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INVESTIGATIONS OF f~IMPERFECTIONS IN AN
ALTERNATING GRADIENT SYNCHROTRON WITH
NON-LINEAR FORCES.
L, D. Fosdick
University of Illinois 4

and Midwestern Universities Research Association*
October 20, 1955

Errors in the machining and alignment of the focussing
and defocussing 1/2-sectors in an alternating gradient synchro-
tron will pertufb the motion of the accelerated particles and
therefore place certain requirements on the size of the vacuum
chamber., Since;a large share of the cost of these machines
depends on the size of the vacuum chamber, it 1s important to
determine the requirements placed on it by such errors. Two
common errors of this type are linear translations of the sec-
tors and twists or rotations of the Beétors % The former
type are called f-imperfections and it is this class of imper-
fections which form the subject of the investigations reported
on here.

The problem of f=imperfections in an alternating gra-=
dient machine-ﬁith only linear forces present has been inves-

(1) , (2)
and Liliders o In these investigations

tigated by Courant
it was assumed that the pair of equations governing the beta-

tron osgillations were
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| (1)
y“+ny0
where the ' denotes differentiation with respect to the
agimuthal coordinste, é?g and n 1is the field gradient., If

one inecludes the non=linear cubic terms in these equations

so that they become(3)
x" 4+ (1=n)x-+§1x3 -3 x7y9) 20,
& 3 (2)
"+ ny =2£(3x% =-7y3) =0,

then the difficulties
encountered in treating f-imperfections are greatly increased°

The University of Illinois? High Speed Automatic Digital
Computer, Illiacp and existing progréms appeared to be a natural
tool for investigating this problem. Accordingly, the neces-
gsary alterations were made in these programs and a study of
the effect of f-imperfections iIn the presence of cubic forces
was commenced.

At the time these investigations were begun two computer
programs were available; one involved direct solution of the
differential equations (2) by the Runge-Kutta me thod and the
other iterated the transformations de#eloped by J. Powell and
R, Wright(u)o Since the latter program was considerably faster”
and therefore more economical it was used in the initlal studies.
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#With the program using the transformations the computing time
is about 3 seconds for 50 transformations (i.e.y; one circuit
around a 50 sector machine) and with the differential equa-
tion this time becomes 100 seconds,
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The Powell transformations are
Tx=ax4+¢bx"$+kbd {Fl $a)x+b x“} 3
(3)
3
Tx':cx+ax?+k(1+a){(1+a)_x+bxﬂ}

2 . be = 1

where a,b,c, are constants satlsfying the condition a
and k 1is an arbitrary constant; a,b, and ¢ are chosen

to give the desired motion at small displacements and K is

= |

chosen by making a campromise between approximation to the form
of the "invariant curves™ of the correct solution and approxi-
mation to the betatron wavelength in the non-linear region.
To simulate the f-imperfections these equations were altered

as follows:

T{x -Axi) a(x—&xi) + bx? 4+ kb {(1+a)(x-Axi) 4 bx“} 3 -

| (4)

CTx' = e(x -Axi) + ax' ¢ k(1 4 a) IL(HBa)(x@Axi) 4 bx‘} 3 ;

waere 1 = (1,... ,N) and A x, 1s the msgnitude of the ¥

sector displacement,

It was recognized at the outset that the simulation of
f-imperfections by this means was unrealistic. Since the trans-
formation determines the coordinates of the particle at the
center of the i ¢ lst focussing sector in terms of the coor=-
dinates of the particle at the center of the 1th focussing

sector, Eqs. () describe the f-imperfections as 1if the
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"joints" occured only at the center of the focussing sectors,
as illustrated in Fig. 1, rather than at every l1/2-sector as

shown in Fig. 2.
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Fig. 12 Illustration of f-imperfections as simulated by use

of Powell's trgnsformation

4

Fig, 22 Illustration of the usual picture of f-imperfections.

