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A method of analysis which appears to account for the behavior of the axial 

nation, in the presence of appreciable radial oscillation, has been developed by 

Walkinshaw, Lw. Walkinshaw, "A Spiral Ridged Bevatron", A. E. R. E. 

Harwell (1956g , The differential equation characterizing the axial motion is 

treated a s  linear, but contains a coefficient which involves the radial motion. As - - 
is well-known, the forced radial motion enhances the A-G focussing which appears 

in the axial equation -- now, however, the additional effect of the free radial 

betatron oscillations i s  also included in the axial equation. The super-position 

of the comparitively-long- wavelength radial oscillations on the forced motion 

in effect modulates the smooth-approximation coefficient in the axial equation, 

to yield a Mathieu equation with a coefficient having the period of the radial - 

motion. Under "resonant" conditions, which will be seen to  include the case of 

interest here, this equation may have unstable solutions, and in such cases, the 

characteristic exponent of the solution appears to compare reasonably in mag- 

nitude with the lapse-rate characterizing the exponential growth of the ILLIAC 

solutions of the "Feckless Five" equations. 
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Walkinshaw's analysis pertains to  differential equations which, in the MURA 

notation f. e x .  WL (MuRA)-51 . a r e  taken to be of the form r 
x" + (k + 1) x = -f sin (x/w - NB), 

[cf WL MURA Notes 6-22 Oct. 1956. Sect. 6, for y /w <-? . 

A solution for the axial motion, representing a f ree  oscillation of amplitude A 

superposed on the forced motion., is taken of the form 

x = A cos(?J ,e  + ( )  - ( f l n2 )  sin f A d e .  

where N f A ( d x / w )  s in  (7/, €I + ( ) and 4 h (k + 1) l l2 .  

This solutions is substituted into the axial equation to  yield, after some approxi- - mation ( and a shift of the origin of which we introduce for convenience), 

It is noted that, when A = 0, this equation reduces to that given by the smooth- 

approximation - -  we accordingly write 

to obtain an equation of the Mathieu type with a coefficient of period 2 /A 
in 8 . By the transformation Jx €I = 2 t , we have the standard form 

C 

dzy/dt2 + L ( ~ ~ / Y / x ) ~  t A cos 2 t y = O  

w3N3 

with a coefficient of period in the independent variable t .  

C 

A solution of the Mathieu equation 

dzy/dt2 + C a + b cos Zt 1 y =  0. 

for b small but not zero, will exhibit instability when the coefficient a is 

- 2 -  



equal or close to the square of an integer. In the present application stop-bands 

may thus be expected at  operating points such that 2 Jyl Jx = m, the broad 

band of instability at  2 = 1 (or 2 fl & = 1.) being of chief interest 
Y /  x Y /  x 

in connection with the work presented here. It appears, moreover, possible to 

employ the Mathieu equation to  account semi-quantitatively for (i) the range of b., 

and henre of the amplitude of f ree  radial oscillation, which may be permitted 

when the oscillation frequencies depart by a specified amount from the resonant 

condition, and (ii) the lapse-rate found to characterize the growth of the axial 

motion when the radial oscillations exceed this limit. 

The numerical application of the Mathieu equation to specific problems 

of stability or instability may be accomplished by reference to  ILLIAC - or  
solutions for the stability boundaries/for the characteristic exponent character- 

izing the solution. 

Qi) A useful estimate of the expected restrictions on the radial motion may be 

obtained, however, by appeal to the fact that near a = I, b - 0 the stability 

boundaries can be represented rather well. by the condition 

We find in this way the following estimate for the limiting amplitude: 

It may be noted that this result, although expressed in terms of Jx and 

dy , concerns an inherent sector resonance which a r i s e s  when 2 6  / 5- /, 
Y 



hii) An estimate of the lapse-rate characterizing unstable solutions near a = 1, 

b - 0 mag, moreover, be made by taking 

A when f l ,  - n e p e r s f o r d t  = I L  
tl 

I - 
f l  

nepers per sector 

-- - - Q y k2 61 2- 'n4 2 nepers p m  sector 
P? 'u /V" 

6 f 2 A  2 
2 decades per sector. 

A convenient alternative form for thjs last result is 
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Results obtained wStn the ILLIAC, for 5 - s e c t o ~  machines with model-like 

pira.n,eters such. that 0. 5 5 < 6.4, < 0.6 and 0. 2 < CY 
YO < 

0. 4 5:' , appear fzirly close to these estimates. In a l l  the ILLIAC runs the 

r ~ d i 3 '  amplitudes were measured, however, near the center of a focusing region, 

zt NO - 0 :Mod. 2 where the amplitudes of the non-sinusoidal A-G oscillations 

cac  exceed those corresponding to the smooth approximation representation of the  

motion. By way of example we present here the results  for an accelerator for 

u.~h'hic.h 

k = 0.6436 l/w- = 20.82 f = 114 N = 5 : 

111 I:?':.: r a se  the osci1;ation frequencies a r e  such that 
r 

and the llmiting amplitude for x appeared to  be some 0.0075 units to the left 

0: ti.>t, sfable fixed point (NO = 0, mod. 2 c). For  these machine parameters 

the equation for A yields I 

- 0.0092, +he observed limiting amplitude at  NO = 0 (Mod. 2 r )  

thus being within 20% of this estimate. 
P 

With respect to the lapse-rate, we continue this example by consideration of the 

-ase  A = 0.0225. Ther 4- ; 0.02035, and one expects 



= 0.050 decades/sector, 

in close agreement with the value 0.055 decades/sector found from the ILLIAC 

work. 

b r  this case the coefficients in the Mathieu equation are a = 1.12, b = 0. 604, 

for which an independent extrapolation of coarse tables extending to a 3 
suggests / = 0.107 nepers/sector = 0.046 decades/sector. 7 


