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Abstract 

Formulas and tables are given for calculating the 

adiabatic damping of large-amplitude phase oscillations, 

due to changing the accelerating field, phase angle, and 

proton velocity. These are applied to determining the 

detailed energy distribution at the output of a conven- 

tional linear accelerator, in terms of input parameters. 

The possibility is investigated for accomplishing 

the normal function of a simple buncher by modifications 

of the initial parameters in the linear accelerator it- 

self, with the hope of capturing 100% of the injected 

beam; this is shown to work in principle, but to requfre 

an excessively long accelerator in practice. 

P * Supported by the National Science Foundation and the 
Office of Naval Research. 
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The energy distribution in the output of a typical 50 

Mev proton Linac using a constant accelerating field and a 

single-cavity buncher is calculated; 69% of all injected 

protons are stably accelerated, and of these 89% are ejected 

with energy spread less than + 1/25. Multiplying these fac- 

tors, 61% of all injected protons will be accelerated to 50 

Mev + 1/2%; 47% will be within + 0.3% in energy. 
This calculation takes account only of losses due to 

phase oscillations, in a perfectly aligned accelerator. 

Contents 
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Part I - Adiabatic damping of large-amplitude phase oscilla- 
tions. 

The phase equation obeyed by protons in a linear accel- 

erator is, as derived in appendix A: 

2 - 2 X (B dn dn - ,* (sin d - sin do) 

where n = ordinal no. of drift tube 

@ = V/C for the protons, varies with n. 

6 = phase of RF field, measured from zero field time, 

when proton passes the center of a gap. 

do= synchronous phase angle. 
Wo= max energy gain in Mev per cm of accelerator, aver- 

aged over a complete cell of the machine. Wo is 

closely related to the peak accelerating electric 

field strength, which is assumed to change slowly 

with n. 
2 MC = total energy of proton in Mev. 

X = RF wavelength. 

This has not been solved generally, but asymptotic solutions 

are known for small oscillations and adiabatic variation of 

parameters.* Since we wish to deal with oscillations up to 

+ 180°, we must use a large-amplitude treatment.- - 

* See Alvarez et a1 UCRL 236, p. 23 (1948) and Blewett, Phys. 
Rev. 88, 1197 (19523. 

** A similar treatment was made of synchrotron oscillations 
by S. C. Wright in Mac 4, SCW - 1. 



Much clarity of concept is gained by thinking of phase 

oscillations in terms of a mechanical analog first suggested 

by McMillan,* namely the "biased pendulum" shown: 

Fig. 1 

The differential equation of motion for this system is di- 

rectly obtained by setting the torque equal to the rate of 

change of angular momentum: 

1 (I = - ~ p  gL (sin d - sin do) dt (2) 

where 

I = ~ p j 1 ~  + mr2 

and 

sin bo = mr/~pa 

so the analogy between (1) and (2) is clear, if we consider . 

2 
@ in the linac to be analogous to I of the pendulum system 

and the further analogy 
2 

2a WopX/MC = ~~~a 
* 

Edwin M. McMillan, Physical Review 68, 143 (L) (1945). 



The phase angle d in the Linac appears identically as the 

angle of displacement b of the pendulum. 

The Adiabatic Theorem says that for adiabatic variation 

of parameters, 

J = $ Pdq is constant during the entire trajectory of 
a proton, where f indicates integration over a single cycle 
of the motion. In the analog, P = Id, and q = b ,  so 

J = f I2db. ( 5 )  

We need an expression relating 6 and b ,  which is easily ob- 

tained by expressing conservation of energy for the pendulum: 

the potential energy will be formulated to be zero when 6 = 6,. 

Kinetic energy + potential energy = max potential energy. 