In spite of this difficulty it was felt that this procedure
would be a useful starting point for the investigations and
later, when transformations through focussing 1/2 -sectors and
defocussing 1/2-sectors became available they could replace

Eqs. (L)

The machines investigated were assumed to have 50 sectors,
each sector containing a focussing 1/-sector and defocussing
1/2-sector. The constants used in the transformatlons for the
investigations reported here correspond to n = 253,303, e =
15,831l and O = T /5,370 this value for @ af);‘)lies to
the neighborhood of the origin of the phase plane. It follows
from the scaling rules given by Powell‘u) and the symmetry

requirements imposed by 50 randomly displaced sectors that the
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field gradient, n, cannot be altered by scaling but the coeffi-
cient of the cubic termy, e, can be scaled according to the
following ruleg If x and y are the variables in the unscaled

system and X and Y are the variables in the scaled system,

where
1
X—"XQY:-]-"ys
3 ]

s = scaling constant

then the scaling of e is given by the relation

The 50 random displacements for a particular machine were
chosen from a Gaussian population. The abscissa of the Gaus=
sian plot was quantized to allow for eighteen possible dis=-
placements, ranging from ($)0.15 to (4)2.55 in steps of 0.30;
the displacements are given in units of the standard deviation.
Colored chips were then made so that the number of chips of
a given color was proportional to the probability of occurrence
of a displacement of the corresponding magnitude. The chips
were then placed in a box and drawn out at random; replacing
each one ofter it was withdrawn, to obtain a set of fifty
displacements. The gign of each displacement was determined
by the flip of a coin. (Since this portion of the computation
needs to be done only a small number of times, it was felt that
it would be quicker to do it this way than to program the Illiac

to do it.) The resulting list of 50 displacements was then used
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by the Illiac in the iteration of Eqs. (4). Ten such lists
were made. With each set of 50 displacements the transforma-
tion program was run several times at different initlal values
of x, with the initial value of x' always zero. The value of
x and x' after every 50 transformations was recorded by the |
Illiac. In addition, the maximum value of x obtained during
each set of 50 transformations was also recorded; note thast
this applies only to the values of x obtained at the center

of fhe focussing 1/2-sectors since this transformation is

not capﬁble of giving the velue of x at any other point in the
sector. With each set of initial values a total of 3,000
transformations was made. These computations give a family

of appsrently closed curves in the phase plane, In the
neighborhood of the origin, where the effect of cubic terms is
small, these curves are ellipses. Pfocaeding away from the
origin the ellipses become distorted and finally at sufficiently
lprge distances the points begin to scatter and do not appear
to be on & smooth curve.® The coordinates of the equilibrium
orbit at the observed azimuth of the perturbed machine are

the coordinates of the center of the family of "closed" curves:

they will be denoted by x(eq. orb.) and x'(eq. orb.)for x-
motion and y(eq. orb.) and y'(eq orb.) for y-motion; these
quantities are tabulated in Tables 1, 2 and 3 on the following

pages.
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* It has often been suggested that scattering of the points,
might indicate instability. However, N, Vogt-Nilsen has
found in some cases that on careful examination "scattered"
points do show regularities, indicating stability.
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Computations were made for standard deviations of the
displacement errors of 10"69 10“59 10‘“39 L 10‘"3 and 5 x 10“3;
these figures are given in units of the machine radius. If it
is desired to scale the coefficient, e, of the cubic terms, then
these numbers must be scaled according to the rules stated earlier,
The two smaller values for the standard deviation 10~° and 10"6s
are in the range of realistic values, thought to be achievable wi th
careful engineering. The three large values must be scaled to bring
them in the range of expected standard deviations.

In Table 1 are presented the coordinates of the equilibrium
orbit in units of the standard deviation, € , of the seqtor dis-
placements for ten different sets of fifty sector displacements;

all sets had the same standard deviation, equal to 10"6°

ldentification !
number of set |[x(eg.orbs)| x'(egq. orby y(eqg. orb.,)| ¥'(egq. orb.)
of 50 s — : & —
displacements

1 ) 5 £ 20 _ S . <L20

2 I 5 20 5 20

3 {5 20 {5 ~ 20

L {5 £ 20 - ¢ 20

5 /5 <20 {5 £ 20

6 L5 {20 <5 £ 20

i 435 20 <5 20

8 45 {20 <5 { 20

9 {5 < 20 {5 . £ 20

10 : {5 20 {5 ‘ 20 -

Table 1 2 Coordinates of the Equilibrium Orpit for 10 Sets of
Sector Displacements with € = 107°, n = 253,303, e =

15,831 .k,
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The coordinates of the eguilibrium orbit turned out to be
so nearly zero that they are of the same order of magnitude as

the round-off error for the computation. For this reason it

is possible in some instances only to indicate that the coordi-
nates are less than (< ) some number, otherwise the figures

in this table and in Tables 2 and 3 should be correct to about
20% .

