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1. Motivation: 

For digital computation of trajectories in a Mark V FFAG accelerator, it may 
prove convenient to  work with fields or potentials stored on a net. It is believed 
that use of a net is particularly appropriate i f  complicated fields are to be employed 
or if speed of computation is to be emphasized. 

With limited storage it may prove expedient to  store, on a two-dimensional 
net, the magnetostatic potential and to obtain the three field-components therefrom. 
It is expected that the potential will approximately satisfy the two dimensional 
Cartesian Form of Laplace's equation 

a"v - dZC/ 
+p = 0, 

F 
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It is the purpose of the present notes to indicate an interpolation formula of 
possible utility for this purpose, it being noted that reasonable accuracy should 
be particularly sought for the interpolation formula if differentiation as  well as  
interpolation is contemplated. 

2 .  The Interpolation Formula: . 
Based on the net shown, but not -12 

employing the four extreme corner points, . 
a central interpolation formula for two -11 
variables may be developed of the Bessel . 
type: -10 
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This development has the fogowing properties: 

(1) For any functional Form, 

cCc=o/ LC= O 3 co 
4' /, v =  0 3 V,, 

(2) The expression fits any third order polynominal in 4, P : 
2 

a+&~+-&,v + A , U ~ + Z ~ ~ ~ + + ~ P ~ + ~ ~ ~ + ~ U ~ ~  &mu+' tdy V ?  
(3a) The sum of the coefficients of a2 and v2 will equal zero, corresponding to 

the (2-dimensional Cartesian) harmonic combination u 2 - ~2 , provided 
I 

Voo = ~ [ V I D  + VO, f V O - r  + v-10 -7 as it will be 
through 3rd order for a harmonic function or  if V ,  is determined by a 

relaxation process employing the usual algorithm for Laplace's two-dimensional 
equation. 

(3b) The cubic terms,  moreover, a re  harmonic if the foregoing conditio is 
satisfied for each of the four interior points ( v , ~ ,  Po,, , , and 

f i  
if Val 4- v/-1 -I- V-10 f- Vpz= go f &-I f I/-,/+ [//a . TK 

latter condition is also automatically satisfied through third order for a harmonic 
function. 

In the special case that A= 4 = , this interpolation formula 
gives 

V(&,- : )=~; .~, -y . -1 / ,2 ,+ /oCj/ + / o &  

4 - 1  - 1/62 

3. The First  Derivatives: 

From the interpolation formula of Section 2 one would infer that 

A X =  - - =  
6 

d V  t F ~ ~ f ~ q ~ - - a ~  -3  V-,J 
d k  



4. Examples : 

P (a) An example for the application of the interpolation formula t o  the potential 
is afforded by the results of Illiac run FL0004, in which a 2-dimensional Laplace 
problem is solved for a rectangular pole. We take a s  given the potentials at 
every other net point and compare the interpolated and Illiac values for an interior 
(central) net point. The input potentials a r e  indicated in the following diagram: 

For the central point 112, 112, indicated by X, we find 
Calc . by Interpolation, "'?;% - - .072918* 

" " Illiac .073347 

r E r r o r  (difference) .000429 
Fractional E r r o r  .00585 

*If one just averaged the 4 central points, one would obtain .07282 05, 

with an e r r o r  . 0005265 and a fractional e r r o r  .00718. 



(b) A second exzmple considers  the relatively smooth 2-dimensional harmonic 
function V r  s in  x Sink y on a net including the values 0.882, 1.008, 1.134, - and 1.260 for  x and the s a m e  set  of values f o r  y. 

One finds (including i n  the  coefficients 2 f igures which a r e  not significant): 

V =  1.00441817 + .07981752 A*. f .I6542506 TY 

' 2 - .  0079615+u% + . 013214274 zr + .00798319 V 

-. 00019001 4 -. 00142752 b 2 P '  

2, + . 0 0 0 6 1 8 9 4 , ~ # -  + .0046094 y3 

t h e n , w i t h h  0.126, 

.I6542506 + "01321427 .01596637 1 
, 0 0 4 2 7 5 2  + 00123780 &y + . 00138282~10.126 . 