112 I 22 + ~ p g t  (cos bo - cos d + (do - d) sin do) = 

~ p g P  (cos do - cos Zm + (do - dm) sin do) 
where dm is the extreme swing of the pendulum in the positive 

direction. This gives 

2 = [ 9 0 s  Z - cos dm + d - dm) sin do)] 1/2 ( 6 )  

Then, substituting 6 from ( 6 )  into (51, 

J = [21~pgt]l/~ f [COS 6 - cos dm + (6 - dm) sin d ~ ~ / ~  dd (7) 

P Translating (7) to the Linac case by the use of (3)  and (41, 
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47cW.83~ 1/2 
J =[ f [cos d - cos dm + (d - dm) s i n  gfo]1'2 dd (8) 

Call ing the  integrand 9 ,  and the  i n t e g r a l  F, we have 

9 (6, do, dm) r [COS d - cos dm + (d - 6,) s i n  do] 112 

and 

giving the r e s u l t a n t  expression f o r  J 

This i s  the  f i n a l  form of the  equation we w i l l  use. 

Values of the  i n t e g r a l  F a r e  ca lcula ted  numerically and 

given i n  t ab l e  I a s  a funct ion of do and 6,. The r e s u l t s  a r e  

a l s o  p lo t t ed  i n  Figs.  2 ,  3 and 4. 

Use of the  r e s u l t s  then proceeds a s  follows, t o  calcu- 

l a t e  large-angle damping of dm: 

It i s  assumed t h a t  do, dm, Wo, $, and M vary f o r  a par- 

t i c u l a r  proton a s  it goes down t h e  accelera tor .  If the  sub- 

s c r i p t s  1 and 2 apply t o  any two s t a t i o n s  along the  accelera-  

t o r ,  then the value of J w i l l  be the  same a t  the  two points ,  

o r  



The linacs under consideration are not very relativistic, 

and X is constant, so we may simplify the above by saying 

X = X1 = X2 and M1 = M2: 

for small-amplitude oscillations, say jdm - bo < lo0, F can 

be well approximated as: 
2 2 

F O m  (6 - b (1 - 1/3 tan bo(b, - bo))(% cos 8,) 1/2 

approx. (11) 

This approximation was used for the small-amplitude parts of 

the curves in Figs. 3 and 4. (11) can be further approximated 

for very small amplitudes to 
2 * 2 F # # = b - b (I. e m  Bo) 'I2 approx. (11.5) 

Since one is usually more interested in the relative 

maximum energy deviations 9 of the machine than in the 
phase errors, one needs the relation between energy deviation 

and phase amplitude: (derived in appendix B) 

- (COS bo - cos bm + (bo - 8,) sin Bo) (12) 

where is the maximum energy deviation corresponding to 

6,. (12) can be approximated for small phase amplitudes to: 

cos 8, (dm - b0l2 approx. 



We will now apply this to determining the maximurn energy 

deviation of a 50 Mev linear accelerator of conventional 
design. Parameters are taken as follows: 

E output = 50 Mev 

E input = 0.5 Hev 

Wo = .018 Mev/cm (constant) 

80 = 60' (constant) 

$ input = -032 

p output = .35 

X = 148 cm 

The extreme phase oscillations that can be accepted from the 

injector are given by bm = = - bo = 120'. We will set the 

above into (10) to find the output value of the phase amplitude: 

Using the curves in Fig. 3 for values of F, one finds (bm2 - 
bo2) = 6.08', or bm2 = 66.08'. This is a small enough ampli- 

tude that one may then use (13) without appreciable error to 

get the maximum energy deviation: . 

This is the maximum energy deviation at the 50 Mev end 
- 

of the accelerator, the majority of the protons having consid- 

erably smaller ones. A detailed calculation of the output 

energy distribution will be made in Part 111. 



P a r t  I1 - Phase bunchine: and 100% ~ h a s e  acceutance by vars inq 

'Linac parameters. 

