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I. A Survey of Ideas for Radio Frequency Acceleration
A Fixed Field Accelerator can accommodate at one time particles cir-
culating at all energies between the injector and outpﬁt energies. There thus
becomes available a whole new class of accelerating mechanisms which appear
to promise high intensity beams. Such high intensity, be sidés being of interest
in a single accelerator, is of course essential for the operation of a double
accelerator with interacting beams. These accelerating mechanisms are now
being studied by analytic means as well as by the digital computer. In general,
one is concerned with the energy gain of particles whose frequencies are a
function of energy, as these particles are subject to various radio frequency
accelerating gaps, whose voltages and frequencies may be secularly changed.
Of the many possible arrangements, not all of which have been studied, the
following seem to have particular promise. More calculations will have to be
done before one can choose which of the following mechanisms or what combina-
tion of them is most efficient.
a., Conventional synchrotron acceleration at high repetition rate.

The most straightforward accelerating system is one which uses one or

*Assisted by the National Science Foundation and the Office of Naval Research.
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several synchronized accelerating gaps supplying a radio frequency voltage
whose frequency is modulated as in conventional synchrotrons so as to accelerate
a pulse of particles from the injection to the output energy. The only advan-
tage of an FFAG magnet in this case is that the pulse repetition rate is now
limited only by the r.f. system, and may, with reasonable requirements on the
r.f. system be increased to perhaps several pulses per second as compared with
one pulse every few seconds with pulsed magnetic field accelerators.
A typical graph of frequency of revolution versus energy in an FFAG
synchrotron is shown in Figure 1. The graph is drawn for a mean field index
k = 82.5. The energy scale is in rest masses, and the frequency scale is in units
of the frequency at transition where the frequency reaches its maximum value.
The problem of accelerating through the transition energy will be discussed later.
In general it appears that this problem is less difficult in an FFAG synchrotron
than in a pulsed field alternating gradient accelerator. For reasons that we shall
indicate, conventional synchrotron acceleration is far less efficient in terms of
beam current that can be accelerated than is theoretically possible with other
schemes.
b. Bucket Lift.
If a radio frequency voltage is applied to an accelerating gap,
then in the neighborhood of each energy for which the frequency of revolution of
the particles is equal to the radio frequency or to any of its subharmonics, there
is a region of particle energies and phases (a’ bucket) within which particles execute
stable phase oscillations around the synchronous energies. If the radio frequency

is modulated, buckets move up or down the energy scale. Under suitable conditions
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particles in any of the buckets can be accelerated by this sytem. Thus it is
possible to accelerate a number of buckets of particles at a number of different
energies simultaneously, with a single radic frequency accelerating voltage. As
the frequency is modulated, each bucket can be filled by the injector when the
energy corresponding to that bucket coincides with the injector energy.

c. Phase displacement mechanisms.

These are based on the observation that particles are accelerated
if subject to a radio frequency gap which is initially at a frequency corresponding
to an energy higher than that of the particles, and then the oscillator frequency is
modulated to a frequency corresponding to an energy lower than that of the
particles. Note that in this scheme the frequency is modulated in just the reverse
direction from that used in conventional synchrotron acceleration, or in the
bucket lift., The mechanism may be readily understood, for the oscillator
carries virtual particles down in energy, and thus by Liouville's Theorem real
particles occupying phase space at a lower energy must be forced upward in energy.

In general, since the current accelerated by phase displacement
equals the virtual current which could be carried down by the oscillator, phase
displacement and bucket lifts are about equally efficient. The methods vary in the
length of time necessary for transit of a given energy interval by any single:
particle, and as such each method has distinct advantages or disadvantages. It
should be clear that the carrying of particles in buckets, and the phase displacement
of particles not in buckets are complementary. For any proposed acceleration
system involving buckets, one can envision a complementary system involving

phase displacement, which is equally efficient if loss of particles to the walls,
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injector, and gas scattering are neglected. In general, it appears that when
particle loss is included, phase displacement acceleration is inferior to accel-
eration of particles in buckets. There are, however, certain situations in which
phase displacement seems to have some advantages. In particular, vif one is
accelerating particles up to the transition energy with buckets, then there are
empty buckets which simultaneously move down from high energy to the transi-
tion energy. These empty buckets may be employed to phase displace particles
from the transition energy to the output energy of the accelerator, thus increasing
particle acceleration efficiency.

It is in any case important to understand the phase displacement process,
since it always operates on particles outside of buckets whether one makes use
of it or not.

d. Beam stacking.

