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ABSTRACT 

Spher ica l  coordinates a re  e spec i a l l y  'suited f o r  t h e  

expression of the  magnetic f i e l d  of the  Mark V. FFAG accel- 

e r a to r .  The t i c  induction i s  assumed given i n  the  

median plane i n  the  form of a  s e r i e s  of c i r c u l a r  harmonics. 

Expansions a ]en given f o r  the  magnetic induction, 

i t s  vector  and s c a l e r  potent ia  both s ide s  of t h i s  plane. 

An exact so lu t i on  i s  given by n w l n g  u s e  of associated 

Legendre funct ions.  Cer ta in  approxirilations end s e r i e s  ex- 

pansions a re  introduced. A p a r t i c u l a r l y  simple approxima- 

t i o n  i s  worked out i n  d e t a i l .  If used fo r  t h e  equations of 

motion it i s  always required t h a t  any appro;irnatior! s a t i s f y  

the LlmvlUe t'leorem exact ly.  The Lag r~ng ian  and HemiltoniEn 

equations a r t  derived. 



I. The use of spher ica l  coordinates f o r  t h e  exact expres- 

s ion of the  magnetic f i e l d .  

11. The in t roduct ion of c e r t a i n  expansions and approxima- 

t ions .  Exp l i c i t  expression of a very simple approxi- 

mation, which s a t i s f i e s  the  theorem of Liouvi l le .  

111. Lagrangian and Hamiltonian equations of motion. 

I. The use of spher ica l  coordinates f o r  t h e  exact expres- 
P 

s ion  of t h e  magnetic f i e l d .  - 

* 
Let B represent  t h e  magnetic induction v e c t o r , v  

+ 
i t s  s ca l a r  po t en t i a l  and A i t s  vector  po ten t ia l .  The 

equations: 

expressed i n  spher ica l  coordinates are: 

B 



Now replace 9 by ,% = g-6 I 
3 

so that ==- a J r  
~ l s o  l e t  Ar=-Ae , &=-& . Then: 

P 

We shal l  choose the gauge so that A r  = 0 .  In th i s  caser 

dCrA+l a av 
at- =-a' ; GSY-Q-,~ 21- cia 3) 

Def lne W = LJdr v. Then one finds: 
r 

If we assume that \/ i s  expressible tn the form: 
C+c) n ,ma 

V= h r - r h r d  2 f K~ r R 1 +z m - w h = #  2 /-'r*h+y)'mr 4 0  CA 5> 



and if furthermore vc-' . =o c?) , then vZw~O, ' 9 0  

This  condit ion i s  va l i d  f o r  the  Mark V. unless  k = - 2. 

One has assumed f o r  the  magnetic f i e l d  i n  the  median 
', 

plane : 

/ 

We s h a l l  a s s m e  the  fal lowing more genera l  form f o r  t h i s  
P 

f i e l d :  I 
I 

where r = ro (1 + s ) ,  and +m C@P> a r e  constant phase 

angles.  This f i e l d  i s  the  pure imaginary p a r t  of t h e  f o l -  

lowing complex f i e l d :  
i m k o  [ I  C /+ ~ > - N c z - ~ J  

m c/. 9) 



The complex f i e ld ,  whose ab- i n  the median plane given by 

(1 .9) ,  w i l l  be represented by 

r mN 
where k+l+i,,,H~b-) sa t i s f i e s  the associated Legendrt 

equation 

cc) 
and where Lk+, = Lk+, . In order that 

B,=B+=o 4 r=o, 
i t  i s  required that 



Furthermore l e t  

a r e  r e a l  func- 

t i o n s  of bc . We may sometimes requ i re  t h a t  (;)rm~o>=o Cm) . 
This can always be achieved by mult iplying any so lu t ion  

of ( / . I /  ) by a s u i t a b l e  complex constant.  The % was 

introduced i n  (1.13) s o  t h a t  would be a  small. quanti ty.  

From (1.4 and 1 . 1 0  one f inds :  

From (1.2) and (1.251, one f inds :  



Comparing (1.9) and (1.271, one f i n d s :  

d4wf where 2' =[ ] 2' kt/ T~=o, &+/r.invr Ci.19 

r Solv ing ,  we f i n d  

S u b s t i t u t i n g  t h e  above v a l u e s  of wh end 4' i n t o  (1.10), 

we f i n d :  . . 



Ve now compute the  v and t h e  components of B and 7 
in terms of the A,& and @, (m): 
From (1.141, we f i n d  

From (1.161, we f ind :  

r 

+ L - 
Br L o f  ~.JAL +0+5j24, /m fitnc~s -2- 

)-~+-d.)K",o-^/rJ I!-&&& (I. 20) 

8, 1%, dY nt C++/+im~ 

Prom (1.2) and 1 . 9 ,  one f i n d s  



From (1.2)  and (1.19) we f ind 

C l. 22) 
From (1.4) and (1 .18)  we find 

r 

In l i k e  manner, we f i n d  

In order t o  f i n d  the  f i e l d  corresponding t o  the r e a l  

f i e l d  ( 1 . 8 )  in  the median plane, we take the  pure imaginary, 



parts of  the above expression, and find: 



The above expressions a re  exact.  However, approxi- 
h M  

mations may afterwards be introduced through LktItimx e 

It may be desired t o  use these approximations i n  the equa- 

t i ons  of motion, i n  such a way t h a t  the theorem of Liouvil le  

i s  s a t i s f i e d .  I n  order t o  achieve t h i s ,  the same o r  d i f f e r -  

en t  approximations may be made i n  ekch of the A,, A, 
and A+ , but a f t e r  t h a t  the By , 6 and must be 

recomputed by subs t i t u t ing  these approximate values of Ar, Ar 
and Aq i n  the exact r e l a t ions  (1.2). 

