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ADIABATIC DAMPING OF LARGE-AMPLITUDE
PHASE OSCILLATIONS IN A LINEAR ACCELERATOR

Lawrence H. Johnston
and
Spencer Schuldt
University of Minnesota and

Midwestern Universities Research Association¥
Abstract

Formulas and tables are given for calculating the
adiabatic damping of large-amplitude phase oscillations,
due to changing the accelerating field, phase angle, and
proton velocity. These are applied to determining the
detailed energy distribution at the output of a conven-
tional linear accelerator, in terms of input parameters.

The possibility is investigated for accomplishing
the normal function of a simple buncher by modifications
of the initial parameters in the linear accelerator it-
self, with the hope of capturing 100% of the injected
beam; this is shown to work in principle, but to require

an excessively long accelerator in practice.

* Supported by the National Science Foundation and the
Office of Naval Research.
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The energy distribution in the output of a typical 50
Mev proton Linac using a constant accelerating field and a
single-cavity buncher is calculated; 69% of all injected
protons are stably accelerated, and of these 89% are ejected
with energy spread less than %+ 1/2%. Multiplying these fac-
tors, 61% of all injected protons will be accelerated to 50
Mev + 1/2%; W7% will be within + 0.3% in energy.

This calculation takes account only of losses due to

phase oscillations, in a perfectly aligned accelerator.

Contents

Part 1 - Adiabatic Phase Damping
Part IT - 100% Phase Acceptance by Varying Linac Parameters
Part IITI - Detailed Energy Distribution of Protons from a

Conventional Linac with Simple Buncher
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Part I - Adiabatic damping of large-amplitude phase osecilla-
tions.
The phase equation obeyed by protons in a linear accel-
erator is, as derived in appendix A:

4
dn
where n

$=
g =

MC® =

X =

This has

(2 %g) o :gigsﬁﬁ (sin g - sin 4_) (1)

= ordinal no. of drift tube

v/c for the protons, varies with n.

phase of RF field, measured from zero field time,
when proton passes the center of a gap.
synchronous phase angle.

max energy gain in Mev per cm of accelerator, aver-
aged over a complete cell of the machine. Wb is
closely related to the peak accelerating electric
field strength, which is assumed to change slowly
with n.

total energy of proton in Mev.

RF wavelength.

not been solved generally, but asymptotic solutions

are known for small oscillations and adiabatic variation of

paramete

+ 180°,

rs.¥ Since we wish to deal with oscillations up to

we must use a large-amplitude treatment.**

¥* See Al
Rev. 88,

varez et al, UCRL 236, p. 23 (1948) and Blewett, Phys.
1197 (19525.

** A similar treatment was made of synchrotron oscillations

by S. C.

Wright in Mac 4%, SCW - 1.



L
MURA - LHJ/ss = 1

Mueh clarity of concept is gained by thinking of phase
oscillations in terms of a mechanical analog first suggested

by McMillan,* namely the "biased pendulum" shown:

Fig. 1

The differential equation of motion for this system is di-
rectly obtained by setting the torque equal to the rate of
change of angular momentum:

4 %%) = -Mp gf (sin 4 - sin §) (2)

where
I = Mpl® + wmr®
and
sin g, = mr/Mp{
so the analogy between (1) and (2) is clear, if we consider

ﬁz in the linac to be analogous to I of the pendulum system

B =1 . (3)
and the further analogy
2
2m W_ga/MC” = Mpgl (%)

Edwin M. McMillan, Physical Review 68, 143 (L) (1945).
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The phase angle g in the Linac appears identically as the
angle of displacement g of the pendulum.
The Adlabatic Theorem says that for adiabatic variation
of parameters,
J =kijdq is constant during the entire trajectory of
a proton, where Jr indicates integration over a single cycle
of the motion. In the analog, P = Ié, and q = g, so
J =f1}5d¢. (5)
We need an expression relating g and B, which is easily ob-
tained by expressing conservation of energy for the pendulum:
the potential energy will be formulated to be zero when g4 = ﬁo.
Kinetic energy + potential energy = max potential energy.
1/2 1 32 + Mpgl (cos ﬁo - cos B + (ﬁo - g4) sin ﬁo) =
Mpgd (cos g, - cos g+ (4 - #) sin 4)
where ﬁm is the extreme swing of the pendulum in the positive

direction. This gives

g = [BEL (cos g - cos gy + (8- £ sing)] Y2 (o)

