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ABSTRACT
Spherical ceordinates are especially suited for the
expression of the magnetic field of the Mark V, FFAG accel-
~ erator. The magnetic induction is assumed given in the

medlian plane in the form of a series of circular harmonics.
Expansions are then given for the magnetic induection, znd

its vector and scaler potentials on both sides of this plane.
An exact solution is given by making use of associated
Legendre functions. Certain approximations and seriles ex-
pansions are introduced. A particularly simple approxima-
tion is worked out in detail. If used for the équations of
motion it is always required that any approiimation satisfy
the Liouville theorem exactly. The Legringian and Hamiltonicn

equations are derived.
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I. The use of spherical coordinates for the exact expres-

sion of the magnetic field.

i
Let /& represent the magnetic induction vector,t/

its scalar potential and A4 its vector potential. The

equations:

—_—
=Vx4 =—\7V
expressed in spherical coordinates aret
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Now replace & by & =Z -6, so that ;7-"'-5%;-

Also let ’43"‘:'—’49 y BJ"—"‘BQ B Then:

By =C) =y [0 - 72T 3L

SCrAY Ar T
Br-'-‘(VX»T)f:FZ/S?F[C“r g;' “%?Tj" /-’Lgil(’ crae)

B}‘_CVX/?)? rHC %fﬁﬁj-——f‘?és_)’

We shall choose the gauge so that Ar = 0. In this case:

2(1As) __2V ;;(4,2
a(r e %; it 7 Cr3)

Define W = lf‘;(r V. Then one finds:
r

Ay = @sr'g?" /495-‘-“3'?' y=LE>

If we ,assume that V' is expressible in the form:

[==)
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ot 2
and if furthermore %o =0 Cm) y then V W=0
This condition is valid for the Mark V. unless k = = 2,

One has assumed for the magnetic field in the median

planes

Z?r.::jﬁ;(ﬁé;)fksjvﬁfﬁga?qi?;z”jé;"ﬂ/zéjz
(r.7)
B = Bf =0

We shall assune the following more general form for this

fields |
By :@c/-fs)/'{#;f {n,ﬁnn[l;/ncfﬂ)-/\f#-#m?]

Cr.é)
Bf‘ =@ =

where r = r, (1 + s), and qé, (/) are constant phase
angles, This field is the pure imaginary part of the fol-
lowing complex field:

By =B crs )/'25' : +mz_,§ il Incrs) ~Mp-6,)
Br = ny =g

Cr. 9D
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The complex field, whose Z%r in the median plane given by
(1.9), will be represented by

W=¢ %(HS_)[ ”Z* ﬂ'*(h‘ ’ZW ZMBIM#Q WPl (mfﬁmx
- FmiVl my
=(w (Ho”*L,HﬁZW T g~ ¢">LC,,+:W,H D)

n A
'—‘E%(f:‘.s)kHLkﬁ?"f/ﬁ)h ﬁmz e ’”’E DM ¢)+X#JL

k+i-HmMK

mh
where Lk+,+¢-m”($hf) satisfies the associated Legendre

equation
mN )
"Z; JLLLE e —a,————‘i’ﬂ"*’* f-prﬂumﬁr)(h’#mﬁ)'mNszﬂm =0
Chtt)
and where LA‘-H =£:+/ . In order that
Br=By=0 for r=o0,
it is required that
Lppo) C~SinD==L,, CSinT) i)

» . i ‘
L,Zufc'mfr (=3Sin D ” "'LA«.,W;,,,K(J”’ D (m
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Farthermore let

L(m/\/) i Z_ CmN) e/mz;,

kt 1+{mh fes1+imK

(/.13

) — JCmA) : e
g_f_LhHZmlr:Lkw ef”é% 7&]

+imK
whete Lo ciens Lawsions ’Z;} 7 24 are real func-

tions of J . We may sometimes require that 27,,(0)=0 G,
This can always be achieved by multiplying any solution

7
of (/.// ) by a suitable complex/ constant. The =5 Ves
introduced in (1.13) so that 2:7 would be a small quantity.

From (1.4 and (1.10), one finds:

V= 53%2 =/ %(/ﬁz)(ﬂs)k*’[_ﬁﬂ +;W Chcrimiin J%»é;c‘m/\(#-#) (mK)

wmi
g;f Cli#)
. o) inlBInH)NB -0+ T =5 5 T~
! g ”é C‘k '*%) é#"s)kfz' fl’-H "f(/-f-j)kﬂg% gfn S ; L'é ﬂﬁ'ﬂn‘f

. CX' 2)
Where 82“ 2 //6[;-*;)‘-{-»‘)2}{: ard 7an mé%.?m =Y Aﬁg Chi5)

From (1.2) and (1.2E5/, one finds:

= -4 Bf =5tk W*ﬁ%i'%%ﬂmmﬂ( /+5)kﬁme""'w'w;%:-l_;x,m .

