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Abstract

The expansions of the equatlions of motion of betatron
ogscillations in the Mark V (spiral sector) F. P. A. G. accel~
erator in powers of the deviation from a circle and from an
equilibrium orbit are discussed, It is found that in the case
of large machines where k >> 1 and ¥ >7>> 1 that compara-
tively simple eqguations for the combined radial and axial motlon
are quite aeccurate, while in the case of small machines, where
these conditions. do not hold, no such simple squations appear
to exist. Coefficients in these equations are derived, and

their magnitudes estimated and numerical examples given.
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Introduction

It is desirable to expand the equations of motlon of betatron
oscillations 1in the splral sector (Mark V) FFAG in order to apply

(1) and S$urrock(2) and to investigate the

the methods of Moger
posslbilities of reduéing the troublesome effects on non-linearities
by judlcious choice of the fleld shape.

Laslett(B) hasg discussed this expansion with emphasis on the
linear terms and Judd(h) has dlscussed the non~linearities for

motion in the median plane. The present report reviews this

work and extends the results to the coupled radial and axial motion.

I. Exact Equastions of Motion and Development of the Vector Potential

Consideration of the spiral sector accelerastor began with the

median plane field

Bo="Bgy =0 4
O e B

with

(1.2)

in cylindrical coordinates. This speclifies the magnetlc field
everywhere by Maxwell's Equetions. The equations of motion of

the betatron oscillatlons can be derived from the Lagrangisn
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Lo=mme N F¥ere® 3> 4 €0 A
(1.3)
=’WJOC-/[/V‘ +Y‘”'9+ —[fr‘A fmAa-ngJ:) (1.1

The equations of motion are simpler if € is used as inde=-

pendent variadble Iinstead of t.

Thus
S = /Ldéc]ogde
) ) do
and ZL « Now ¥ = g% Qg‘,g = e

L = mpe*f vy, gy S [riAnr rAe 73 ’Agj

It is customary to use the dlmensionless varisbles x and y
defined by
Y = Y'o( /-/-25’)

3= 1Y (1.5).

and

ol = wonc/l/(u—x) + x5 "‘& "4 er [(,_H,()A +;y’Az7y’AJ

We use units such thai

2s = n= B =/

e o)

(1.6}
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and since €' = 1,

7 = (H%)",Lz";;"-f (/+Z)Ae'/"~’/Az7‘C§’AO‘t (1.7).

The equations of motion follow from the Euler=Lagrange

o/e(a ) =0
5;(-;;-:

In the case of motion in the median plané (y

equations

(1.8)

i
LY

= 0), we have

[+ Z “(/7‘"0%2}1&}’%@(‘1«9)

é( x’
d6 ‘V(/#r)"-/-;e’a) - A1) 5 r e *

which can be derived from the Hamiltonian

%12 :+vﬂ{ﬁﬂﬂ Wh+2)

2
Ho=—tr+0V 1-45 + ”"‘"")z/ (i*‘z)[ (= __-,‘Z'J}(l 10)
The first order canonical equations derived from (1.10)
are the Ridge Runner equatlons integrated numerically by Illiac.
The vector potential components may be developed in many
Laslett(s)

forms related to one snother by gauge transformations.

has chosen a form with {/-A = 0 and Powell(®) & form with Aﬁ,z 0.
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Following Laslett, we write

ZAs= D x+D, 2*+ D, %% D, %7
? (1.11)

in the median plene, where, with ji =N &,

(D=-1+ fsau g
Dl=*ﬁ/+ -'/i( ﬁrc‘”“'??" s«-«v?)

£Eakrz)
:DB b= a’l‘i-f-_? +%f[h__%?+(_¢i+f;%_i)m%[

£ 4ﬁ+7£ <F %[W 3L +PE-7

D, =

S R 4/;@“+=7-z,»--/;}w§

wﬂ-

(1.12)

where the coefficient of sh1§ in Dh has bheen corrected from

Laslettts first edition. OFff the median plane we assume the
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form for the vector potential components.

g A, = > x ™y ™

# ° WE§;$4 e Cy

A S X % (1.13)
e 4

g..A - >/ ,Z’Wl M

b 7y gw e X0

By using Maxwell's equatiocns, we find

¢,=D, Bor —L(D,+aD,)
0,°D.  @,=-1(-2aD+aD 6Dt DY)
R N NS
O Dy = L (3D eD 12D F24 DD D)
Xpa :D'/ %: = =1
X..==2D 4D/ v, = Dlz_ D/
X, = T (D-2D) yﬂ- ~(D-R/+D))
V5= (=D aY) Vs (3:1) 4R4 (D+D”

(L.1ly)
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and all other coefficients are zero. {922 and eoh have been

corrected from Laslettis first edition).