Then, substituting g from (6) into (5),

J = [21Mpg£]l/2 f [cos g -cosg + (8-4) sin ;zfo] 1/2 ag (7)

Translating (7) to the Linac case by the use of (3) and (4),
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3
47N, B
E =[ Me> Jl/z f [cos 8 - cos 4, t* (8- 4,) sin ,50]1/2 dg (8)

Calling the integrand ¢, and the integral F, we have
& (4, B,y 8,) = [cos g - cos g + (8 - 8,) sin ;60] /2

and

F (4, #,) = ngcgs, g, 6) ag

giving the resultant expression for J

3 [‘*’T—J——;Cf’*]l/ “r By #p) (9)
This is the final form of the equation we will use.

Values of the integral F are calculated numerically and
given in table I as a function of ﬁo and ﬁm. The results are
also plotted in Figs. 2, 3 and k4.

Use of the results then proceeds as follows, to calcu-
late large-angle damping of ﬁﬁ:

It is assumed that ﬁo, ﬁm, W, B, and M vary for a par-
ticular proton as it goes down the accelerator. If the sub-
scripts 1 and 2 apply‘to any two stations along the accelera-

tor, then the value of J will be the same at the two points,

or
1.8 1/2
3 3
J e b Wo1f ‘k; F(#,18,71) = Eﬂgggéiz F(£08n)
M, C2 " "t

i &
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The linacs under consideration are not very relativistie,
and A is constant, so we may simplify the above by saying
A= Ll = 12 and Ml = MZ:
17E 32 s ekl e A B
Wo1 BT'T FlEgafn) = V5B F(4 .8 ) (10)
02" m2
for small-amplitude oscillations, say ﬁm —'¢o < 10°, F can

be well approximated as:
2
F(dy8,) o (B, - 8,02 (1 - 1/3 tan 4 (4, - 6,)) (G cos 4,)1/2

approx. (11)
This approximation was used for the small-amplitude parts of
the curves in Figs. 3 and 4. (11) can be further approximated

for very small amplitudes to

2
F (8, ﬁm) o PR do)z (%? cos ¢0)1/2 approx. (11.5)

Since one is usually more interested in the relative
maximum energy deviations é%g of the machine than in the
phase errors, one needs the relation between energy deviation

and phase amplitude: (derived in appendix B)

2
AEm\“© _ 4w y i
( = ) = 02 (cos do - cos ﬁm + (ﬁo ﬁm) sin do) (12)
prC
where AEm is the maximum energy deviation corresponding to

dm. (12) can be approximated for small phase amplitudes to:

2
2AW
(EEQ) nJ ﬂﬁMZz cos 4, (4, - do)2 approx. (13)
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We will now apply this to determining the maximum energy
deviation of a 50 Mev linear accelerator of conventional
design. Parameters are taken as follows:

E output = 50 Mev

E input = 0.5 Mev

W, = .018 Mev/cm (constant)
ﬁo = 60° (constant)

g input =032

g output = .35

A = 148 em

The extreme phase oscillations that can be accepted from the
injector are given by ﬁm =T - ¢0 = 120°, We will set the
above into (10) to find the output value of the phase amplitude:
(.018)1/2(.032)3/2r(60°, 120%) = (.018)1/2(.3%)3/2r(60°, B.5)
Using the curves in Fig. 3 for values of F, one finds (¢m2 -
Boo) = 6.08°, or ¢m2 = 66.08°. This is a small enough ampli-
tude that one may then use (13) without appreciable error to
get the maximum energy deviation:

: 1/2 ) o
% = GEUTE5E cos 600 (BEB= 80 < oomk or .54

This is the maximum energy deviation at the 50 Mev end
of the accelerator, the majority of the protons having consid-
erably smaller ones. A detailed calculation of the output

energy distribution will be made in Part III.
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Part II - Phase bunching and 100% phase acceptance by varying

‘linac parameters.

iy is-recognized from (10) that if one starts with a low
value of Wo one can realize some extra phase damping; also,
if one changes g, the equilibrium phase angle, so that the
accelerator starts with ﬁo = 0, no injected protons should
be rejected because of phase of arrival; all initial phases
should be stable, the extreme ones oscillating with + 180°
amplitude. §Slowly increasing Wb should cause phase damping,
and then g can be slowly increased above zero, so some ac-
celeration can take place, until full constant values of wo
and ¢0 are reached; thus one should have a 100% efficient
buncher built into the accelerator itself.