F o r  the potentials one finds: 

v1/2, 112 1.130281 by interp.  '314,314 1.1955685 by interp.  
r'- 1.130289 by exact.  fcn. 1.1955756 by exact fcn 

.000008 e r r o r  . 0000071 e r r o r  

.000007 f r a c .  e r r o r  
.000006 f r a c .  e r r o r  

Similarly, for  the fields 

(c)  A horr ible  example can be contrived, as might be expected f o r  a 3rd 
o rde r  formula,  by taking the potential t o  be a pure  4th o rde r  harmonic--e.  g.:  

3 

I 

F o r  this  function our  interpolation formula would suggest 

V, - a & - a w  t k 2 t  6 4 ~  +rs 
+ 2&3 -12 ~4 v 2+ a u ,  3 

/ 

consistent with go - O, Go = f yo, = ( K, ' - Y a  

I. For  U: 2, r= )% we find however -1 while the t r u e  value is - .25; 

A& -& 

0 0 
112 112 
314 314 

o r  a= , = we s imi lar ly  find -1.875 while the t r u e  value is -1.265625. 
- 5 -  

V,interp Vx exact E r r o r  F r a c .  V interp.  V exact E r r o r  F r a c  . 
E r r o r  Y Y E r m r  

.633472 .633639 .00167 .000264 1.312897 1.313079 .000182 ,000139 

.617155 ,617181 .000026 .000042 1.431061 1.431041 .000020 .000014 

.604821 .604751 .000070 .000116 1.491918 1.491868 .000050 .000034 



(d) A somewhat realistic analytic example, s imilar  to  example (a) can be 
contrived by considering the two-dime nsional potential in the neighborhood of a 

F 
corner.  (Another similar  example might be based on the slotted plane, 
illustrated by Fig. 4.23 of Srnythels text. 1 . , 

For a corner. a conformal transformation Y ~ E  z ~ L u  
leads to the result 

22 - A% 
w; f A  

By expansion of this result one is led, following a suggestion of Dr. Sessler,  to 
consider that there would be interest in considering the following simpler, 
but similar potential; 

from which 

and 

We consider a grid of basis cell s ize 2 , for which the potentials a r e  
believed to be a s  illustrated: 5% 

9 180" R.j 
.388101 o h - - -  

I ,  



Interior points of in te res t  m a y  include 

Our interpolation formulas  then read: 

- .  047839 C%V" f .003458 W with 

F o r  the potentials we find: 

Likewise fo r  the  fields:  i 

5 .  Fur ther  Orientation by 1-dimensional Examples: 

E r r o r  F r a c  . 
E r r o r  

,002396 .00412 
.005836 . 01135 
.000217 .00046 
.002968 .00606 

112 112 
1 112 
112 1 
314 314 

In view of the  possible difficulties suggested by the  las t  example of the 
- 7 -  

f l  V interp.  ' ~ f  Vexact 

o 6 
/ .581792 .579396 
1 .514392 .508556 
' .471465 .471682 
1 .489867 .486899 



preceding section, it was proposed by Dr. Sessler that useful orientation 
could be obtained by considering analogous one-dimensional problems. 

(a) A problem similar  to  that of 6 5d is provided by taking 
J 

= ( 0 . 3 7  1 213 -Ex = 0.2 .,, and 
(0. 3 ~ ) ~ ' ~  

employing the interval indicated: 

3rd order interpolation, based on values at  x s 0, 1, 2, and 3 gives 

We find 

The e r r o r s  a r e  of the order 1.2% in V and 4 .6% in E, s imilar  to the 
2 -dimensional example. 

(b) The example of sub-section (a) was repeated, using higher-order 
interpolation. 

i/= /-+- B.&+ fu.2 +- D1C3 LEAY, W J ~ P L .  

/4= Vb 

B= kL3 L, -10 V 0 + I f  Y; - Lv2 -t )/I 
c ' - 29 d- f i l ~ - ,  - 0  + d Y ,  + gb$-%]  



With 

We then find 

It is seen that the e r r o r s  a r e  - not markedly reduced, being just somewhat under 
l % f o r  V and about 3%for  E .  