II. Expansion About a Circle

Laglett and the present writer have carried through the
expansion of the equations of motion in powers of x and y about

the cirele x € y & 0. After solving for x" ' and y s one has

74”7‘-/57'—/ * f[qj‘- Core T (ﬁ+J)M§f =

= foin ¥ - [f (ke)(rz)+ ] [%.t—?mg o i) E] P
2 5 W ol
— if(ﬁ+u)(ﬁ+z)+$[__ /—f%;-j??)w%f,L 3(51‘,)_7;(,,@”)(1@%:&5} g’g;_

# //+3/{&Jw5f_§'i{(3£+4)+3;[é@5§_ fﬁw?_’y%fi‘
“/me‘f)%z’- {/-*fmgj_éz_
+{f+ ,f[éfmg 4 17 w*;;)w &M?]
f{@a;[_tﬁz_wmﬂ 3%0#%//\/ ﬁz)wzmg}ﬂ__
'"—/\//f[%mgvl- -ng“jzotgg_/_

[/z +f [ - ﬁngjzc%y =
._.2( % + 77:’[;&6%5 fsng} . (5.1)
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and

g1 Rr P[5 heng]ly -
_{/{/ﬁﬁ) ;[iéf’mg-f /E%H}@ &5]}766?7‘-

%/ﬁ /‘ﬁ'+/)+f[ - i(g{,ez)w Coo§t 3l - fe’(éw)w ngﬁ"
[ﬁ h-g)+ ;ﬁ[ /-zfm'ﬁ 4) d/fw%j.f

7 .z+(7é’-z)(zv £ gw_gj}
fmpepage (s Joh -
— J (k) Ffipens - Ksiey ]xy
#[E ey ke (( 2507
+ N;[émg-;-#&wsjwo’q

(2.2)

When y £ 0, {(2.1) reduces %o

%”%{(ZM) - 7f[4‘f: Coe 5 - (ﬂfz)%},:jz=
=7f%§_g{(é+/)/ﬁ+§)+7f[%t3m§’+X/,S’-Cugf jz.z.__
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_zr,f/léﬁ)/ﬁa)q.;[)fimgM?mg 2,
A Z( I+ ?fs,mf} :2?5/3_ {Eé,u/vt ?;Z-J{rf'ﬂ%‘ ﬁmé]fﬂg
w o

(2.3)

wheres

) = [ ~ (Fot1)(Fr 2 Jur™

] U .
NE [ (3f b B AR W

2 wﬁ (29}_”
\ o= 3Che)= REp) (k2 o ®

3

wr )

which is Judd's(h) radial equation except for the coefficient
of xﬂagéin € . The difference arises from our taking the
coefficient of x" from the diff'erentiation before expansion to
one higher power, since x satisfies an Inhomogeneous differ=-
ential eguations and therefors x™a. %: and not v X,

Laslett has developed in a Fourier gseries a large amplitude
radial motion found with the Illiaec, This is the motlion at the
f'ixed point of order three ( ¢ = g? 777 '} whieh lies on the
boundary of the stable region of the phase p'lane%o It 1s inter-
esting to compare numerilcally the Illiac and expanded solutlons
and toc compare magnitudes of various terms of the expanded

O o o Gl G e T8 e €3 B g b

# A forthecoming report by Laslett and Cole will present Illiac
data and discuss stability limits found.
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solution. Thus we calculate x" at several different values.of

S,

k = 160, 1/w = 2302, -F = 1/, ¥ = Lo,

Ne o | 3WZ2 3 9M/2
' % torm 0.120:107%  0.496 10~0 0385 107 0.174 07l
x x’ iterm 1.079 -1-6'5 ;-0.1LL3;.1055 | o..L;73-1o_'5 0..991-10'8
{ sin'g | | “ o ~02500 | 0 0,25700 |
x term o.-zééjl —.6;.02138 0.009,3 -0.00100
;2 :berm' ~0.01750 0.00713 0.,000780 =o.u72-10"h.
x37 term =@03338 ~1.28 = 10"'le -0.0000L.8) -0.616 107"
:ﬁ = ic";' o oa-zusmg @;261;3-8 | 0.04132 0.211897
Illiac x" 0.25020 :6,266117 - 0.0l206 0025151

Error 0.7% 0.8% 1 .‘8.%_1 1.1%

Tne error in caleculating x" from the Illiac data 1s small
compared to these errors except in the case N6 = 3T, where it

is about 1%.



«1l= MURA/FTG=3

The "derivative" terms (Xﬁg and xxkéj are always small
compared to the lineér term. The cuble term can be as large
a8 11% of the linear term and the quadratic as large as 30%.
Note, however, that the cubic term is twice as 1érge a3 the
quadratic at N& = 0, where x/w = 0.94. Tt would appear from
this that the expansion converges slowly for large x/w. How=

ever,; these numbers are somewhat fortuitous, since the largest

part of the quadratic term is zero at this 6.

I1I. Yhe Equilibrium Orbit

The equilibrium (closed) orbit is thst solution of (2.3)
which has period 2 /N in 8. Laslett(3) has found the Fourler
coefficients by direct substitution of the Fourier Series and
aolution of the resulting algebrale equations. Judd(h).has
obtalned more aceurate results by an iteration procedure,
Ribéfé)'has discussed the problem in terms of a variable X
which is similar to the F‘ uged by Cole and Kerst(7j'in dis~
cugsing the Mark I equilibrium orbit.