11. The introduction of c e r t a i n  expansions and approximations. 

Expl ic i t  expression of a very simple approximation, which 

s a t i s f i e s  t he  theorem of Liuovil le  

I n  the prkvious section,  exact expressions have been 

found fo r  the  magnetic induction, and i t s  sca la r  and vector 

po ten t ia l s  f o r  the  Mark V. accelera tor .  However, these ex- 
mn/ 

pressions require a knowledge of the  function Llw+im4 C S ~  0 
which s a t i s f i e s  the associated Legendre equation: 

wi th  the addi t ional  condition t h a t  
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This funct ion can be expressed i n  terms of t h e  assoc- 

i a t e d  Legendre funct ions a s~ fo l lows :  

For the  case 

P = ?*/ CSh 27 kt /  41 k even 
Cz, 9 

For t h e  case m =  1, 2,  3 - - 

I n  s p i t e  of the  g rea t  amount of mate r ia l  i n  the  l i t e r -  

a tu r e ,  r e l a t i n g  t o  associated Legendre funct ions ,  t h i s  na ter -  

i a l  i s  not d i r e c t l y  concerned with the  present  s i t u a t i o n  . 
It has been found bes t  t o  dea l  d i r e c t l y  with t h e  equation (2.l), 

f o r  small , but not necessa r i ly  (wT  1, t h i s  equation may 

be solved by successive approximations. Replace by /1 Y in 

(2.1) and l e t  



Subst i tut ing  ( 2 . 5 )  i n  (2.1) and equating,  l i k e  powers of , 
we f i n d  

where 

with 

k,l=~k+~ 
k: = z k c 3  

,v2 d2= / i-7 
One f inds :  

(0In~b/ 

.Lr , l+ l rnA = S n W b r  

"'hd - k s ~ ~ - + ~ S L n & g  
L,+/+, = FLU 



This expansion appears t o  be very  rap id ly  convergent when r 
is small  and 1 ~ 1  i s  large .  This i s  t r u e  f o r  the  Mark V 

acce le ra te r .  

I n  the following t a b l e  a r e  given values  of N ,  k, k and 

f t h a t  have been suggested i n  proposals f o r  two l a rge  accel-  

e r a t o r s  and one model8 

These values together  with equations (2.7) and (2.8) suggest 

s e r i e s  expansions i n  inverse  powers of mK . Let cr)=ciiC, 

where c and e a r e  r ea l .  Then 

Expanding i n  inverse  powers of m * ,  we f i n d  



In t h i s  report, we : wily be concerned with the zeroth 

order approxfmation, 

which actually represents a re lat ive ly  good approximation 

for  the Mark V.  We have two cases t o  consider: 

where 

The multipliea+ive constant has been introduced into  the 

solutf  on (2.13) t o  make Xm (m) small. Expanding the second 



equation of (2.141, we find: 

which suggests that we choose a different multiplicative 

constant, so that 

This at once suggests the approximate but very simple solution: 

C2./9) 



This approximation consists in ositting first and higher 

powers of and C )"' in the expansions, but keeping all 

powers of e )- . Substituting into equations (1.19-1.29, 

we find 



;ury a 

la1  thi 

I 

Br, Ba- 

computes this  quant i ty  

nd A, , t h i s  Br together  

If instead of using t h e  above B. 

using t h e  above values of Ar , i 
with  the  above exprc Ar 9 A+ 

represent  exarc'- - v r v u v r ~ ~ ~ a ~ i  ~ 3 3 ~ 1 ~ 4 .  Thtlci  AS a great  

dea l  of mater: o t h i s  sectfon. 

Only expansions su i t ab l e  f o r  values of the  constants  given i n  

t h e  above mentioned proposals have been cons'idered. For 

ins tance ,  the  cases c r e  and c 3uld requ i re  separa te  

consideration. 
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111. Lagrangian and Hamiltonian Equations of Motion i n  

Spherical  Coordinate 

Following t h e  repor t  of Nilsen*, we s h a l l  der ive  t h e  

equations of motion from Jocobi's p r inc ip le  

I n  spher ica l  coordinates ( 6  6 1. 

where 
9 

Also l e t  - 4  
-t 9 -  

, P b = - B  P 

* N i l s  Ni lser ,  MURA/IWN/2 

P 



Then (2.1) becomes r 

where 

Then 

The Lzgrangian equations are:  



Makfng use of equation (1.5) - (1.7) together n i th  the re la-  

t ion 

the Lagrangian equations become: 

In  order t o  obtain the Hamiltonian, we f i r s t  express 

and as functions of pr and pr by making use of  (2.71, 

We find: 



The Hamlltonian equations ares 



Intraducizag the notatfon of lilran8 
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