In Table 2 are presented the results of another set of
computations of the equilibrium orbit coordinates for ten sets
of displacements. These computations differ from those making
up Table 1 only in the fact that here € = 1073,

In Table 3 are presented the coordinates of the equilibrium
orbit obtained from three sets of sector displacements, each with a
different standard deviation, (much greater than the ones used

in Tables 1 and 2).

dentification ‘
number of set of | x (eq. orb.) [ x'(eg. orb)l yleg. orbJ)| y'(eq. orb)
50 displacements | = = =
;1 3.0 2.0 3,0 200
12 3.5 8.0 3.5 8.0
13 0.5 12,0 0.5 12,0
1 0g5 2,0 0.5 2,0
15 0.5 2.0 0.5 20,0
16 0.5 6.0 0.5 6.0
17 2,0 12,0 2,0 12.0
18 0.5 200 0.5 200
19 2.0 - .0 2.0, .0
20 15 12.0 Leb 12,0
Table 2 2 um Orbit for 10 Sets of Sectar

Coordinates of the Equilibgi
9

Displacements with € = 107

n = 253.303, e

15,831k,
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Tdentification -
number of set |[x (eg. or'bo) x' (eqo orba) v (eq. orb.) 7' (eq. or‘gg)

of 50
displacements = € = =

21 2.7 0,52 2.79 0,68
(€2 0,001}

22
(€3 0,003) 2,55 0,07 3011 1.45

23
(€= 0,005) 2,20 1,08 5,51 1.9

Table 3: Coordinates of the Equilibrium Orbit for 3 Sets of
Sector Displagements with Different € and n = 227,
e = 1.2 x 10°,

For the runs made at standard deviations of 10“5”and

10“"6

the character of the phase plots showed no qualitative
differences for different sets of displacements for initial
values of x in the raﬁge =e1l2 to = .12 ;ith initial x' = O
and for values of'y in the range =.16 to =.16 with intial y'£0
When the phase points were plotted to an accuracy of

5 x 10“"h (in units of the machine radius)} the points obtained
from runs with different sets of bumps with the same € and

the same starfing values for x and x', all appeared to lie

on the same smooth curve. The onset of scattering of the

proints occured at about the same point as found by Powell in

runs made with no displacement errors. In the neighborhood
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of the equilibrium orbit the amount of cubic force was negli-
gibly small, so in this region only linear effects were observed.
The maximum value of the position coprdinate, which was deter-
mined for each set of 50 transformations was always very
nearly equal in magnitude to the initial position coordinate
for the computation (initially, x' = 0, always); this was
ture for all the complitations discussed in this report.

For the runs made at € = 0,001, 0,003, and 0.005, the
phase plots were quite noticeably affected. Scattering of the
points on the phase plot occured in regions much closer to the
origin than in the former runs with smaller displacements. Occa=-
sionally the presence of small "islands", where the points appeared
to fall on a smooth, closed curve, could be detected, Theseislands
lie outside thé main family of closéd curves, whose center defines
the equilibrium orbit, and appear to be surrounded by a region in
which the points scatter; the geometry is indicated in Fig. 3.

The dimensions of the region occupied by the main family
of closed curves  is of obvious interest. Let us call the
extent of this region in the x-dimension A x stah, and its
extent in the x'-dimension /\x! stab., and similarly for the

y-motion, Ay stab.,Ay'stabe It is to be noted that this
measurement is somewhat subjective since scattering of the

points on the phase plet is not a clearly defined thing,.

#We sometimes refer to this as the stable region,
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coordinates
of the eqmilibrlum

main family
/>§§£xji;2;§<;§;§?s

Fig. 3: A drawing to illustrate the appearance of islands.
Scattering of the points appears in the region
indicated by cross=hatching.