We expand the solution in powers of ff , Which glves
equations similar to Judd's, but having different forcing
terms in sach order, We assume |

[}

vce) = = [ %8 (3.1)

GEK
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with
% (o+ &T)= ¥, (8)
a i " (3.2)
Then,-substituting in (263)9
/2-

"y () = ?» _ (Br) (Fr2) 2>
¢ =

— RAr)Er2) 3 24

(7 /)é " ey :Zb —_ :"/ %%’1—

A solution of the x equaftion which has period 2 T/N
y o

is XO g 0

Then

%”+({+/)z = Fu §
X' 4 (Er) ¥ = [’cvn:;’-f-(éﬂ)mjjw-” céw J%:.

CAs (Tr) % = Ez{‘r“15+(ﬁ+aJ&;5]%+7{%’ *

$ Bsing %'E () (ReR) 47 —
= (L g # ) 50u5) 5 b))
— (3br) 22"

_

w7 (k) 2= Ao g+ (Rra)siny | 4PV I gs.' +(3s3 Y 4
%, 3

= (Ren)lEed)(Bouyz )~ K(br)es)%

‘J-

( e3),
=
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(B hsis gy _ (A cmge dosiez) %

s /
~ GR35 ax%) -2/ & ems - g Jon
We define

E o= fri- (nN)*

(3.4t)
and find
2/’ = /‘é‘ S—f:wﬁ'
fa = A (3.5)
X = gz b "
/ Ey £
etc.

where

_ LN hr)
a,, = 252( ___g‘ié_f__*'_h—ﬁqf-f}: 47%1 [[ﬁﬂ){ﬁnj —-(gﬁ+3)/\/j

= L (ARG (hes) = L [ B (2 Bes)NVE
e ETM%L% 4ﬁ=[ (3.67]
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(o= %0 _ L &, (ﬁu/\/ (Grth+s) ) byr 2443
- A

_ gwfﬁ,ﬁi(ﬁ,w)"_ (20h+ 239N % f-%ﬁr.—?/v‘f}
b, = (i- %;f)(m ot (@eirhea) é-_z) A _

F F| 2 Fy

— by, 3 N*_ 34 +‘ﬁ(%ﬁf)[‘fz+z¢)
sr T % B e N it

e

Bt vN7 J+ oL [300heN S (TR 19 A1l WV
L J l(aFBJ: 4{{:"2‘(&19!-'?‘3))\/]

- 4 ' -
m33 = fm_;z + (QN +-(£+J)/ﬁ+2v) 73,4—1 bys + 2L+3
2 A F R TwhE*T

[bw ’F”F,_

i

- ): é—('ﬁ-H)(B”L-#F)—}‘(JQ‘E'}';b’)Nz}

YwFR R
b 2 . v O&-D(ﬁﬂﬁ) Zan_ by , 2 /\/
33 ( F', A :ZFF +

— 34 kA
5’#3 [ 2F""L : :z:{z @)

f [l -ani]HEey- (£+/)(2'£+3)+5’/£u)/vj

(37)
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where all terms which contribute more than Oel% of the leading

term asre included

2 3
Faey (£ Ely Jsiy + £20 e
7
fﬂzl%zg_{_ fézz_wzg,_’z_

4 76“33&-@3’:; + f_éﬂszwag-/-w

(3.8)

The results agree with those of Jdudd, except in the highest
order where different terms are included, due to the different
approximation used,

Pourier series for the closed orblt have been obtained
from Illiac data by Laslett. We compare below values of &X ﬁ
and 43 n calculated from the development above with those of

Laslett for two cases, characteristic of large and small machines.
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Large Machine

k = 160, 1/w = 2302, -f = 1/, ¥ = Lo,

Caleulation Illiaﬁ

=230 =216
- 86 - 78
-1612 ~1651
- 6 - 13 411 x 1077
- 80 - T3
= 0.7 - 1
- 5 - 4

Small Machine
= 0.8, 1/% = 2340, % =1/l ¥ =5,

Calculation Tliiae

=177:3 =173.9

- 3.2 - 10,8
<1049 .8 -1052.8

- ha7 - 649 A1l x 1075
- 31.5 -~ 30.0

- 0,3 - 0.3

- 1.1 = 1.3
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The agreement between leading terms 1s quite good. In
the large machine case, the difference in (g/ could be reduced
by including :¢5i terms which are wbout 1% of-the total and
in the dorrect direction.

Numeric%lly, In both cases the cloged orbit is dominated
by the foreing term ( -,f sin®€ )} and the linear term. The qua=-
dratic terms (x° end x’a) contributé an amount only 6% of the
‘leading term, whlle the contributjon of “the cubic terms is
very small in this approximstion, |

The terms caleulated agree numerically wilith those of

‘Ribe (6},

IV Expansion Aboubt the Closed Orbit

If one expmds diresctly the differential equations (2.1)
and (2.2) about the closed orbit by substituting

X = X+U | (4o1)

where xg is the clossed orbit given by (3,8), spurious first
derivative terms are Introduced, as found by Judd(h) in ths
radial motion, This difficulty may be avolded by expanding
the Lagrangisn or Hamiltonlan, rather than the equations of

motion. The Lagrangiasn has ths slight advantage that the
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vector potentlal does not ocecur under the square root sign.

