particular solution z = ‘W’(‘t) of
Ricecati's squstion (48) the originel depandent function ¥ of

80, (3) will become the Floguet solution ys(t):

(49) giis&‘)'ﬂ-e W t)ysm *‘waﬁt ;

whersby 3

—iTt - [wyar
$lt)=e <

It is a simple matter te determine the conditicns thaet
mist be fulfilled ™“y the particular solution  W{i)

such that ée(t) becomes periodic with pericd T and

_g gl g

4)Dsrived indepsndently alse by Dr, F. 1, Cole,

A
T O
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end thet &  bscomes & constant. First Q(tw?’)— s‘é(,t) if

» [y te T
b "‘:%a _fww”&"ifﬁ(t”)"'fwc-t)d,g +dv ik
L, e (k‘ ,'”éea er )
whereby
P
52) S m=ifw)dt+ Ak,
t

snd this .s 2 constent if and only if the integrand w(t) is

periodic of period T, Hence, the following statement is true:

If 2 = w(t) is a periodic solution with peried T of
Riccati's equation (48), then the constant is given by

(53) &= T WE) +ark, (k= integer)

and the condition for stability is

(sh) ur{g) = pure imsginary.

Due to the fact that the Riccati eguation is of first
erder while the originsl eq. (3) is of second order, there
will generaily exist two periodic sciutions z = wj(t), (j = 1,2)
for each initiel condition fer z. Corresponding to the tweo

ordinary Flequet solutions (5) one must have
(55) W) =—w (v
Alse by eq. (48):
: T 2 ;
(56)  wWit)* = -0 (§=L3).
A method for obteining successive gpproximations to the

pericdic solution w(t) has heet dhv;IOpadn A fairly rapid
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convergancs waes supposedly cbtained by setlisfying the condition
(56) at aech step of the proceedure, Howaver, a strict
mathemstical proof of the convergencse hss not been obisined.

In any cess the npproxim@tiona converge mere slowly than the
seriss for cos® dsrived sarlier in this paper. There might,
however, sxlst more ingenious methods based on eq, (53) thaet

lead to valusbhle resultss