~

I

1sland

In Table l} is listed our estimate of A x stab, A x' stab,
Ay stab and A y'! stab for the different € . Thése

estimat es have beenrmade from the phase plots for the com=
putations with different € . It is clear from this table

that the dimensions of the "stable region for the last three

E lestab Ax! stab Aystab AY! stab
o 0.26 _ |o0.6l 0.3l 1.75 |
10”6 0.2 0.6 | 0.32 1.75 _l
1072 0.2 |o.6l 0.32 1.75 :
10-3 0.12 0,L0 0.2 0,88
3 x 107> 0.05 0.16 0.0l 0,16
5 x 10~3 0,02 0,08 Jonog 0,08

Table L4 ¢ Dimensions of the region in phase space occupied

=

by the main family of closed zurves, with n = 253,303,
e = 15,831.4.
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sets of displacements are considerably reduced. An interesting
result is obtained by a computation of the ratio of the cubic

> .
force to the linear force, %ﬁ— s at the boundary of the stable

6 5 10“5 this ratio is about 0.3 for x-

region; for € =0, 10
motion and about 0.55 for y-motion; for € = 10”3, 3 x 10™> and

5 x 1073 1t is 0.08, 0,03, and 0.01, respectively, for x- motion,
and 0.21, 0.02, and 0,02, respectively, for y-motion. Thus

for the large bumps scattering appears when the amount of

cubic is quite shall. It should be noted here that scaling

does not effect the ratio EEE so the result holds when the
displacements are scaled doig and e is coprespondingly scaled
up. This result was unexpected and at the present time is

not clearly understood,

Finnally, some remarks should be made concerﬁing the
apparently small displacements of the equilibrium orbits pre-
sented in Tables 1, 2 and 3. Since we are dealing with a
nearly linear system in the neighborhood of tpe equilibrium
orbit we can compsare these results wi th the theoretical results
using the linear theory. Courant's equation gives a value for
x eq orb./. of the order of 100 for the parameters we have
used in the computation. Liders?! more accurate equation yields
a vélue of approximately 25. Both oflthese figures are consid-
erably greater than the ones we compute. |

The source of this difficulty is clear. In the work

of Courant and Luders the physical picture of the imperfec-
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tions is like that shown in Fig.2 while we have really considered
the situation shown in Fig. l. If one tries to correct for
this difference by dividing the results of Luders by &zi
(since we really consider 1/2 as many "bumps") the disagreement
persists. Now in Fig. 1 it is noted that successive focussing
and defocussing 1/2-sectors are, in effect, "tied together"...
the displacement error between them being zero. It does not
seem unreasonable to suspect that this situation can result

in a smoothing of the pe rturbations caused.by the bumps at

the center of each focussing sector. This suspicion was con-
firmed when the fgllowing problem was investigated. Assume

a purely linear machine and let successive pairs of focussing

and defocussing 1/2 sectors be tied together, as shown in Fig. L.

+ -

Figo lf ¢ 1Illustration of the special case of f-imperfections

treated in Appendix 1l.

The assumption of linearity permits a relatively simple
theoretical calculation of the displacement of the eqﬁilibrium
orbit. This calculation is made in Appen&ix 1. In Appendix

2 we consider-the physical situation illustrgted by Fig. 2 in

a iinear machiﬂe and bompﬁterﬁs‘displééement'or the eqﬁilibrium

orbit. The results of these two computations for a 50 sector
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machine with n,. = - n_, and equal length focussing and defocussing

1/2-sectors, are presented in Table 5.

TR

Appendix 1 Appendix 2
4 - A/'?