We expand the Lagrangian (1.7)

og:cf("%%;f@# Vews) 2"y 4 (A 2 Ay ”'J 7

in a Taylor'is seriles about x = Xgo x?! = Xgs ¥ % 0, yt = 0,
using (L1.1). The term independent of the variables gives no
contribution to the equations of motion., The terms linsar in

u and ut! cancel; since to this order

L= ) ur 2Zlylt.
o %
where ) means that the term is evaluated at the elosed orbit,

Then EE? Qéf

-

2u
d(2£ /)
de\Tu /) = ?z’

and
J(af 2% _
6 97/) 5n/ =Y

since the equilibrium orblt satigfies the equatlons of motion,
‘11 terms of the form y© y** xP x19 vanish when m+n 1is

odd because of symre try about the plape of the equilibrium orbit.
The lLiagrangian expanded through terms of fourth order is

then
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L= fu agunp Lo, W La,yty acyy pda y't
Fhbued but® p L hun b Ly w4 fboby T h
+4 Acugf’q. ,51;1,7 U_C?/"‘; :.% bf u,’g/‘l_/_ L‘i ng/_,_
Hh e s eyt e,y ui
—/——ZL Cy u‘yg’f- -éL a7q5a_/ + fcguzu"ﬂ .é.c? wa'% 4

L2 > 2 A
L CuyTHE Loyuy sty 4

4 vi
/ /), 2
+ éc/sé‘lz‘,f + Féc,,,, ubté;{
(lo3)
Define
Lo = V) g ()

Then the coefficients of the Lagrangisn (li.3) are

2;’ /&
FQ, “-‘-j}",,/‘ -3;‘ +2[9/a+;282a2% 7L;%0331+§/%0%i7+

L3
° P}
(147,26, + 663,% #1264, 5" )]
o> 24 ). — (#5)E!
2 Sxdx’ E;

9":1’)= (+%)"

Az ™ i



e
s/ T T lae”
8 #9 £ - bf_g 5
HXHT R +%pe (Br1) = |55 =
L7 N
ReALY xsl NeTrhe ={%§ -
L7 37 WX 1o
Cg’l' fr‘gj(ﬂﬁ)*&u’ 1179/72'+ '9?:]»’7"" (5’%/)1’%';/ ??’E ;P;,(f,_ -
. Rebexe b
L5 Ko rRiKe R 2l ge T
5'§Z - = 1.'("%/)(@ 9
/% 7€
:7 1:%’@. Lq
S+l ) 7€ -
25y = 2feoe %
LN p A XE

)
(o ) Py oo e e <

A
(5 3 xa]m_f,) "5
_ Yoxaxe &
EI% (‘%1‘!;?’?} = fie G’
T - e [gE
e |
[ Ghet 977(z+/)+[z Bt "% 9+ 9&"75"'(%),%8 =9

:77 4( 4“?..?19

7 J€ =
5%/5(1‘-_‘%’:( +%’}< “{:;féfe:;w
He _ho

( YXe+ % r’) Y+ A G4 Gt “Hel(%r) = (,r’;

¢—0dd/ V. =02~




-l

MORA/FTC=3
°e=9i-;j;; = %, 60 %
f 3
e, 28 [« —E% (“7(5),,_ 15 %, 141 )
i T o
_ ot . Lp 3
Cq “,‘@fgsl = '_:?_M e )+ 17 (14%) %s*/
= 217 _ L
Cho g,}'f'ggeg) - 2529117.'!'49::,1‘5‘]"('(/4-%)‘7‘9 ’L4'Z/
= 2% - 347 - 2
) axiaﬂ;}- RTH ey ls Ot
SRS N G PR G I T A L AR (-9
L 3’(”()(7'2’ Lo3 I-‘F PGy Qxax‘JJ/ ______l__s

15
Using the Buler=La Grange equatlonssgénﬁ derives the two
asecond order differential equations

/ /2
u [dg-f-l’;;/u'-l- é‘/%-,a é‘czﬂ’z-,afc}ui"" Co U -/—iLC’,z(;{j +

‘5‘3”[/’6’;/7{'612“3 !k C/;,; 7404117 =

= —afu’s (4-a))ur LG4 Tu EL(A/—/-!:J)fu"_.
- !9:1 UlL{,’-H- 3’:“\5'4”4:/)5127& _7%_( '—'97"55,’)5’3_
(k= bg )y’ + 4 (-0, Ju? -

13
A (3@7+€2/)u -
/o oa
— L A -
ac? W (cg

+C Y uuw!*4 L (cC
5') + 4/

!0-65',)u<:';/ L_'L
*(Co=Cr gy (G0 Jay it Lol uy!™

(Le6)
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and
!
yi[ag+buebw's Leyy'% Le, U H G2 Cry (,.{,ff?—;é-