It i s  recognized from (10) t h a t  i f  one s t a r t s  wi th  a low 

value of Wo one can r e a l i z e  some ex t ra  phase damping; a l so ,  

i f  one changes do, the  equil ibrium phase angle,  so t h a t  the  

acce le ra to r  s t a r t s  with do = 0 ,  no in jec ted  protons should 

be re jec ted  because of phase of a r r i v a l ;  a l l  i n i t i a l  phases 

should be s t ab l e ,  the  extreme ones o s c i l l a t i n g  with 2 180' 

amplitude. Slowly increasing Wo should cause phase damping, 

and then do can be slowly increased above zero, so some ac- 

ce l e r a t i on  can take place,  u n t i l  f u l l  constant  values of Wo 

and (do a r e  reached; thus one should have a 100% e f f i c i e n t  

buncher b u i l t  i n t o  the  acce l e r a to r  i t s e l f .  

To see how f a r  we can take t h i s ,  and a t  what p r ice ,  l e t  

us choose the  i n i t i a l  value of Wo such t h a t  a 2% maximum 

energy osc i l l a t ion*  can be contained a t  in jec t ion ;  put t ing  

t h i s  i n t o  (12) with do = 0 ,  and using o ther  i n i t i a l  parameters 

a s  l i s t e d ,  (.0212 = '0 (1 - 0 + 01, ca l l i ng  f o r  an 
r( *o32)938 

i n i t i a l  f i e l d  of % = 6.4 x lom5 Mev/cm. Application of (10) 

then t e l l s  what w i l l  be the  corresponding 6, when 50 Mev i s  

reached, using the  parameters: 

* The energy tolerance on the  i n j e c t o r  must then be consid- 
e rab ly  smaller than t h i s  value o r  perhaps 0.2%. 



This gives bm = 66.2F0, corresponding to 5 = 2 .554$ 
E 

(about the same as with a buncher). 

To estimate the length of an accelerator as above in 

which Wo increases a factor of 300 adiabatically, we note that 

the wave length of phase oscillations is given approximately 

for small oscillations as 

where X is measured in numbers of cells of the machine. 

This makes X = 300 cells (= 47 feet) at the beginning and 

= 40 cells (68 feet) at the end of the machine so that the 

machine would be many hundreds of feet long to even approach 

the adiabatic dondition by increasing Wo a factor of two in 

each wave lerlgth. 

It seems very likely that even if one were willing to 

go to the expense of building such a long adiabatic machine, 

the alignment errors in its many drift tubes -would excite 

enough radial oscillations to lose as many protons as would 

a conventional linac with a simple buncher. 

It was thought possible that although the adiabatic 

case requires an impractically long accelerator, comparable 



results might be achieved in an accelerator employing a simi- 

lar range of variation of Wo, (accelerating field) but allow- 

ing the field to increase to full value in only a hundred 

feet, so that the overall length of the,accelerator might 

be only 150 feet. Numerical trajectories were calculated 

for several such cases, but in general the amplitudes of 

oscillation increased instead of damping, and no cases were 

found which preserved as many protons as a conventional linac 

with a buncher. 

Part I11 - Detailed energy distribution of protons from a 
conventional linac with simple buncher. 

The maximum energy deviation in the output energy was 

calculated in Part I and this is independent of whether or 

not a buncher is used; but it is desirable to know the entire 

energy distribution, since most protons will deviate much less 

than the maximum. Using the same parameters listed for the 

above-mentioned calculation, individual proton histories are 

traced as follows: 



The master reference f o r  phase i s  t h a t  of the  RF & v e c t o r  

i n  the  Linac tank, i.e., d = 0 when & =  0, increasing i n  

t h e  tank. Thir ty-s ix  protons a r e  t raced,  one s t a r t i n g  out  

from the i n j e c t o r  every t e n  degrees of phase during one RF 

cycle.  The RF phase when each of these  passes the  center  of 

t h e  buncher gap w i l l  be ca l l ed  (d f o r  t h a t  proton and dLi 
B i  

w i l l  be the  phase when each reaches the  f i r s t  gap i n  the  

l inac .  Calling Vo the  i n j e c t o r  energy and V1 the  maximum 

energy gain the  buncher can give a proton and assuming the  

RF i n  the buncher i s  i n  phase wi th  the  tank, the  phase change 

f o r  a given proton a t  the  l i n a c  input  occasioned by the bun- 

cher i s  

- V1 A - - - s i n  dBl 
voF ox 

where d i s  the  bunching dis tance ,  go is  the  i n j e c t o r  ve loc i ty ,  