. thez) infRn)-NB-4) -SR] )
=1,51’¢(k+90+$)k%%#1+mz _‘”_/gg_'" C/+5)ke mlt " . L’ZH e ﬁa/g)
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Comparing (1.9) and (1.27), one finds:
B =7k,
et B+ S el e
3775; =—VV%&——2;+/+ZMH
ds 4;, =[gi%%=a 3 Z;tm‘nw Qf*—/ﬂmj Chi7)

Solving, we find

_‘ak— -
W W = &20 _)ﬁ ("m)
Z/rﬂ(A’@ m éjﬂi% )&/”ﬂﬂ_m/:n

Substituting the above values of W,, and gé:/ into (1.10),

we find:
| et chip (k)
_ o) L -;,nmf (MEA(¢ ‘?sﬂ,)f;: 7‘;,/,_7 /_H,Mx
i T *%:_*f”’j Togy 0
ki
c(w-s) * L ks Z'" BIHS)-Hep - H,)+5, 275»6*7@_7[_ Y,
T k+2 ] k; KHS)/( é:é”‘” )

frﬁﬂMH
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We now compute the V and the components of B and A

in terms of the B, #, and %(m),
From (1.14), we find

(m,
V :—5'04-5) _.__!{Yﬂ_hz Ef-fZHm&z, &Hﬁm 1”@96 @ gf );m? L}:’iMK
Bote Z’ ks M '_ﬂc'fzp
k#-mnﬁ(/ -
= <) __&L,L,Gs “"Z Le bl MB b4t el L frimts 7
Zk“ k+/+fmﬁ

From (1.16), we finds:

By (0rsE dlp +0+S)LZ fezmﬁintws) -Mep=$> 0 ,J ’é’fﬁwm (1.20)

_go__ ZZH ar A'+/+£MH
From (1.2) and (1.19), one finds
70
Br ~ ichats) L/‘*’ £33 g 4 d' Y IME‘/NO+5)W(¢‘9§») S Y k’:ﬁ
o ZkH Zkﬁ-H-mﬁ

(r.21)
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From (1.2) and (1.19) we find

i

S g e R

By, (dS) sV & i
(r22)

From (1.4) and (1.18) we find

A 2wy it ks iR

G SRU SRR T ZA“!HU"H
Ch23)

In like manner, we find

A

-3 fisf 2, Lkﬂ'l('f'S) :Z em@/naﬁs)-ﬂ’(q‘ #”)-T’,-/ﬂ;’o-fg’/ﬁ_z] /;(:nfjm
+2 %@

LA’-H-MMK
Cr.24)

In order to find the field corresponding to the real
field (1,.8) in the median plane, we take the pure imaginary,
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parts of the above'expression, and find:

3 __if:g me *;c;_n;;; SinmfRbrsynb- 4Bt t3,) L z—ﬁﬂﬁw—
" e+ =M

2 =rsf "L w5 L ca,mﬁ/ncws)—m‘-é»)%"om}__ﬂ__Lk ik

K+l bt ) +imK
T/ )
B K o5 f £ 5 mfsbns b ) L.
ZA’ ¥ r /c+/+um'{
Le —thparsh an AL 1019 S B0 ittt 1o 5 ) TLLL@A.
k! ket i imK
k TN
= =-”—’fﬂ5)— mef; Sihm //{/,,(/+5)W(¢-¢M)+7f,’” 1-27@2 _gi:_fi‘!.w_
e k #1+imK

ks
(ﬁgﬁ% TL/( " ,—(/+5f "Z g%—as mfﬁ/n{ﬁs)-f(y‘-é,hu’,-?ﬂ-fﬂ*? L_-goﬁ)fmﬂ

A’ﬂﬂmﬁ

3

A Ne#s ke, f"’[ __Ltu‘____
__I‘.: ﬁl.i- 2, L] lﬂ‘z
AE=- s %_‘ i C’sm[ﬁ/ G+9)-WB=F )t 70 7y 15 } T

Cr.23)
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The above expressions are exact. However, approxi-
mations may afterwards be introduced through Z:::;tﬂ#{ o
It may be desired to use these approximations in the equa-
tions of motion, in such a way that the theorem of Liouville
is satisfied. In order to achieve this, the same or differ-
ent approximations may be made in sk of the /4r,,4,,
and Ay , but after that the B , [, and J; must be
recomputed by substituting these approximate values of/%5;4r

and /4¢ in the exact relations (1.2).