*“”[%ﬂ”fqzu9’+aq%ﬂj=
= —alg'+ (ap=ad) g+ (be-bl)uyt (lsé-lgq)udz__{,_,;
— Llug’ o (k) uy |
Ll C,§)5L3— ég{gﬁ._ﬁ_ (c, -Cé’)ag%-
(et ) uuy - {-C/,’(M;/’)—KCMC/J) uuy L

/ z /
”é (B?C;.q +Ciz)ulé

(ll'-o?')
These equations are of the form
Lts gyt < i) 0)
b .8
gﬂff+:/faéfz - G-(%uﬂg,yﬁ@) (1.8}
and have “solutions ”

LL”.:‘. if':' /:—_ ; @

ZE= 7+
& 4 (4.9)

LG-gF
754>

J' -
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We expand thess quantities, keeping terms through third

order, and derive the differential squations.
bl Iy = L[ (b =b))—2d(a,-a])+
Gé U = Q? Y - (Q’-GS_)it =z T3 IR L

J’ Z.
+ él_&_; (Q/.,.qz/)j’u o

R R T
o+ f“ /:;-!-4;@4 —d, (@,~af) “"‘Zé [“"‘.; é7 + b (a,-‘gfjjﬂu/f'
a f[éf‘éa-jéfl*‘ /4-47% %fé_{]gﬂ“_/.
é
+ [Lf- b, — ;-%" (q#aﬂsljjﬁg’-f—
F ]9~ ke ) -y a5 #2405
+C,,(c1,~—612/)- Q};,cﬁ ('.ct.,v—va‘.';;fi% L w3
+ Z(h@;w 2c+ ;’cé\( b,,»}b;-fﬁ%%fﬁf) + 3dya] + gjﬁ*’%a{'éf b} “}é%'él-
bL [j‘_ o v ad Doy & (a0 ] - b L 2b1 a,4f) [ s
- 2dg(a-n)) 4-51{-@ [—157 LQ,’-? Jgg(b,»bj’)»- Oy ¢ 20,4 (a, »-a;)]f LLsz/-f-
T3 Z( ~ ?I*L‘jf(é’f*é;' %43) 2y [A‘:"ﬁ't (- 1’7“3/“”5@1"%./))]“ dy %) -47) +
+ 2draf +}{~(6 [=b, (b)) = 2b, l:.»‘/if-g.*,2 (@,~a/)-zc %o?/] } uu s
1 Joymed v g Lhlhe )] G00-8/)) wy? 1
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Fleema—dlh-4) S/éf*f-"’f Y- ) Folhmb, )bt %-'b;)‘“cwme"@j 't
| .L _ /_..
P LU k' 380, ) o) L )
L) et~ dy (k- / i
+ ;_g ciz= (b b + %L@ +d, %,%;& [%3(57'5;@9 & @/"'Qc};z“g f gt
—i—-‘—f-c/(b_—/4£ ) ly =
Z] = albsbl)+ 22 (o be') § w5
- ) — b Lol
+ Z( Cl;[!’? éé af(%’ ffﬂ +&L; @l’gﬂ’q'bz,)—ﬂlzﬁqlf"affﬂjué&uow)
and
Gy vy (y=al)y = / bb, /7‘-55@,- )< f%/'i—’)] 4+
n}-g(éé—éf f-%g.(@_,qf/_) .m@(z (ay_zzj./)} L,:.C/;/ 7+
/ /. /
+f’"*£’7/+°6‘%/+ .zé [;,;‘/qé —gffa,-cagj%? ' /—57-,%, 7=
AL ] g o foel]
- ) |
EP o LG sk Gy ) 20 ]
Y. /
+ 4 ic,o-cé’+ Z!}Ezbz,(éj- kg )+c§ (@)~ ) [-2d [ ), +;i:(q,f-g/ﬂ-
- CI3(41“¢$/} L"g{ 7
N {cﬁ' €t +_Eé [bz (Ar’f’?/J ?—éz/&é"!"f)‘/'cf (24 “4.5’/')_ Q;pfé?)%
b IR AR T, L wud
il ‘2-:2'(44»45)]“4;[7’ ¥ é‘f"’a‘-}{ G ﬂ’dﬁ'(ﬂﬂ!{} S