Frac  . 
x u Vinterp Vtrue E r r o r  E r ro r  

l l  

(c) As an illustration of a finer mesh ,  we take -- 
3 

V- r VO VI  VL 
i - 1  

P X-- 1 2 3 

Now 

Frac  . 
-Einterp -Etrue Er ro r  E r r o r  

The e r ro r  is seen to  have been reduced considerably in this example, being 
about 0.04% in V and 0.3% in E .  

Frac  . 
Vinterp Vtrue E r r o r  E r r o r  
.5431097 ,5428835 .0002262 .000417 

(d) It may be also of interest to examine the accuracy resulting from storing 
the - field directly, then interpolating without differentiation. 

-E - E Frac  . 
interp t rue  Er ror  E r r o r  

.2705770 ,2714418 ,0008648 .003186 

With E-p =. ,3764144 

F Eo = using the mesh of sub-section (c), 
El s '2609912 

E2 = .2371262 



- third order, Newtonian 2nd order, and linear interpolation give, respectively, 

We then compare the interpoluted fields at 3(= 113, 112, and 213 with the 
true fields 

and find 

For the 3rd order and Newtonian 2nd order cases, a fractional e r ro r  of 
about 0 .3% (similar to that of subsection (c) above) and, for the linear case, 
about 1%. 

In summary, the grid size seems all-important. Extensive interpolation formulas, 
by contrast, are  of little advantage. Direct interpolation on the fields themselves 
appears to be of little help, perhaps because the fields become singular. 

6 .  Example to Illustrate a Suggestion: 

In taking stock of our positibp, with respect to  our ultimate application, it seems 
likely that one would do best to  store the potential, or some other single quantity, 
rather than the field components themselves. This scheme would economize on 
storage. An adequately fine net is most important. The size of the net, and the 
number of figures stored per net point, should be adjusted together within the 
limitations of the computer memoryto optimize the overall accuracy. It appears 
that improvement in the accuracy of interpolation, and possibly adequately accurate 
results with a feasible net, may be obtained by storing something like the potential 
d i v i d e d 2  the axial distance from the median plane. 

To illustrate this suggestion, we consider a case exhibiting the type of singularit: 
considered earl ier ,  feeling that- cases with smoother polscontours will be no 
worse. 

We introduce X 2 

v*/h - A / A = ~ -  (/+z)% -(,- T ) 6  
X *'a 

Then 

analytically 

and also equals 



a We consider net-points such that 

i .  e . , the net -size h is 

- A .  related to the semi-gap such that - - / g  3- 
For this example the following figures are representative: 

A Bessel interpolation formula may be applied of the form 

In the first interval, taking 5 Z A / A  , 



- , . *  

leading to Ex s 1. 33428, 1.33554, and 1.33717 at  the points considered. 

f l  Similarly in the center interval, 

leading to values Ex = 1. 40070, 1. 41102, and 1. 42245 or  1. 42247. 

In the last interval, nearest the pole, 

For  the three points of this interval which were considered, 

Frac .  
x 1~ U I -Exinterp -Extrue Er ro r  Er ror  

I 

We may then regard the frac. e r r o r  a s  typically 0.4%. 

Lower-order interpolation (second or  f irst  order) did - not appear to give a s  sat- 
isfactory results, e r r o r s  of 1% o r  3 112% being respectively obtained. 

7. Application: 

Application of this suggestion indicated in Section 6 to the computation of orbits in 
a 4 ,  V spirally-ridged FFAG synchrotron would appear to involve the following 
storage scheme in some r,ir plane (quantities out of this plane would be obtain- 
able by virtue of the scaling properties of the structure - - see  Sessler 's  notes of 10 
January) : 

Store a quantity roughly proportional to VIZ, the exact character to be determined 
by the scaling aspects of the problem. Scale the magnitude of this quantity care-  
fully and store a s  113-words on a mesh (t > 0 ) 18 x 1 8  in area.  The no. 
of memory points required for this storage is, then, 19 x 109 = 691 full words. 

Third order interpolation and differentiation is imagine d (requiring . .  perhaps a few 
extra net points a t  the boundaries for perhaps a total of 703 words) and it is hoped that 
the field-error would then rare ly  exceed 0 .4  percent. 