II. The introduction of certain expansions and approximations.
Explicit expression of a very simple approximation, which
satisfies the theorem of Liuoville
In the previous section, exact expressions have been
found for the magnetic induction, and its scalar and vector
potentials for the Mark V. accelerator., However, these ex-

L/m\/
pressions require a knowledge of the function 4 Cbnrj

+ LMK
which satisfies the associated Legendre equation:

e N
ar* L—h/ﬂ'mﬁ Tan 3/;;/ 7 H/ﬂmﬁq’ﬂﬂkﬁw’w(kmﬂm@ Cos o J L

(=, 2,2+  (B:))

k+/+¢mﬁ

with the additional condition that

Lkﬁﬂmﬁ i) = ——Z—h/-»‘-c g5 (2.2)
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%

This function can be expressed in terms of the assoc-
iated Legendre functions as’follows:

For the case m = 0

Zh/z/?ﬂ CSnY)  Aor k even
a (2
Ly =G/ CSNYD)  for ke oad

For the casem =1, 2, 3 - -

L7 D= B D) =P C5h8) (o)

ht14+CmhK ket |+imb

In spite of the great amount of material in the liter-
ature, relating to associated Legendre functions, this mater-
ial is not directly concerned with the present situation .

It has been found best to deal directly with the equation (2.1)
for small ¥ , but not necessarily (w¥ ), this equation may
be solved by successive approximations. Replace Y’éy/\}' in
(2.1) and let

MM JQ)MA/ bEal. 15 e -
Z—h/ﬂ'mﬁ L/(w-umn A [—Aw-ﬂmﬁ A /(+/+m =57
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Substituting (2.5) in (2.1) and equating, like powers of A ,

we find
2 @py
£ZL1-Z, .+ WY .=
ar® —k«+ims L
o® §mN 2 JomN
q re “hutinn i for1 LM i =.¢c)
where

W Cht 14Cmm)Ches2timB) —mPNP= O +( G
a =k, ~od"m> , @ =mhk, (2.7)

with

/(;:-" Ch+0 Chrez)

One finds:

ﬂy
LA’# +{mK

(UﬁM/ T ’
Ao ;—[ Cos WY+ rZSn wb’]

2 @_(J-m’)f +37 | ShWTt  (24)

Aﬂ+uwk

[z G e Z‘@/‘ D ?':70: wr

=Sn Wy
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This expansion appears to be very rapidly convergent when y—
is small and |w| is large. This is true for the Mark V
accelerater,

In the followling table are given values of N, k, # and
f that have been suggested in proposals for two large accel-

erators and one model:

N k P £
Proposal No, 1 33 82.5 1320 1/%
Proposal No, 2 38 82.5 273 1.28
Model 5 .8 23 /4

These values together with equations (2.7) and (2.8) suggest
series expansions in inverse powers of mHK « a0k w:c-rie,

where ¢ and e are real. Then

f o 2

Expanding in inverse powers of mk , we find

k‘ﬁ /+ 4kf°(2-kf+,---nj

C"""’ 27 EdFm 2,3

o (a.)
e motmhi- L .. ] ;

YT/ n?
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In this report, we shall only be concerned with the zeroth

order approximation.

L/n// :
oo toipy SN V) = Sl WY @2.11)

which actually represents a relatively good approximation

for the Mark V. We have two cases to consider:

W m=0, W=ky, L[4, Sink.1; %’,#ﬂ— =k cosk ¥ 22>

@) memﬁ = - ST =CosCYSinher-Lsmcycosher
T mV [2;

ety eimms © o

where
‘—‘(m”) — Sinc
L‘/f+/+£mh‘_‘§’ nh er'l/ / *&7/:%’3%;
2./
- Y
Tan m X, = oy €T

The multiplica*ive constant has been introduced into the

solution (2.13) to make Xp (m) small. Expanding the second



16.
MURA/ESA - 4

equation of (2.1%), we find:
mﬂg:-—arc{ang-—%g)’%f.---— @.r5)

which suggests that we choose a different multiplicative

constant, so that

- 7& i
LG oy == T Spw so Hat (28)
I™  —sher/isner il
A¥/+bWH-éﬁq 4/9’L;531§§F. as z/7)
and mm=‘%§f2+*—--- C2./8)

This at once suggests the approximate but very simple solution:

()