and X i s  the  RJ? wave leng th  i n  vacuo. A t  t he  same time, the  

proton ve loc i ty  i s  var ied  from the  i n j e c t o r  ve loc i ty  by an 

amount 

= q o  '1 s i n  $i A ' f i  - - 
Vo 

which causes a r a t e  of phase e r r o r  i n  the  beginning of the  

tank 

A "i BLi = 2s - = V1 s - 
Cp 0 vo 

s i n  BBi 

For each of the  36 protons, then, one ca l cu l a t e s  the  phase 

of a r r i v a l  a t  the l i n a c  tank, bLi, and BLi,and these  a r e  



p lo t t ed  i n  Fig. 6. Also p lo t t ed  on the  same a x i s  a r e  the  6 . 
vs. ,4 t r a j e c t o r i e s  t yp i ca l  of the  acce le ra to r ,  so one can 

determine f o r  each proton the  value of bm f o r  the curve it 

lands on. Table I1 then tabu la tes  f o r  each proton i t s  8, 

value i n  the  i n i t i a l I i n a c ;  the  phase damping i s  then calcu- 

l a t e d  using the,methdd out l ined i n  P a r t  I, giving the  cor- 

responding value of bm f o r  the  proton a t  the  Linac output.  

From the  l a t t e r  the  maximum energy devia t ion f o r  the  proton, 

(AF,/E), i s  ca lcula ted  by the  approximate small-amplitude re- 

l a t i o n  (13) and p lo t t ed  i n  Table 11. 

The above ca lcu la t ion  would give the  energy d i s t r i bu -  

t i o n  i n  the  Idnac output i f  every proton came out  a t  the  ex- 

treme phase i n  i t s  phase o s c i l l a t i o n  cycle; it must be 

weighted then t o  allow f o r  a  s inusoidal  d i s t r i b u t i o n  of ener- 

gy p robab i l i ty  f o r  each proton, with the  above values a s  the 

amplitude of the  s ine  wave. (Recal l  t ha t  a t  the  output the  

phase o s c i l l a t i o n s  a r e  damped to  an amplitude of N 6O, hence 

they can be regarded a s  s inusoidal  o s c i l l a t i o n s  t o  good ap- 

proximation. 

Applying such a weighting t o  the  energy d i s t r i b u t i o n  

r e s u l t s  i n  the  f i n a l  energy d i s t r i b u t i o n  f o r  the  acce le ra to r ,  

a s  shown i n  F ig .  7. The same dataare tabulated i n  Table 111. 

The r e s u l t s  show t h a t  while the  maximum energy deviat ion i s  

+ .63%, 68% of the  output protons w i l l  have energy deviat ion - 
l e s s  than 2 0.3%. 



TABLE I1 , . 
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TABLE I1 (continued) 

A E D  Max 
. 

.22 Z 

.16 

.19 

(&--$)M~v 

2.3 

1.7 

2.0 

IF 50 " ~ e v  

.0026 

.0014 

.0019 

F .5 Mer 

.082 

.043 

.060 

I 

+ Mev $m 

74 

70 

72 

77 

80 

82 

80 

77 

7 5 

83 

93 

120 

>120° 

Proton 
# 

1 

$ 2  

t 3  

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

PI 

10 

20° 

30° 

40 

50 

60 

70 

80 

90 

100 

110 

120 

13 0 

-- ' -PRoTONZ 

* 1200 
7 1200 15 

LO ST - 

140 

1 50 

> 120° 

7 120° 

w 120' 

16 

17 

18 

160 

170 

+ 180° 
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TABLE 111. 