Particles may be accelerated by a radio frequency cycle as
described above, until they reach an energy EZ' On successive cycles buckets
full of particles are deposited at the energy E 2¢ The particles already there are
displaced by successive buckets, on the average downward in energy, to make room
in phase space for the newly arriving particles according to Liouville's theorem.
When a suitable number of buckets of particles has been stacked near the energy
E 2 a second radio frequency accelerator may accelerate the particles on to a new
energy E3. If the bucket size for the second cycle is n times the bucket size for
the first cycle, then n buckets can be stacked at _Ez during the first cycle. These
can then be picked up in a final bucket and carried to E3 in a single cycle of the

second type. The advantage of this system is that the radio frequency schedule can
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be chosen in the most efficient way to capitalize on the bucket size versus energy
relation, which in turn depends upon the frequency of revolution versus energy
curve. Thus usually dn. , where -/ L is the frequency of revolution,

dE
decreases with energy. (See Figure 1.) This has three consequences:

1. For a given radio frequency voltage, the bucket size increases with
energy and hence in the usual acceleration method the buckets are nearly empty
when they arrive at the transition energy. By stacking at intermediate energies
this can be corrected,

2. For a given radio frequency voltage, the allowable rate of frequency
modulation noticeably decreases with increasing energy, and hence the repetition
rate is limited. By stacking one can use a higher repetition rate with small
buckets at lower energies, and a smaller repetition rate at higher energies, but
with larger buckets, so that the output current corresponds to the total injected
current at the higher repetition rate.

3. When stacking particles, the particles already at an energy E2 are
displaced in energy by a succeeding bucket by an amount proportional to the
phase area occupied by the bucket. Digital computer studies have indicated that
the ‘particles are not spread in energy by large amounts, but are kept fairly tightly
bunched in energy, with a mean displacement depending only on the total area of
the succeeding buckets. Thus if the bucket size is increasing with energy, the
energy digplacement of particles when one attempfs to stack will be very large.
Consequently one wants to stack particles using buckets which are full of particles.
This can be accomplished by decreasing the cavity voltage or increasing the

frequency modulation rate.
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e. Multiple oscillators
Schemes have been proposed which involve several independent
radio frequency accelerating voltages which act simultaneously on the particles
being accelerated. The simplest such scheme, proposed by Darragh Nagle,
utilizes a number N of identical oscillators operating simultaneously over the
same frequency interval. Each oscillator follows a frequency modulation cycle
as in conventional synchrotron acceleration. The N frequency modulation cycles ’
of the different oscillator are staggered so that each oscillator accelerates a
pulse of partiéles, the N pulses following are another in energy from the injection
to the output energy. The scheme depends upon the fact that particles are
relatively unaffected by radio frequency voltages with which they are not in
synchronism. More complicated schemes can be envisioned in which a given
particle is accelerated by more than one oscillating voltage, perhaps simultane-
ously. One may for example use interlaced bucket lift schemes in which several
oscillator frequencies are chosen so that their subharmonics are interlaced.
It seems likely that very efficient accelerating schemes using multiple
oscillators may be possible. However, too little is known theoretically about
the behavior of particles under the action of multiple oscillators to be able to
evaluate such schemes at present.
f. Scheduled and stochastic schemes.
Acceleration schemes may be classified as scheduled or stochastic.
Scheduled schemes are those in which the radio frequency voltages are programimed
in such a way that a particle is accelerated according to a planned schedule. Thus,

for example, it is possible to choose the initial and final radio frequencies f, and f 5
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in a bucket lift so that particles are passed from one bucket to another as they
are accelerated. If, for example, for two integers hl’
then during one frequency modulation cycle, a particle riding in a bucket at

harmonic number h. is accelerated from an energy corresponding to a frequency

1
of revolution f1/h1 to that corresponding to fZ/hl' On the next FM cycle, the

particle rides in a bucket of harmonic number h_ from the frequency of revo-

2
lution f 1/ h, = f 2/ h, to the frequency f2/ hz. The total energy gain of the particle
corresponds to a frequency ratio( f2 )2 whereas the oscillator is modulated only
over the range fZ/fl' It is not fiiffilcult to find matching systems of harmonic
numbers such that particles can be carried in a scheduled way over frequency
ranges of many ocfaves with oscillators modulated over a frequency ratio of a
fraction of an octave. Such schemes not only reduce the demands on the rf cir-
cuitry with respect to frequency quulation, but they increase the efficiency of
the rf system by allowing one rf voltage to accelerate many pulses of particles
simultaneously.

In stochastic, or wmscheduled schemes, no attempt is made to program the
radio frequencies precisely, and the energy of an individual particle varies in an
unpredictable or random way. Thus in an unscheduled bucket lift scheme, the
initial and final frequencies fl and f, may bear no particular relationship to
each other and may even vary in a random way from cycle to cycle. A particle
at the beginning of an FM cycle may or may not find itself in a bucket depending
upon whether its frequency of revolution is sufficiently close to f1/ h for some h.