.7L..
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/
+ -'ig_c”/ + ai,[*lbz,bf- C’g%{- L?(bf'éa )—gc/4(q/_qlfﬂ-
/ 2,
— ad, ]:-L.;-f‘;_];(-b,faé/- be (a,—az_/)_-’ + dyag } “wy +
/
¥ “C“‘CH( T &Lj ["52.197/“194 (j%-{-é?/)—c? Qé/+ ‘é?éé‘““' ez(a,4) +
/
F |- ket AR5 b)) - /
/
~ L sah (b sl [ 4 dsad | e
Tyl { —ol-ae et b2h ) a1y (b B )+ 2 0u2 ] -
~ad, [~bh '+ 7 (- ba't bf%i)] "“’[Wé/} W'y "+
'_’“ ‘Jl- 5 Eé; [R 5 (Lé'i‘i)+C2(“9“€5/J"94}E£4"1’? "’Lé" (@q-‘y)j
—_ Clq(ai/"@j'/)} u/g' 7(-

v 3] fenad)-ab, Cp= b ) ~loy-a)f gy

T —&Zsmff’(é:"ég%g /

(o11)

where
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Qj‘{é
. (J - Ay Lg, + % Af
17 2y,
p _ o, ¢ 7‘-;25717 7‘4‘3@// 2
1 d, = Zet# - 7 — 24,
"{ S a0
. a
| J# = 6Cy #0by by # 43502 ) Jd;*
| &Zi‘ b b aC (h.12)
. a,C, + + 5Ly ¢
ds Loy Tous” 2T oy
a4
| a. Gy — by %% %0y
Cé -
e 635516

It may be noted that a3 and 8y are always different from
zero, since %IXJ <& 1 and|x;}<é 1, so that the denominators
offer no difficulty.

Eéﬁations {L.10) and (L.11) are obviously much too complex
to be useful. In the next section we estimate the sizes of

the terms and find that most are negligibly small,

Vo Approximatse Expanded Equations

To estimate the sizes of the terms occurring in (4.10)
and (hollﬁ, we must estimate the sizes of the vector potential

components. We see from (l.1ll) that the Ons Ky 2nd Ymn depend
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on the-Dn of (1,12}, which are the form

D = AN+ B (Edenge O lhuw) s

H

(5.1)

ac that

[D..| < | A )+ VB Co (5.2)

and

{
< D, | _
P N I, (5.3)
From Section III, we see that the closed orbit ig of
order of magnitude

el ~ L

N"L
/ - £ (5.4)
') oo VIR
We carry through the estimates fop three different sets

of parsmets _

A. &k ~150, 1/w A 2,103, -F 1/h, ¥ ~ Lo

B, k™ 100, 1w ~ 103, £ =1/, ¥ ~ o.

¢G. B~ 1, Lw 20 ,F =1/, W ~ 5

1]

|
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A is an example of a proposed full scale machine design,
while B ig a full scale machine with more conservative parames-.
terg. € 13 an example of a model sized machine.

We glve orders of magnitude below

Dy D, B ‘93 Dh_
Al 1 3.102 10° 10°
B 1 l_lo2“102 A;th 107
¢ 1 2.5 20 80
®10 e20 ®30 o 77902 912 %22 Sy -
Al l 34102 10° f10®  [3410? 3010 Sfioe 108ﬁ

Bl 1 {102 |y-1ofho? 102 o [108 t|ao?
¢l 1 {3 20 80 3.5 |60 500 |80
Y12 K X i Yz F; Yoz Tag
al bo | 1ot [i/zeact {no 1% | Le1o® | 1/30100 0100
8l Lo 6910° | 2.103 |Lo 6:103 [1.60105 | 20107 pe10®

¢l s 25 6 5 20 100 6 {150
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al 32 33 ah‘ . 8.5 8.6
7.102 | 6162 |1 | Toldef..%F}6:3A 1
2.8:102 | 6183 |1 | 2.5102 | 6ad3 |1
10 0,06 1 | 10 | =107 3
by b, by b_LL bg bg T Bg
100 2.10°% |21072 i,i 10° |10 |1 6-10“? Lo

3,10° | 2:107° |20207° |1 |esii0P 11072 |1 | 61072 | Lo

150 | 0.2 0,06 |1 | 150 01! |1 0,06 | 5

< (4] c

1 %2 °3 % %5 % %

20109 | 10 | 24109 |3 | 80 | 2e10% | Le1o

5| 220° | 10 | 2:10% |3 80 | 2-10" | heio™®

2:303 | 10 {20103 0|3 | 10 | 50 | 0.3

g C9 . €10 11 %2 %13 ‘1
10 | 64073 |24109 |1 |1 2010t | 2.1072
10 | 1072 o108 3 J1 | 3ok | 20302

cl1o | 0.06 |2e10° |3 |1 [ ko | 0.15
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d; 4, 53 aLL 45 dg
A2 220210 | 10| 5-107? | 3
Bl 1 -2’10‘2'10; 10 5-10“2 3
gl 0,2 (10 10 1 3

in the equations of motion.