To see how far we can take this, and at what price, let
us choose the initial value of W, such that a 2% maximum
energy oscillation¥* can be contained at injectionj putting
this into (12) with ﬁo = 0, and using other initial parameters

as listed, (,00)° = F G48) Wi 1 6 4 0), exlling for an

T(.032)938
initial field of W = 6.4 x 1077 Mev/cm. Application of (10)
then tells what will be the corresponding ﬁm when 50 Mev is

reached, using the parameters:

% The energy tolerance on the injector must then be consid-
erably smaller than this value or perhaps 0.2%.
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Wy, = 6.4 x 1077 \ W,, =.018 Mev/cm
Bgi =9 Boo = 60°
B, = 032 B, = 0.35
A =148 cm
This gives ﬁm = 66.250, corresponding to EEQ = + .554%

(about the same as with a buncher).
To estimate the length of an accelerator as above in

which wo increases a factor of 300 adiabatically, we note that

the wave length of phase oscillations is given approximately
for small oscillations as
> )1/2

[ 28MC
gy (W Acos@o (1)
,Q a

where A is measured in numbers of cells of the machine.

This makes A = 300 cells (= 47 feet) at the beginning and

= 40 cells (68 feet) at the eﬁd of the machine so that the
machine would be many hundreds of feet long to even approach
the adiabatic condition b& increasing Wo a factor of two in
each wave length.. .

It seems very likely that even if one were willing to
go to the expense of building such a long adiabatic machine,
the alignment errors in its many drift tubes-ﬁould excite
enough radial oscillations to lose as many protons as would
a conventional linac with a simple buncher.

It was thought possible that although the adiabatic

case requires an impractically long accelerator, comparable



11
MURA - LHJ/ss - 1

results might be achieved in an accelerator employing a simi-
lar range of variation of W, , (accelerating field) but allow-
ing the field to increase to full value in only a hundred
feet, so that the overall length of the accelerator might

be only 150 feet. Numerical trajectories were calculated

for several such cases, but in general the amplitudes of
osclllation increased instead of damping, and no cases were
found which preserved as many protons as a conventional linac

with a buncher.

e e e e T

Part III - Detailed energy distribution of protons from a
conventional linac with simple buncher.

- The maximum energy deviation in the output energy was
calculated in Part I and this is independent of whether or
not a buncher is usedj but it is desirable to know the entire
energy distribution, since most protons will deviate much less
than the maximum. Using the same parameters listed for the
above-mentioned caleculation, individual proton histories are

traced as follows:

wh

50 Mev PROTONS

Ouvr
Z—

— [T

P SR __...-N-&

P,

INJTECTOR DUNCHER LINAC

Fig. 5
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The master reference for phase is that of the RF (Svector
in the Linac tank, i.e., ¢ = O when £ = O, increasing in
the tank. Thirty-six protons are traced, one starting out
from the injector every ten degrees of phase during one RF
cycle. The RF phase when each of these passes the center of
the buncher gap will be called g _ for that proton and éLi
will be the phase when each reacﬁ;s the first gap in the
linac. Calling Vo the injector energy and Vl the maximum
energy gain the buncher can give a proton and assuming the

RF in the buncher is in phase with the tank, the phase change

for a given proton at the Linac input occasioned by the bun-

cher is
g4 e g (15)
A = T ——— sin 1
i VB r BL

where d is the bunching distance, G is the injector velocity,
and A is the RF wave length in vacuo. At the same time, the

proton velocity is varied from the injector velocity by an

amount
av, =% V1 sin (16)
2 Vo

which causes a rate of phase error in the beginning of the

tank
B = 2% AVi = 7 z; sin & (17)
11 = <" Cf, A Bi

For each of the 36 protons, then, one calculates the phase

of arrival at the linac tank, dLi’ and ﬁLi,and these are
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plotted in Fig. 6. Also plotted on the same axis are the §4
VS, B trajectories typical of the accelerator, so one can
determine for each proton the value of ﬁm for the curve it
lands on. Table II then tabulates for each proton its ﬁm
value in the initiallinacj; the phase damping is then calcu-
lated using the method outlined in Part I, giving the cor-
responding value of dm for the proton at the Linac output.
From the latter the maximum energy deviation for the proton,
(AE/E)m is calculated by the approximate small-amplitude re-
lation (13) and plotted in Table II.