If it is in a bucket, it is carried up in energy to a new energy corre sponding to

f 2/ h. If it is not, it will be phasé displaced downward in energy by the buckets

h,, we have fZ/hl = f1/h2,
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which pass it during the FM cycle, and it may at the beginning of the next cycle
be caught in a bucket. It is convenient to define a mean free path as the average
energy increment received by a particle, once caught, before it again has a
chance of losing energy. A particle starting at the injecﬁon energy has a
certain probabiiity of reaching the output energy before being lost. Under certain
circumstances, stochastic acceleration schemes yield output currents comparable
to those of scheduled schemes, but at the expense of a greater duty factor for

the injector. In general, the greater the mean free path in a stochastic scheme,
the more efficient is the scheme from the point of view of injector duty factor,
and the more rapidly is any given particle carried from the injection to the output
energy. If there are no loss mechanisms (orbit instability, gas scattering, etc.)
between injector and output, then the time of transit does not affect the theoretical
output current; if there are such loss mechanisms, then for long transit times,
(short mean free paths) the output current is reduced. Though less efficient in
some ways, they have the advantage of simplified rf circuitry. Various partially
scheduled schemes are possible in which a particle once caught, may be carried
in several successive buckets before being subject again to a chance of being
caught or left behind. Recently, E.L. Burshtein, V. I. Veksler, and A. A.
Kolomenskii1 have proposed a stochastic accelerator in which the accelerating
voltage is essentially a random noise. Here, of course, the mean free path is
simply the mean voltage across the accelerating gap.

g. Intersecting beam experiments.

The proposal to achieve very high energy collisions by directing

1. E. L. Burshtein, V. I. Veksler, A. A. Kolomenskii: U.S.S.R. Academy of
Sciences, Moscow, 1955, p. 3-6.
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opposing accelerated beams against one another rests on the pc;ssibility of
stacking successive pulses of particles in FFAG accelerators., Thus, if a
circulating beam of particles has a sufficiently long lifetime against orbit
instabilities, gas scattering, ?tc. » then very high circulating currents of high
energy particles can be built up in this way. Successive pulses of particles may
be stacked at the output energy, to build up an intense beam, or they may be
stacked at an intermediate energy, and then carried up to the output energy
simultaneously in one large bucket. The considerations involved have been dis-
cussed under (d) above. The detailed theory will be worked out later,
»II, Theory of Radio Frequency Acceleration in Fixed Field Accelerators
‘a. Frequency versus energy relationship
It is convenient to characterize an equilibrium orbit in a fixed
field accelerator by its equivalent radius R defined by
L =27R, (1)
where 1, is the length of the orbit. Each orbit R is traversed by particles of
energy E (R). We define the momentum compaction parameter or mean field

index k by either of the equivalent forms

where p is the momentum, and H is the average magnetic field averaged along

the orbit R. If k is constant, we have

k+1 .
k
()
1 1
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The frequency of revolution of a particle in an orbit R is

2
f=_PC 5
277 RE ° ®)

where E is the total energy, including the rest energy E0 = mcz. By squaring

Equation (5); differentiating, and rearranging, we obtain a formula for

— = . (6)
dE (k + 1) (E2 - EZ)

2 2
H,=E df (k+1)E, - E
£

The transition energy is given by

E, = Vik+1) EO . (7)

t
In a cyclotron K =0 and Equation (6) then defines k as a function of E. In a
synchrotron, k is often constant, and we may then integrate Equation (6) to obtain

2 _2\+_k
_ff___ =[m EEO] (E - Eo >z (k+1) 8)
t

2
kEO

where ft is the frequency of revolution at the transition energy. The quantities
K and f/ft are plotted in Figure 1 for a typical case (k = 82. 5).
b. Canonical form for the acceleration equations,

We neglect coupling between betatron and synchrotron oscillations,
and assume that a particle is always on an equilibrium orbit. A particle with
energy E travels along an orbit of length 297R(E); we will call R(E) the equivalent
radius. We define an equivalent angular variable @along the orbit by

d@ = ds/r (9)
where ds is the element of arc length. Then if g( @ , R, t)is the electric field

component along the orbit, we have

10
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d .

9B - £r @ = 27t R (10)
9@ _ Ly (11)
dt

where f(E) is the frequency of revolution for a particle of energy E. If the
orbit is not circular, a small oscillatory term in @must be added to the
right number of Eqguation (11), but if the origin of @is properly chosen, this
term has zero mean around the circumference, and we are here ignoring it.

We consider the case wheng has the form

€E-L r@®.. (12)

eR
that is, we assume that the accelerating gaps are radial and have a voltage
independent of radius. The case when the voltage varies with radius according
to a factor € (R) can easily be treated by a slight modification of the method. We

define a new energy variable W(E) as follows:

_(E dE
w -j “TE® (13)
E

o

where E is arbitrary and may conveniently b e taken as the rest energy if
o

f(E) is extrapolated to that point, We can now rewrite Equations (10) and (11) in

the form
dW _
T 2B ( @ s ), (14)
d@ _ 9 £(W) (15)
dt | ’

which are derivable from the Hamiltonian function

H:-ZW’fF(@, tyd @ + 27EW) . (16)

11
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The variable W, @ are therefore canonical. It is convenient to think of W,
@ as coordinates in a cylindrical phase space.
The advantage in writing the equations in canonical form is that we can
apply certain useful general theorems. We have Liouville's theorem that a
closed curve in the W, @ plane transforms under Equations (14), (15) in such
a way thaj: the enclosed area remains constant. If the Hamiltonian function
varies sufficiently slowly in time, we may apply the adiabatic theorem which is
stated conveniently for our purpose in the form: A set of points which at time tl
lie along a curve H(tl) = constant in the Wl,. @ -space, will at a later time t2
be found to lie along a curve H(tz) = constant. In order to apply the theorem, it
is necessary that H(t) does not change appreciably during the time required for
a particle to traverse a typical sample of the curve H(t) = constant.
c. Application to beam stacking.
This result can be applied immediately to the problem of calculating
the number of pulses of particles that can be stacked in any given region. Assume

that we inject at an energy E1 where the frequency of revolution is f and that

1 o

the energy spread from the injection is AEl . A pulse of injected particles,

injected for one or more full turns will then occupy an area

A1 =27fAW1 = 2UAE, (17)
f
1

in the W, @ -space. If we wish to stack n pulses at an energy EZ’ then these

pulses will occupy an area at least equal to

A A 277’AE2
e (18)