MURA/FTC~-3

Wé estimate also the following derivatives which appear

TR ag bg by b b}
al1 | 6:10%3 Jo.as  [6.302 )3 | 2 [1,2:1072 10,5
Bl1 | 6+1073 lo.25 |601073[3 (2 [1,2:1072 0.5
cli | 0.06 |0.258 0,061 3 2 0.12 | 0.5

: i : '

b% | bé ‘b‘9 | cé .cﬁ cg cé ct cé |
aloo™3) 1l20103 | 6107 | 3,207 | 3-303 (8105 | 6 | 6:3072
Bl6r1073| 1| 2:10% | 6207 | 33072 | 30103 8:10° | 6 | 62072

¢low6 | 2] 25 0.6 | 0.3 so | 280 |61 0.6

R T I SR
Al 6 | 6100 | 201072 | gei0® | 3
B| 6 601072 | 203072 he1o® | 3
¢l 6 . 0,06 0,25 200 | 3
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When we asubstitute these sstimates for case A, the differ=

ential equations (4.10) and (L .11) have the orders of magnitude
a,u's 4t [7102]% = 4 [10Tws 4[4 [257 w's
§ i f"' /
A0 4 12] 5% [eT g9
L2000 U+ 17 w7y
, ,2
A4 fant]wu't 4 [7 162w+
+ 4 [am?]ag®s [a.n7]«gy 't
P - /1>
# L L9003 wy Ty L L1 ] uy " F
¥ [‘;;/04/ w’ 2‘+ R LL,’ /
y ] [7:76%] 44

Yty (70024 = [195]uy + [soquly + [4]wy '+
%[,ijué - “é[i'/p{ijglgv"
+ Z/ [/0‘1751’3 5[3-107_7%31 +
7 Z:?:m‘_/jw-é+ _.iéj_jéfmi]ug/ié
Lot ey w1 Le] 4y
§ éﬁ/og“’;e+ Y ENTLY ke
+ 4 [ér/ﬂjé«z}; a
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If we take /u’/f\w N Jul and /g//’\-' /\//O‘t/ which is
probably an overestimate, then tThe only terms containing deriva-
tives which are as large as 1%-of the leading term of the s:me
power are the Uu'< and "‘ﬁ * terms of the U equation and
the '™ and 3014 terms of the y equation, GCloser
exemination shows that the two lapge terms in edch of these
coefficlients caneel exactly, so that the overestimate is gross.
Thus nor"derivativeﬂ term is larger than 0.1% of the leading
term of theé same power.

Though the numbers are changed in case B, the same conclusion
holds as In case A.

In cases A and B, all terms grsater than 0,1% of the leading

term of the same power are included In the approximste equatlons

2
7 * a’a-a,fu== lé“*-f-z’%cjﬂ"'Lc%v‘ G 4

Ra; o ‘750"{/—-— ay&'( féf “‘O‘f ta Z/“"s} 4 ﬁc/ﬁ /""'f‘?

(5.5)
which may be derived from the Lagrangisn

qu#ﬂLa .,..Lau#“iély -A..Z..éu_ig,
oL~ &% 73 /

{5:6).
+ b uy* 4k L ¢ "‘-,L.Lc_,;f"’#% 4 ;‘{"
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In case € the situation does not appear from the same
estimates to be so favorable. (.10} and (4.11} have %the

following orders of magnitude in thils csase:
wyut s s [ s 5] g LT D
—#—:2[ Dg‘c_pja 2_,L ;Li [a:)g’z-?— Zéjélglf
'/“éjz:?"f)ﬂ w?® —é— [3__7“!3—/‘
+4 BT uPu'# 4 [20] wu“
-l—é Zg,lp?juslgs{- [150] ""a"c’;’r’ /"7L'
Tyt L[]
+ L f’ﬁ’ﬂjuéy ‘4 [1a] “2%‘-51/
and
aéa‘/ U7L qé}/,}g Doj(? = [/5,_0_723}/ 7- Zsjug va Zﬁ’g%ﬁf""‘
| + /2] Mgr% L[210%)4 37LZL [03]y"3
1 4 [Q*/D:fjué_yv‘* [éojuu’; .
'?Lgé L) Hy/%* L4] Hu;y/?:,
+ 4 [4] “’;L/’ #4 [od] u?z"
3 [0376%;’2%; [?]O‘Ki‘/’
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The only terms which are less than 1% of the leading
terms of the same power f{using again /wLVAJﬁJ/uJ andé?v““Aﬁgd)
are the WU 1 term of the u equation and the w’*1/ and 5%?,2.
terms of the y equation. Closer examination of the w'* term
of the u eguation a8 an exampls shows that there 1s no cancella=~
tion tending to reduce this estimate., There appear to be no
simple approximate equations.anaizgous to (5.5) in the case of
small (modelesized] machines.

-Even in the case of large machines (¢ases A and B), the
valldity of the approximate equetions {5.5) ié.open to soms
guestion beecauge of the unknown Infludnes of higher terms
(fourth andhigher powers) neglected in our original expansion.
This is elearly closely connected with the slowness of convergencs
of fhe‘vector potential expansion {1.13).

It appears from the digital computer work that /?»{m)‘/mw;
though Vogt-Nilsen (unpublished) has found a case where /1@mmy/=

=/§1), Then in case A above
o, U~ 0.35
/ E

7
.Z’c, U 0,042

and if a fourth powsr term 1ls ineluded with 2 coefficisnt

& ~ 4073
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then ML-E’M4'®.0 0/
24 ! ’

so that the fourth power term would be about 3% of the linear
term.