(AB/E), o EWOM_:ZS'do (8, - %) (13)
R MC

The above calculation would give the energy distribu-
tion in the ILinac output if every proton came out at the ex-
treme phase in its phase oscillation cycle; it must be
weighted then to allow for a sinusoidal distribution of ener-
gy probabiiity for each proton, with the above values as the
amplitude of the sine wave. (Recall that at the output the
phase oscillations are damped to an amplitude of ~ 60, hence
they can be regarded as sinusoidal oscillations to good ap-
proximation.

Applying such a weighting to the energy distribution
results in the final energy distribution for the accelerator,
as shown in Fig. 7. The same data are tabulated in Table III.
The results shéw that while the maximum energy deviation is
+ .63%, 68% of the output protons will have energy deviation
less than + 0.3%.
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TABLE II

Proton ¢B %ﬁﬁ . _ P

# | ev F .SMev|F 50 Mev ¢¢m ¢ lev| AE/E Max
- 18 - 180° |=>120°
- 17 - 1700 &
- 16 - 160 " PRoTONS

LoesT

- 15 - 150 "
- 1k - 140 "
- 13 - 136 101 L1470 0149 | 5.7° 5% %
- 12 - 120 67 .020 .00063 Lol .10
- 11 - 110 71 .050 .0016 1.9 .18
- 10 - 100 86 .152 . 0048 3.2 .30
- 9 -~ 90 98 L26 w135 5okt + 51
- 8 - 80 106 540 L0171 6.1 .56
- 7 - 70 112 616 .0195 6.5 .61
- 6 - 60 114 640 .0202 6.6 .62
- 5 - 50 113 .628 .0199 1. .61
- 4 - 40 110 .572 .0181 6.3 .59
- 3 - 30 105 .528 .0167 6.0 57
- 2 - 20 98 26 .0135 5.4 : 51
- 1 - 10 89 .285 .0090 boh Sl

0 0 82 .177 .0056 3.5 .33
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TABLE II (continued)

Proton 1" -gs Pn [P .5 lev |F 50 Hev |(#,-GMev| 4E/E Max
5 Mev !
% 1 10 74 .082 .0026 2.3 22 %
+ 2 20° 70 043 . 0014 149 .16
+ 3 30° 72 .060 .0019 2,0 .19
b 40 97
5 50 80
6 60 82
% 70 80
8 80 77
9 90 75
10 100 83
11 110 93
12 120 120
13 130 >120°
14 140 >120°
15 150 >120° “PRoOTONS
16 160 |=>120° Lo |
17 170 > 120°
18 + 180° | >120° J
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TABLE III.
Energy Distribution of 50 Mev Protons from

Linac with Simple Bunches

AE/E | % of Protons

0 - .05 10.63 %
.05 - .10 11,7;
.10 - .15 11,74
.15 - .20 12,61
.20 - .25 10,40
.25 = .30 11,27
.30 - .35 6.54
39 = M0 4.77
M0 - 45 4.56
M5 - .50 4,61
«50 = .55 k.52
.55 - .60 4,42
60 - .65 2.16
.65 - .70 0.
Total 100.00 %




TABLE I

16,

R
©
2
(s ; 5 B
-2 o 6TO|2HH0
) QA
. onn/. % £co°| TTTq 961 gHe® >
3 $ wh0°| €5T°| 00€°| 65+°| 266°|999° I e
i
\y 4B
k) 3 250°| 48T°| L8E°| 9T9°| Lg 0|60 TS T|HE" T / Sh,
XX} =
om . LhG0° | HIZ®| 99+H°| vl ® | LO°T| wh°T|84°T|L0°2 |92 2| LE %2 b
[6) o SN——
Q 1090° 0E2°| /OS] 68° | €2°T|89°T|ST°2|Hwo°c|gé°c|eE € oo.mimu_.m i
5
ﬁw mooimmm. S4°1468°) 9L TPT6 T |25 °2eT € |99°€ [ee k|dl H|€2°S Jn°s |TS°S i
e
W £90°| S92 T46°| 248" |SHeT|BO 2| Si 2 |sH€ |S2oH [60°6 [€4°6 |T€%9 w69 [ge°L |29°4 |oges T__u
S 407 #92°1996° IH6* | TH T[€0°2]94°2[49°€ |99°#]69°6 19°9 fg6°4 |62°g |€T°6 oo 0T |09 0T |go 1T e 1T
Pl JooT| 002) 506 [o0n |00 1009 |00z [008 | 406 |o00T Lot Lozt |06t Lont Q0ST| 09T L04T| 08T
.90 -
| (



17
MURA - LHJ/ss - 1

Appendix A: Derivation of the Phase Equation for the Linear

Accelerator.