12
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so that
AEZ fZ
Z&'ET = n_—= (19)

If we employ the mean field index defined in Equation (2), then

AR 1 EAE
e (20)
o

Thus the minimum radial spread of the stacked beam is

L, H2) (AE;) (E{E,) R,

2 s (21)

AR2 =
() (Ey)  (ES - EX)(kt1)

where Eo is the rest energy, and E2 includes the rest energy.
d. Stationary buckets.

We now assume that we have several oscillators supplying radio

frequency voltages at various accelerating gaps, so that

F(@, t) = ijFj (@, t) cos (2 qujdt), (22)
where Fj , ) are slowly varying functions of t. We expand F, in a Fourier
J J
series:
F, , t) = ZA. t) sin (L - s 23
(@, 0= Za, W @,A';I) (23)
so that

= 27 E(W) +7TZ JL {cos [L@ /9 - zﬁfu dt)| + cos (L @

-,6’jL + zz:/ujdt} (24)

Let us suppose that f = )/J_/h for some )J and some harmonic number h,
J

Then we introduce a rotating coordinate system on the W, @ = cylinders:

13
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@*=®-%?—fvjdt-/§h . (25)

For this purpose, we introduce the generating function

(@ - [ Ly, 26)

which defines the canonical transformation W, @-—) W, @* through the

equations
®"

w

g 3

(27)

The Hamiltonian becomes

B - u5+25 - wEMW) - [27}'1/3. +//3h} ”A]h cosh @*

ot h

i'5 L

| L * L
ﬂ)/j,-h))j)dt+cos[L@ /?L+F ih

+zyf<1},+%)).)dt]}, (28)
3’ J

where the prime in the summation means that the first term in curly brackets is

ﬁ’
Z: AL {cos [L@* /& + % ih " 27r

to be omitted in case j' =j, L = h. The terms in the summation are rapidly

oscillating and may in many cases be neglected. We then have

2
H* = 27/E(W) - —%—JJ— W o+ YH cosh @* , (29)

where we have omitted the subscript j, have absorbed the small term /53)}1 ind/ .

and have set

2
v = ﬁAjh=§_ Fj(@,t)sin(h@n/g’h)d@ (30)

o

14
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The maximum energy gain per turn is V, as we see from Eguations (30), (22)

and (12), or from the equations

*
d H . *
d‘f/ = - gﬁr = V sin (h@ ), (31)
* *
_ ~DH" _ Y,
dt = W = ZW(W h )9 (32)

In the case of a single short accelerating gap at @ = @o , we have

\ A}h = h®0 = 7f/2 3 (33)
F (@ . =vEE®-®) . (34)
V= ém. Rd @ . (35)

@* in this case is the angular position relative to a particle which is synchronous
with the oscillation and arrives at the accelerating gap at a moment when the
voltage is zero and decreasing.

If ) and V are constant, then H* is a constant of the motion. We

define the synchronous value W by

f(w)= (36)
S h
and expand
1
E=E +f W+ =0 wW*% +..... , (37)
s S 2 s
where the prime denotes a derivative with respect to W, and
*
W=W-W_. (38)

If we neglect terms of order W*3, we have

% [ %2 %
H =qrf W +-¥-cosh@ . (39)

15
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(The term (2 WhES -2 7‘)JWS) has been omitted, since it does not contain W™ nor
@ * and has no influence on the resulting canonical equations. )

A plot of the curves H* = constant is given in Fig. 2 for the case h = 3, If we set
h (@ * Q. (40)
/ LY
ern JE| ¥
Yy v v ‘ (41)

hH*
C , (42)

v

then E juation (39) takes on the dimensionless form

1 2
_-g_-Ey +cosp—C, (43)

where the positive sign applies if £ > 0, and the negative sign if fl £0.
s s

We can write

2
po=9 oo pd g I (44)
dw dE E

where /{ is given by Equation (6). Curves of constant C according to Equation
(43) are plotted in Fig. 3.
" We see in Fig. 3 the region of stability or "bucket" within which particles

execute stable phase oscillations about the stable phase f =7 ( K J0)or
p =0 (1{< 0). There are h such buckets around the. W @ cylinder at each

F value for which f = M/h for some h, and the buckets revolve with fre-
quency f. Outside the buckets, the particles move around the cylinder out of
synchronism with the buckets. The bucket boundary, or separatrix is given by

Equation (43) with C = + 1 :

2 gg‘; ). (45)