In case B

a, U~ 0,25
L b uto, s
a,ugw 0,03

e
6
;e u? 0,008 (€~a/ol)

so that the quartic term is again abhout 3% of the 1ineaf term,
One may therefore doubt the validity of the whole expansion.
It should be pointed out, however, that Mcser(l) and Sturrock(a)
" Pind that instabilities due to non=linear terms arige only Ffrom
quadratic and euble terms, It might be supposed the the same

difficulties would enter the determination of the ceoefficients

as; b

3 and ci,.but here the convergence is much more rapid

i
because [x | <« Lo

Expressions for the coefficients appearing in (5.5) in

terms of the parameters are glven below:
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_.-[&g+ i e (i‘ Rvat 3)j+cﬂg[ j.+
e s
(i~

+m23[£:ﬂf (—/- £ Sa2#- )]7"
" %3‘5[%(14-!-/\/2)1 (?é ~0E47- #’27+'”

i} Cr1%) ™
Jeny ) xt)%
[Zfz’ﬁ——z———;/,_(fﬂ“ ZZ+’£“¢+N9J+
“"‘5[137&&—% (24~ ééf-;z—/\/--)]f“
FSou [f;_]w«-sag[mﬁ T RS A z-L)]%
Toemzy [ LT [;’ra—- %iéé-;wvl)jf,.

@

IEZCR A/)’*'

NE L) “%'L%)/f”“ ;«ﬁs/uﬂ;
14 Sw,%’ [lf (/ é(fz’//)w')j T
T %25[1%4’/ N”( 372“/ 7537"5% 7/75%/2)]+

+ Sdeag E‘W ( L .- 31&2+S"k-7)]+,.
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) 2, 2 Y. L 2 4
by B3 d e [yt o L ]
Fem s [:zg_ﬂ £ (3¢ fz;;g_.m,g)(z,.z_. ?f;)]

Gur (Br1-7/?) s

b s o p(Ergn ) I
~+ mygﬁéz%%[éfﬁ-fjé—2)+ (-5 E %{__7‘;/]]7;
oo 95&@% (32%cdiz-N"= Zf)]’*

. 4
G 7 - Z( gkl +f [ ‘““"‘“Bg;ﬁw?’% %( %%f“ /ﬁﬁ)%”yﬁgf

o LY Lottt Ve SL o . 5
(k-2 ﬁ[ d -2 = w@sﬂ(m-éz)[f—zj+jﬁj;§){)%§

—

Cj =

|

3 2 2/
oL BT [t i
— L SR S

(5.7)

All terms less than 1% of the leading term of the same power
of the variables have)been neglected,

The terms linesr in the first derivatives u' and yf arlse
from the vaeristion of inertia due to the scalloping of the
equilibrium orbit, These terms may be eliminated by the

substitutions
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fﬁ:'\/rj%
Then
; l@/zidlf CZ]_L é/ 2 = 2
o [F2)= -5 = £ R R T

How )t
- T -2
%" )3 - /=%, + 0 %"%)
/]
and to better than 0.1%
2, =)
(w1 * 2
Rty (La‘ ’ f 23, = (14 ) =3 )%
[

=o(139
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vhieh is negligible,

//"

+ 0 (Xs)

O, = X:,/-.

and

ffs:'.w §+ 00Xs)
so that

G - - Fei g Rl b ok

= -F s 5- 2271 con2g) tolx)

This c'hanges aq to

— 4 2
&) = Q/‘f“ Q v*[f-»‘—l"f‘ %f//v" z_-f-%:,f-,é—iw‘-i?i/vﬂ t

L [W é’&rf H-/v-?j (W”‘ géﬁf%ﬁ"?/z"

+sm§[¢(;:,u:ﬂ #
-f-C,mo?f[{’L/ N* (’L Az E*N)J

: 208.7- 1
t mgf[;wf’éﬂ'ﬁva (3’% vE T W’%}
+tl.

(5.10)
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In the zame way,

/ _ . Z 4 02
a, = Z—“ "/“755*5(%}%)
14
= / to better than 0.1%
/ /
2, = Kk
6 2+ )

15’

=0 (7{'5’)3 which may be neglected.

which changes 2), to

e,

’ : 2 &
Gy = Gy + 4 a; = ,{% f@}j} éﬁz‘—*§+§£_a,£+a/\/z)+

' = f , 7(3 2 : 2 7
Ca, " '/Jn ‘_é/é :2"'/\/*““1

vl fetl-

tosnx [-(hed) £ ]
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ahanstal.’ “""’Zj (éilz+j* AN = '—L;N%

(5.11)

and (5.9) becomes

Promp = LT
| (5.12)

where the coefficients are given by (5.,7),(5.10) and (5.11).

As shown above, the guadrstic terms in these eguations can
be as large as 50%, while the cublc terms can be as large as
12%, The effect of the closed orbit is largest on the quadratic
term coefficients where it is of the sameg opder of magnitude
as the original terms, while the closed orbit has only about
5% effect on the linear terms and a negligibls effect on the

cuble terms.
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