Assume that the electric field in the accelerator can
supply a peak energy gain of WO Mev per centimeter of axial
distance, averaged over many drift tubes, and that W, varies
slowly with n, the ordinal number of successive drift tubes.
Ln is the drift tube repeat length. A proton passing the

n'th gap at phase ﬁn will gain energy
AE, = W, sin . Lp (1)

while a proton passing through the gap at phase ¢0 (design
phase) will pick up the designed amount of energy, or

AE =W, sin g L (2)

on 9] n

The change in the proton's excess energy (excess over the

design value) will then be
AE! = (AE, - &E ) = Wqul(sin g, - sin g ) (3)

We now wish to relate this change of excess energy to a
change of excess velocity as follows: Assume we are in the
non-relativistic region, so we can say

2.2
E=1/2 MC B .
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Let ﬁon be the design velocity, and /6’1';l the excess velocity

at the nth gap. Then /81’1 = /Bon + /81'1' Similarly let
E,n be the design energy, and Ej be the excess energy.

() Eop =1 W2 (8 6)"

() Bon+l=1 uCZ ( B, 4 1)°

| 2 .
fe) By :imc2 (./Qn) = _]2___ Mc2 ( /Qon e )ﬁn)2

(a) E - 1 12 ( )2 = 1 uc2 d
e 2 /8n+1 % (ﬁO,n-rl +/8n+1)

The change in excess energy in going across the nth gap
will be

4E'y = (Bp v 1 =~ Boyn + 1) - (By - Eo,n)

or

” 2 .
AE'H_% " [zﬁo,na-lfs;l-rl*(/er'ni b

=2 Aon Sa- (/6;1)2]

Neglecting terms of the order of (/563)2 since /9' is always

assumed small compared to /(-?O, we have

- s .
AEI'I-%MC [2/80,n+1/61'1+l-2 /eon'/artl.].
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The expression in brackets is just the change in the quan-

tity ( /Bon /31'1) in passing one gap, which we call
L /eon-/<3 111)’ cd
SO | A
4E} =MC? A( B By ()

equating (3) and (&),
uc2 A /@on /B p) = Woly (sin Bn - sin Bon). (5)

hanging from differences to differentials, (5) becomes

4 Bon fp) = _LV.‘_fo_;n (sin @, - sin f,,) . (6)
MC

. The phase change in passing from one gap to the next

is related to the excess velocity by

Pn .. ong _Fa (7)

an ﬁOD

which gives

/9r1 - /90n QQB 3

Setting this into the left-hand member of (6) gives:

4 )= -27 Won ABon A (st - si
e /e on _@ Mcgn on A ( ¢n sin ﬁon)
(8)

where we have used the synchronous condition Ly = /90n7\

where A is the RF wavelength in free space.
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Appendix B: Expression of Energy Oscillation Amplitude in
Terms of the Phase Oscillation Amplitude.

Eq. (6) in Part I gives, for the biased Pendulum Analog,
) #= [2pel (Cos § - Cos fy s (F - g) sin )] ¥
which, translated to the Linac by using (3) and (%), reads

(b) ¢.= v Wo A (Cos ﬁ - Cos gfm + (¢ - &) sin QO)J %

¢ is connected with excess velocity and excess energy

as follows:

() g8 -_on 28
dn V4

and since Eocls 2’

(2

=
"
n
3

A s We get

» I3

and substituting (d) into (b), we get

(e)_é_E_=[l|.>\W° (Cos¢-Cosﬁm+(ﬂ-ﬁm)sinﬁo)]%
7 B uc?

AE has its maximum where § = #,, so

() (a E) [k A We_ (Cos @, - Cos fy + (B = ) sin g,)
E /max 71'/8 Mc2 .
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