The half-height of the bucket is given by Yo = 2, and the maximum energy

y

16
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deviation is

1/2
E -E = fw' = [ZVES -I (46)

w8 m \wn K] ]

The area of the buckets, in W>§< s @ space, counting all h buckets at a given
8

harmonic is, (the area of a bucket-shaped figure of half-dimensions a, b is 7 ab) ,
8[ 2ve | 1/2
A= f[ﬁhK] : (47)

Near the stable point § = 0 or 77 , the curves C = constant are ellipses and the

frequency of the phase oscillations around these ellipses is

1/2 |
hiv
b - f[?ﬁﬁ] (48)

The above formulas appiy only when the contribution from all terms in
the summation in Equation (28) may be neglected. In particular, those formulas
fail for energies midway between two harmonics, and they certainly fail when
the bucket dimensions calculated from Equation (46) are so large that the buckets
for adjacent harmonics would overlap. If only one term from the summation is
important, say the term j', L, it may be added to the approximate Hamiltonian

(29), which now becomes periodic in the time with frequencies I)_V - i’i Y and
J i

L
\)J,""};))J

summation are periodic with frequency V/h. In such cases, the analytic tech-

If only one oscillator is present (j' = j), then all terms in the

niques developed for studying motion under a periodic Hamiltonian are applicable.
We find, indeed, that accurate numerical solution of the acceleration equations
leads to agreement with these ideas. In particular, when high voltages are used,
the buckets no longer agree exactly with the above equations, and we find at the
bucket boundaries typical cases of scattering of phase points, appearance of strings

of pearls, etc., which arise in studying the non-linear equations for alternating

17
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gradient orbits. An example is plotted in Fig. 4a where we show results for a
single accelerating gap at a very high voltage. (V =10 Mev, Estable = 50 Mev,
k =99, h = 2). The phase and energy are plotted at each revolution. For certain
starting values, the points lie on invariant curves as drawn. In other cases the
poin;cs scatter, and a typical set of such points starting from a single central
point is shown. Fig. 4b shows a phase plot for a particle subject to two

oscillators. (V1 = V2 =100 kev, h_ = h‘a =1, k = 99, oscillators on opposite sides

1
of the accelerator.) The oscillators have frequencies which would lead to the
buckets shown, if a particle were subject to each oscillator alone. In Fig. 4c is
shown a phase plot in the neighborhood of the 9 and 10 subharmonics of a single
oscillator. One notices the various other stable regions occuring between these
harmonics. In this case (V1 = VZ = 20 Mev, k = 99, Estable = 500 Mev. (h = 10),
ES = 814 Mev (h = 9).)

e. Adiabatic motion of buckets,

If now the parameters ))1, V are varied slowly, we may apply the
adiabatic theorem to determine the behavior of the particles. A group of
particles which at time tl lie on a closed curve H* (tl) = constant, of area Al
inside the bucket, will at time t2 after adiabatic variation of M, V lie on a closed
curve H*(tz) = constant, with area AZ; and now by Liouville's theorem A1 = AZ,
Thus the adiabatic theorem, together with Liouville's theorem enable us to
conclude that a particle inside the bucket remains on a curve H%* = constant, of
constant area as the bucket shape or position changes adiabatically.

If the variation of parameters is not adiabatic, Liouville's theorem

still applies, so that a group of particles, initially on a closed curve H*(tl) =

18
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constant, will remain on a closed curve of constant area, but the curve at a later
time t_ will not be of the type H*(tz) = constant. Since particles near the
separatrix which bounds the bucket move around a curve with a frequency which
approaches zero as the curve approaches the separatrix, the adiabatic theorem

cannot be applied to such particles unless the rate of variation of parameters

approaches zero. Hence the separatrix does not correctly represent the boundary

of the bucket except when the parameters are constant. We will return to this
point later.

A particle outside the bucket, but far enough from all other harmonics so
that neglect of the summation in Equation (28) is justified, will in the same way
remain on a curve H* = constant, having a constant area beneath it on the W, @
cylinder, That is, the phase average

W = zif wd @ (49)

remains constant for a particle outside the bucket under adiabatic variation of

parameters. Assume now that the frequency is varied so that the bucket approaches

the particle from below. The particle then moves along curves which lie closer
and closer to the separatrix. The frequency of revolution of the particle relative

to the bucket approaches zero and the particle spends most of its time near the

unstable fixed point. The rate of frequency modulation must approach zero as the

particle approaches the separatrix in order for the adiabatic condition to be

satisfied, and the bucket can never pass the particle adiabatically, However, if

when the particle is nearly on the upper separatrix, and consequently spends nearly

all of its time just above the unstable fixed point, we suddenly change the frequency

so as to move the bucket up slightly, the particle will almost certainly find itself

19
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just below the fixed point. It now moves just under the lower separatrix. The

phase area beneath this curve differs from that beneath the original curve on
which the particles lay by the area of the buckets. If we now move the buckets
away adiabatically W as defined by (49) will remain constant at a value below
the initial value by an amouht

AW = ZAW ) (50)

where A is the area of the buckets. This is the process of phase displacement.