L

het1+imh = Sinhol mK Y

= /(M) ;
L for) simp =AmBCosholmb v C2.19)

Z /(i)

k ++imh =dlmh
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This approximation consists in omitting first and higher
powers of ) and C / in the expansions, but keeping all
powers of @y o, Substituting (2.19) into equations (1.19-1.23,

we find
EZFE' ~(/+s)/‘+if‘ +a+ ) 2 dfn o Cos mﬂs/no*S)—M’# ?ﬁ,,]s»Aazer
Cz.20)
%.; f""s)/(CoS Ky Y < IK/J‘Z/ ‘\'}ﬁm(fr/‘f/"’(*-g"/\/(# fé,,)jc“ shdmB
& (z2.2/)
£y ook &r "Z Ent / s
Bo =Ch+)( /+s) t(1+5) —-—-—fas n??ﬁn( 745)-NGp- JS; olmK Y
C222)
By __ NCTS) 7’%’ -Sin 71 pRIAC+S)MB-B SinbolmK ¥
B. Cos m )f /? 2,23
ok .
L M2 5 G Sy b Sihemk
. (2 24)
7 + k g ‘f
5;42_: \2+52)& _OS/Q ¥ (/-,L:;& "L;F Fw—f—zL,z, M },(,,«)—W %850540(mﬁ)r
= C? 25—

Arzd)u
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If instead of using the above B,, one computes this quantity
using the above values of Ay, A¢ s and Ay , thils By, together
with the above expressions for Br’ By B¢ s Apy Ay, A¢
represent exactly a Liouvillian system. There 1ls a great
deal of material that might well be added to this section.
Only expansions suiltable for values of the constants given in
the above mentioned proposals have been considered. For
instance, the cases ¢ > e and ¢ = e would require separate

consideration.
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III. Lagrangian and Hamiltonian Equations of Motion in
Spherical Coordinate
Following the report of Nilsen*, we shall derive the

equations of motion from Joecobils principle

@ e ‘
oC//)C/bc/s-/-gA-c/S'):O C3.0

In spherical coordinates (/5 ¥, ¢ ).

A5 = dr+ LY+, rees vl 3.2

S = dr?+rar?+r3Cas*re/$>’

= dpyrocetyt PP @3

£ # -l
where P — P
aF, =%

el

—
Also let a= _C-_Z_ A
S ’

e

—/Z— E G

* Nils Nilser, MURA/NVN/2
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Then (2.1) becomes:

JJ ggéof =0 .@-57

where

X =,/ +Fo et g, /‘fra,a"frcasmf, (2.6)

Then
~

-éig;:: +q
S Y e & N e T o

i

b

- £ 2
Pr=5F ~Jrarrimeres o @D

The Lazgrangian equations are:

rleor+ P2l 9% (m,g
et 4 ,7 oeri e o J’ C”FX
(3 8)

+2Sin ?'Cas v &4, 2
ol et A e SR SISk

" A
ddly. /‘zCaszf' Y
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Making use of equation (1.5) - (1.7) together with the rela-

tion
Gt ) =FEFC S O+ 35( ),

the Lagrangian equations become:

. . H f-z :
ég%ﬁﬁaflﬁﬂfftikiﬂ*ﬁi;i.yk-,Q;if;yfu*rlti'fﬁzz?;7=<3sJQQ£7==d
(3.9)

25T s Trh - .
%E[Jrzca AP ] +,7;"W fﬁ'éy rCosﬂ_,] (7

In order to obtain the Hamiltonian, we first express r
and ¥ as functions of pp and p, by making use of 3 B
We find:
£ rﬁﬁo$31?9=‘6b>
A P P, —a =y —rGp)*
A fzﬁﬁ>clﬁ‘7‘

T Errw s d

G.7)




22,
MURA/ESA - 4

Then

=h Fpri =L
= /s r,@—(,@-nr)* ~- -}':"Qf 7“7;5} G.w

The Hamiltonian egquations are:

= " Cos ¥
ol /-G qo‘@:-aw

tCos I ng"; %)
o s?’r W 1=~ BILE - Gy )*

 =-28 <G - gh-a) (- aa'+resrﬁ = r)ﬁzﬁfff; *‘bfm

¢2/3%)

. = &-ZEH -5
- fp=-B = rnil-aF g e 75%%"%@ )

@.2)




- Introducing the netation of Nilsens

TRy 7
the Hamiltonian equations become
L =F(p-a)Cou¥
V= 6FcuY(p-ra,)

o= oo o fp - B ) O S B
G.8D

fom- R rerntiy - B BB rr yaara>