Energy Distribution of 50 Mev Protons from 

Linac w i t h  Simple Bunches 

C 

A E@ 

O - .05 
.05 - -10 

. l O  - -15 

.15 - .20 

.20 - a25 

.25 - -30 

.30 - -35 

.35 - .4O 

.4O - .45 

-45 -7,50 
I 

.50 - -55 

.55 - -60 

-60 - .65 

-65 - -70 

Total 
t 

* 

of Protons 

10.63 % 
" 

11.77 

11.74 

12.61 

10.40 

11.27 

6-54 

4.77 

4.56 

4.61 

4.52 

4.42 

2.16 

0. 

100.00 % 
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Appendix A: Derivation of the Phase Equation for the Linear 

Accelerator. 

Assume that the electric field in the accelerator can 

supply a peak energy gain of Wo Mev per centimeter of axial 

distance, averaged over many drift tubes, and that Wo varies 

slowly with n, the ordinal number of successive drift tubes. 

Ln is the drift tube repeat length. A proton passing the 

n'th gap at phase 8, will gain energy 

% = Wo sin pln Ln (1) 

while a proton passing through the gap at phase 8, (design 

phase) wLll pick up the designed amount of energy, or 

The change in the proton's excess energy (excess over the 
.- 

design value) will then be 

AE:, = (an - AE~,) = W,L,* (sin pl, - sin ban) 
,.. 

We now wish to relate this change of excess energy to a 

change of excess velocity as follows: Assume we are in the 

non-relativistic region, so we can say 
2 2 

E = 1/2 MC B . 
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Let /Ban be t h e  design ve loc i ty ,  and /8; the  excess ve loc i t y  

a t  the  n th  gap. Then Pn = /Ban + PA. Similar ly  l e t  

Eon be the  design energy, and El: be the  excess energy. 

En Eon + E; 

The change i n  excess energy i n  going a&oss the  6 t h  gap 

w i l l  be 

AEtn a (En + 1 - E o , n  + 1 )  - (En - EOyn) 

o r  

- 2 P o n  PA - (P;12 I 
2 Neglecting terms of the  order of (FA) s ince  ,@' i s  always 

assumed small compared t o  ,#,, we have 
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The expression i n  brackets  i s  j u s t  the  change i n  the  quan- 

t i t y  ( f O n  /8h)  i n  passing one gap, which we c a l l  

A ( Po,-B A)' o r  

A E; = KC* A ( / B o n ' P ~ )  . (41 

equating (3)  and (41, 

M C ~  A ( /B on .P I;) = W0Ln ( s i n  fin - s i n  ( 5 )  

(hanging from d i f fe rences  t o  d i f f e r e n t i a l s ,  ( 5 )  becomes 

- ( p o n . / ~ )  & oL ( s i n  $ - s i n  PIon) . 
dn TdC2 

. The phase change i n  passing from one gap t o  the  next 

i s  r e l a t ed  t o  the  excess ve loc i t y  by 

which gives 
= -  P o n  

P n  - 27r dn 

Se t t i ng  t h i s  i n t o  the  left-hand member of ( 6 )  gives: 

a ( p O n 2 , & )  = - 2 *  Won B o n  t & g n -  s i n d o n )  - 
dn dn MC 

where we have used the  synchronous condit ion Ln = /BonX , 
where > i s  the  RF wavelength i n  f r e e  space. 
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Aapendix B: Expression of Energy Oscillation Amplitude in 

Terms of the Phase Oscillation Amplitude. 

Eq. (6) in Part I gives, for the biased Pendulum Analog, 

(a )  j = [2 LE$ (COS $ - cos $ + ($ - jdm) sin $o)] 9 
I 

which, translated to the Linac by using (3)  and ( k ) ,  reads 

(b) i = [ 4s WO X (COS p - cos pl, + ($ - &,I sin $o)] + 
f Hc2 

i is connected with excess velocity and excess energy 
as follows: 

r- 

and since EcC , P2 
= 2 d B  , we get E P 

and substituting (d) into (b), we get 

(cos $ - cos qm + ( - &) sin $o) J * 

A E  has its maximum where $ = Ido, so 
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