In a similar fashion, we can discuss the adiabatic capture and loss of
particles near the synchronous energy as the voltage V is increased or reduced.
We can show that a group of particles lying in a band of width AW around the
phase cylinder and centered on the synchronous value WS, will, if the voltage V
is increased adiabatically from zero, be captured into the buckets so that they lie
within a closed curve H*' = constant, of area 277 AW. The converse process occurs
when the voltage V is turned off adiabatically.

f. Transition energy.

At the transition energy K = 0, and we must keep terms up to

*
W 3 in Equation (37). By differentiating formula (6), we find at the transition

energy
g2 [ 4% _ .2
T —"—z-dE k - (51)
t
Hence, if we set
* %
E =E-E, W =W-W, (52)
we have, near the transition energy,
E>=<z
f=1f 1 - ) 53
t( ——z———kEt | (53)
* *2
% E 1 E
w =T, A+ B’ ) (54)

20
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3 %3
B* = 1w - LW (55)
e’ 3k g

t

We introduce the dimensionless variables
1/3 /3
ftW

y = (4‘179 3?—) = (56)

t
P-n@" (57)

and the parameters

1/3 2/3
"l=(2?/2k) / (hi)/ 1 - —L), (58)
%* v hft
hH
C = "—‘7— . (59)

We may then write the Hamiltonian (29) in the form

-% yo 4Ny 4+ cos p= C, (60)
where we have again omitted terms independent of ? s Yo
Graphs of Equation (60) for several values of C are shown in Figs. 5, 6,
7, 8, and 9. We are particularly interested in the separatrices which bound the
buckets. The unstable fixed points above and below the transition energy are

given respectively by

y = v2n ¢=77” , above and
y = IZ_Y_? , ?: 0, below. (61)

. Hence the values of C on the separatrices are
- 3/2

c:_t[%(zm / -1] : (62)

For large values of ’7 'y we have separate buckets above and below the transition

energy as shown in Fig. 5. At the critical value
2/3

N = _i. 3" 7 = 1. 040 (63)
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the two values of C become equal, and we have the case shown in Fig. 6 where
the buckets just touch. For 0 N £ 1.040, the phase plot is as shown in Fig. 7.
For N = 0, when Y = hf, , the phase plot is as shown in Fig. 8. For "Z Z0,

, ¥y, and

there are no separatrices, as shown in Fig. 9. The values yl, yz, y3 4

971 indicated on the figures are plotted in Fig. 10,
The bucket areas, that is, the areas around the stable fixed points and

inside the separatrices can be calculated from the formula (W - @'units)

2 1/3
_ 12 7r kv \ E;
Al = 2 47fhEt/ ft dl (h ) (64)

where the function 0(1 (71 ) is plotted in Fig. 11. Formula (64) gives the area of
the h buckets on one side of the transition energy. The area of the region between

the outer separatrix on either side and the transition energy is given by

2 1/3
A o MW (i ) oL (M) . (65)
2 I7hE, 2

2
The function °<Z (%) is also plotted in Fig. 10.

By studying the Fig. 5 ~ 11, we can predict the behavior of the phase
points as the frequency is increased adiabatically through the transition frequency.
(By adiabatic we mean here that 1'/ is small enough that the adiabatic theorem can
be applied except in the iﬁfmediate neighborhood of the separatrix.) As Y increases

N decreases. As n- ’ZC’ it can be seen from Figs. 5 and 11 that about half
of the phase area between the buckets and the transition energy is phase displaced
past the buckets and about half is absorbed into the outer region of the growing
bucket. Between M =2.1and 7 = )lC , the bucket area increases about 30%, so
that at = N c’ the outer 30% of the bucket is populated with phase points which

A, - A
were originally between W = W, and W = W, + _?-_2__7.7_1 where AZ’ and A1 are
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evaluated at } = 2.1. Beyond = Vlc, both A, and A, decrease, so that

1
when VY = ))t, N = 0, the outer 30% of the bucket area at N = )ZC has been
deposited outside the final separatrix on the same side from which the bucket
came. Thus phase points initially between the buckets and the transition

energy at )2 = 2.1 are left in the same region (though not necessarily at the

same W) when Y] = 0. Phase points which were in the bucket below the transition
energy at Yl = 2.1 are at 72 = 0 in the upper half of the region between the two
separatrices (above the dashed curve in Fig. 8), and in such a way that points
originally nearer the center of the bucket are left nearer the upper separatrix.

If the frequency Y is now -modulated beyond )Y, 40 the curves along-which the phase
points move straighten out, so that points in the lower bucket at "l = 2.1 are
finally deposited in a band above the transition energy extending from W = Wt to
W= Wd where

1/3
W.-W, = AZt - ’\:\7/]"_2'7 / kv j
d t - 4 \ 47r hE, /

(66)

27r
Furthermore, points originally near the center of tke bucket are deposited near
Wd’ so that if at a point Yl1> 2.1, the area of the bucket below the transition
energy was Al’ particles in the bucket at this time are left finally in a band
Wd_>_ W= Wd - (A1/277‘). If the frequency were modulated adiabatically down-
ward from above )Jt, the ‘above process would take place in reverse, In order

to accelerate the particles in the band W = W == Wd - A1/27r higher in energy,

d
one may turn off the oscillator voltage, bring the frequency to a point synchronous
with particles in this band, increase the voltage adiabatically to capture the band

into a bucket in the usual way, and modulate the frequency downward to carry them

higher in energy. It is also possible to cross the transition in a non-adiabatic way
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by modulating the frequency more rapidly up to a value slightly greater than

l)t and then downward again. If the frequency overshoot is properly adjusted

relative to the rate of frequency modulation, one can see from the figures that a
fraction of the particles can be transferred from the lower to the higher energy

buckets.

It is of interest to calculate the frequency at the points W, and W At

d .
n. YIC , according to Equation (53) and Fig. 10 the frequency of revolution is
2/3 -1

/3 /3] ,

f =f [1-2.08 - Vv 67
c =4t ( 7 hE, ) (67)
and at Wy it is
2/3 -1/3]
f.o=f [1 -3.23 (VY ]
d”t ‘7 hE, yook (68)
).J)\ It should be emphasized that the formulas in this section are correct only
~

hen higher order terms in E*/ Et are neglected. The ratio of the next (cubic) to

'V‘} the quadratic term in formula (53) is q‘ﬁ_ 9 ‘%/

%* E*3 d% 4 Lo
' 6 dE*® * d8. 2
, | = - 5k3k+ . E]? . s tt—
0\% E 2 - t v ¥
2 gg? 3

g. Synchronous coordinate system,

R

When the oscillator frequency changes rapidly, the adiabatic theorem
as applied in the preceding section breaks down, particularly near the separatrices.
Let us make a canonical transformation W, @*-—> W* R ®* via the generating
function

s=-@ w-w) , (70)

where Ws(t) is defined by Equation (36) when the oscillation frequency is a specified
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function (t). The new canonical momentum
W= W-W (1) (71)
is then measured with respect to the value WS for a synchronous particle. The

Hamiltonian (29) becomes under the transformation (70),

*k ® _ 277V [ * ] v * ’ *
H =27E(W’) - —— [W + W) | + o cosh@ + W H, (72)
where, by Equation (36),
N [}
P ;} 4 VEg
Ws ™ he T hK 2. | (73)
s s s

If we expand E(w*) as in Equation (37), and omit terms independent of W*,

@ * , we obtain

*k e * v * Vw2 gy o *3
H _ws@ +hcosh® +7fSW +3fSW + ... (74)

1 L .
The quantities fs’ f g ~ " " will be slowly varying, and if WS and V are constant,

or slowly varying, we can apply the adiabatic theorem to Equation (74), even when
[ 4

)j is large.

Let us neglect terms of order W*S and make the substitutions (40), (41),

(42), so that Equation (74) takes on the dimensionless form

i1/2y2+cosy+ F@ -c, - (15)
with
W Y, E
r=-— hrisf‘: v . (76)

2
The sign of y in Equation (75) is the same as the sign of Pi . Curves of constant

C are plotted in Fig. 12, for K > 0, F = .5. Particles within the closed separatrix

execute phase oscillations in a clockwise sense about the synchronous point Ws’ )] -
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where
sin @ _ - [7 . (77)
at a small amplitude frequency | y
y, = [ AWz g oo

QT E

Particles outside the separatrix move along curves which circle downward around
the y, 0 cylinder, reversing direction of circling as they pass the bucket.

The separatrix in Fig. 12 is given by (for K> 0)

2, .2 o ~ /T -],
vy = 4 sin _;Z 2,%p -PQE’I n* +ﬂ(77' ‘es) ’j (79)

The values of yl, Ps’ pl’ PZ as indicated in Fig. 12 are plotted in Fig. 13

as functions of g@ . The area of the bucket is

1/2
8 2VE ,}
A =g [,” sl] a<3(z$); (80)

8 s
where the factor o<3( #3?’) is plotted in Fig. 14. In analyzing bucket lift schemes,
it is useful to see how A varies with energy for a given oscillation voltage and rate

of frequency modulation. It is then convenient to rewrite Equation (80) in the form
o -1/2 4 1/2
A= 81/; vy < 3),(??/ : (81)

The area A for a given oscillator varies as 0(3 ,{“1/2 as the parameters Es,
fs’ %, h change with energy. The quantity 0<3 ,!‘“‘[1/2 is also plotted in Fig. 14.
It will be noted that the bucket area changes relatively little over a fairly wide range
of -» @' .
It is of interest to calculate the energy change suffered by a particle outside

of a moving bucket as the bucket goes by. We know the average change in W must
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agree with that calculated on the basis of Liouville's theorem in Section Ile. How-
ever it is clear from Fig. 12 that a particle outside the bucket and near the
separatrix will spend a long time in the neighborhood of the unstable fixed point,
and hence will be carried along for a considerable distance by the bucket. There
will therefore by fluctuations in the energy change about the average value.

By equation (31), we have for the ?ehange in W
‘ o

Vsin @ i@

AW = Q . (82)

We expand the right member of Equation (32), keeping only first order terms in
b3
W , using ? =h @: to obtain
‘1/2
. 27h K v
f-t |75 — | v @3)

If we take 00 to be the phase at which the curve (75) passes the bucket (y = 0),
@o

Mw 4‘?
AW = F ["" hKJ Lmleo COQCQ-I-((@D ﬂy‘(&l)

The total change in W is twice the limiting value for ¢ >-s

we obtain ‘

sW=Ilf gv "~ o 4 T
€ LTh K] [con @o-Cont -H?(f&, ‘eﬂ (85)
Pr Y

N

This integral must be evalutated numerically.
h. Phase Flux,
A useful concept in the analysis of accelerating systems is the
phase flux I (W) defined as the phase area per unit time which is accelerated

past a given value of W. By Liouville's theorem, if there is some value of W at
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which the phase flux is zero, then the flux of area decelerated per unit time
past any value of W must also be equal to § (W), that is, the net phase flux
past any value of W is zero.
If the phase area being accelerated is filled with an average density, J
(particles per unit area), then the current of particles per unit time accelerated
past the point W is

(W) = J § (W) . (86)

Since J can never exceed its value at injection (Equation (17) ), the maximum
output current which can be delivered by an accelerating scheme is J § min,
where § min is the minimum phase flux between injection and output. Since any
non-adiabatic mishandling of the particles, e.g. jitter in the frequency modulation
or in the accelerating voltage V, will reduce the phase density J, in a well designed
accelerating system, é should increase with W in proportion tothe decrease
in J. In FFAG synchrotrons, for a given maximum voltage V, § can be made
much larger at high energies than at low energies because of the decrease in 'i at
higher energies. The theoretical output currents from high energy FFAG
synchrotrons calculated according to these principles are very large -- comparable
with synchro-cyclotron currents.

If 7 buckets per unit time of area A passa given point per second, the
phase flux is

= A (87)

If, for example, an accelerating scheme, utilizing a single harmonic number h,

accelerates partides from energy E1 to E‘2 at constant ’ , the repetition rate is

m= _‘4./_‘. = VYL VE
awv  E5-E,
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(88)

where F is a suitable average value. The phase flux is then, by formulas

T S

gE £ CRF-GE)

The quantity a(sr‘is plotted in Fig. 14. For a given V, the maximum phase flux

(80), (87), and (88)

at any given W is achieved by choosing W so that {7 = 0. 4. The minimum phase
£ § , 2 K . . . N

ux @ then occurs where [f [E ' is a maximum, This quantity is plotted
in Fig. 1 for k = 82, 5. The repetition rate, and hence the phase flux can be
increased somewhat by choosing )l)(t) so that the bucket area A remains constant
during the écceleration. The maximum phase flux is then more difficult to calculate,
but is usually not different in order of magnitude. If instead of 1, )J) is held
constant, the phase flux is

oy V2 /2
= 3

Vo=V (90)

As a second example, in a bucket lift scheme which uses all harmonics, the number

of harmonics per unit time which pass a given frequency f is, if h is large,
_{dh|_h ¥
n48l=50
and the phase flux is

2 \'4 h
$- 81/; Ef;;{) £ I (92)

Again the maximum phase flux at any value of W is achieved by choosing )j S0

29



MURA-KRS/AMS - 1

that ’ 0.4. We may also write Equation (92) in the form

@ J— MVL \/o(slﬁ‘\y" (93)

which shows that for a given oscillator, é is proportional to &£ ”&f 1/2/ fs at
different energies.

As an illustration of the concept of phase flux, we consider the following
case. An accelerating system brings a phase flux @ ) filled with particles at a
mean density J 1 past a point W, beyond which the particles are gpilled out in any
manner, A second accelerating system carries a phase flux @z out of the region

just beyond W,.

If @z = §1, then it is in principle possible to synchronize the
two systems in such a way that all of the current accelerated by the first system
is picked up by the second. Suppose, however, that the systems are not

synchronized, and that an equilibrium exists in which the region just beyond Wl,

including the region from which the second system buckets draw their area, is

filled with uniform density J..

2 Then since the first system decelerates an equal

phase flux, we have, by balancing currents,

J1§1'=J2§1+J2§2. (94)

The phase density in the second bucket is therefore

X

J, = —
Iy (95)

2" P8,

and the current accelerated by the second system is

z?z @H-@z. 1§1' (9-6)

Such a random transfer of particles between systems can therefore be effected
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with an efficiency of about 1/2 if the phase fluxes are equal. Either the current
efficiency or the phase density efficiency (but not both) can be made to approach

unity by making the ratio éz / §1 sufficiently large or sufficiently small.
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Supplement
October 31, 1956
MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION

BUCKET AREA PARAMETERS

dw = dE/f, d @ =ds/R |
dA = dwd @ - 22 ]1/20(“%
AraWa@. A= rlmmrl %

E = particle energy, f = frequency of revolution (cycles per second)
ds =-element of arc length along orbit, 2 2R = length of orbit
A= total area of buckets at harmonic number h, V = oscillator voltage

K= (k+1)E§"EZ

2 2
(k+1)(E-EO)

y ’ 4
b-sm @ - T - e 3

¢ = stable phase angle, ) = oscillation frequency.
s
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