O yeq,orbo Zggigghp

“ =

516 97 100
TT/2 12 19
/3 3.9 18
T, 646 21
TT/6 5,8 28
_Thao 2,1 18

Table 5 ¢ RMS displacement of the equilibrium orbit
at the center of a focussing 1/2 sector in
a 50 sector linear machine when 4,- 1/2-
sectors are "tied together" (col.d) and
when they are not (col 2).
It is clear from this table ths the RMS displacement
of the equilibrium arbit is considerably smaller for the sit-
uation displayed in Fig. 3 than for that displayed in Fig. 2
when O is in the range 1/3 to T/20, This result supports
the earlier conjecture that the small values obtained from the

Tlliac computation were due to successive focussing, defocussing

1/2-sectors having zero displacement with respect to each other.
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tions is like that shown in Fig.2 while we have really considered
the situation shown in Fig. 1. If one tries to correct for
this difference by dividing the results of Luders by { 2,
(since we really consider 1/2 as many "bumps") the disagreement
persists. Now in Fig. 1 it is noted that successive focussing
and defocussing 1/2-sectors are, in effect, "tied together"...
the displacement error between them being zero. It does not
seem unreasonable to suspect that this situation can result

in a smoothing of the pe rturbations caused:by the bumps at

the center of each focussing sector., This suspicion was con=
firmed when the following problem was investigated., Assume

a purely linear machine and let successive pairs of focussing

and defocussing 1/2 sectors be tied together, as shown in Fig. L.

Fig. It ¢ TIllustration of the special case of f-imperfections

treated in Appendix 1,

The assumption of linearity permits a relatively simpie
theoretical célculation of the displacement of the equilibrium
orbit. This calculation is made in Appendix 1. In Appendix

2 we consider the physical situation illustrated by Pig. 2 in

& linear machine and cOmpute*&Q;diSplééemant'of the equilibrium

orbit. The results of these two computations for a 50 sector
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machine with n, = = n_;, and equal length focussing and defocussing

1/2-sectors, are presented in Table 5.

i

Appendix 1 Appendix 2
=3 72 |

O yeq,orbo yegqorbp
=R e
56 97 100
T2 12 19
/3 3,9 18
T/, 6.6 21
/e 5.8 28
Tl 20 Tl 18

Table 5 ¢ RMS displacement of the equilibrium orbit

at the center of a focussing 1/2 sector in
a 50 sector linear machine when 4,- 1/2-
sectors are "tied together" (col.d and
when they are not (col 2).

It is clear from this table tha& the RMS displacement
of the equilibrium arbit is considerably smaller for the sit-
uation displayed in Fig., 3 than for that displayed in Fig, 2
when O~ is in the range 1/3 to 1/20. This result supports
the earlier conjecture that the small values obtained from the
Tlliac computation were due to successive focussing, defocussing

1/2-sectors having zero displacement with respect to each other,
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The RMS displacement of the equilibrium orbit atCY'=1T/6
according to the computation of Appendix 1, is 5.8.

This result is in agreement with those found from the Illisc
computation. It is not surprising that such agreement is

found since for the constants we have used the linear part of

the Powell transformation (Eq. h) corrsponds to a O = TVB°3700
This agreement of the results also indicates that the pertur-
bations on the equilibrium orbit resulting from the imperfections
illustrated in Fig. L do not differ significantly from those
caused by the imperfections illustrated in Fig. l.

Finally it should be remarked that one Illiac computa=
tion was made in which the Runge-Kutta method of solution of
the differential equation was used rather than the Powell
transformations. The imperfections were identical to those
used with the Powell transformation equations (Fig. 1). The
results of this computation were in good agreement with those
obtained from the use of the transformations.

These results suggest an interesting idea. If; in the
construction of an AG machine, it would be possible to construct
each unit of the machine as a focussingdefocussing pair in
such a way that the alignment error of the focussing 1/2-sector
relative to the defocussing 1/2-sector within a unit was very
small, then errors reéulting from misalignment of the units
themselves woﬁld cause much smaller perturbations of the equi-
librium orbit than if the 1/2-sectors themselves were the units
and iaid down wi th the same misalignment errors. (We here ignore

the obvious improvement of a factor of \ 2).
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Appendix 1

In the following an equation for the RMS displacement
of the equilibrium orbit at the center of a focussing sector
in a conventional alternating- gradient synchrotron with linear
forces end f-type imperfections like those shown in Fig, j
of the text is derived,
" In a pefcht machine the betatron oscillations are

described in phase space by the following matrix equation:

Y (94 a9y = (d+ad |0y v &, (1)

where 49 ias the azimuth of the particle in the machine and

‘Y(Q ) is the two component vector describing the radial or

()
Y('Q) = v (2)

ye(18)

vertical position coordinate and its derivative, y' = dy/a¢ .
The coordinate y(¥ ) defines the position relative to the
equilibrium orbit. We assume that n, the field gradient, is
a constant in focussing 1/2-sectors and defocussing 1/2-
sectors. The matr§§ M in Bq. (1) is then defined by the

4

following equétionsg

Fornsn1> 0

cosy n1“1/2 sin ¥,
wn}/zsin“ﬁ cos V.

whers Y; ni/e AQ. 0

w (9+add y = (3)
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For n = ==n2<0
W Hrad|§) 2 foome VE om0y
nb/2 sinn'Y cosh’Vz ()
where Y = ni/z 4192 " |

It is nov assumed thet the matrix eguation, corresponding
to BEq. (1), for the imperfect machine is
vdrat) cm s w4 1 [wd) )6

where the position coordinate y O&) is still measured relative
to the equilibrium orbit in the perfect machine, M( 494.-,&9['9)
is & transformation through a portion of the machine in which

the magnet alignment error is constant, and Ei is a random

vector describing the constant alignment error of the ith por-=
tion of the machine. The random vector Ei is written
e
E, = ' (6)
O O

|
Thus Eii describes the position error (a translation) of

th

the 1" portion of the machine, and éii is defined to have

the following statistical property: B
. 2 =42 "

where the bar denotes an average over an ensemble of machines

with misalignments.
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To treat the situation i1llustrated in Fig. L of the
text we let each perliod of the machine have a misalignment
given by Ey and M = M (19 i*1l1fi) bg the transformation through
one period of the machine, from the beginning of one focussing
sector to the beginning of the ngxt focussing sector. Equation
(5) now takes the form

Y "’EEM(Yi“"Ei)J (8)

141 :
or

Y =MY1+(1=M)Eio (9)

141

Let there be N periods in the machine. It follows from Eq.
(9) that (10)

X =¥y, 4wt (1==-1\f{)E1 ¢ MN“‘?(lmM)EE%-oo.+(1TM)EN..

14N i

Now assume that the system is not on a resonance and require

t Y =
tha 14N Yy ; then

= wmN =71 = N =1
Y, 7 (1-MY)7" (1-M)M =y By (11)

gives the coordinates of the eguilibrium orbit at the start

of a focussing sector in the machine (in particular, the
first focussing sector).
Let ﬁpl'and )ﬂ2 be the eigenvec¢toras of M with‘corfespone
ding eigenvalues, }\' and A 2 Expanding Ei along )01 and Sﬂ
2
we have

E, =a, Wl + b, 702 5 (12)
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Substitution of Eq. (12) into Eq.(11l) yields

(13)
1- Ay N N =1 1= ) N 4
Y = A S oag A Y ¢ =22 AN A #
N i E i .

The displacement of the equilibrium orbit at the center
of the lst fogusying sector is given by

v Iy = MHQ{*%\U) ) ) 4+ a-ud+IW))

1~ N N = Al
i f—)% Ay o Ny [wdhs 2Nl1y1) LPJ
1ﬁx1 i=]

_‘ N | (1)
L Xz > vy ) 1&a<&1+%\191 )?%

e i B i=1 2
2
T
¥ (1=M(4ﬂ1+ N\»[,Q )) B .
From Eq. (3)
T cos : -1/2 in 1
M(191'i" ;ﬁ(‘]?ljs ’ufl/a "M %18 ’\‘}/1/2
-nt/2 g3 f15)
1 sin ,Y]-/a cCOoS8 1/2 :
where ”]:11/2
Q{E/E = 1,1T, (16)
2N

Now the ejgenvectors+ }01 and }0 > are given by

%1:(;) X s MM

(17)
Y2



e (a) . e At

and the eigenvalues are

Ar=et® X =T (18)
From Eqg. (12)
€, =a + b,
i i i (19)
o = ai°\ + bip 9
80
a, = &1 s by €4 5 (20)
A > L.
= 'F K

Note that ‘Pl ;)g *, /\1 3,\2 5 ai = b;.

It follows from the above that the mean«=square

displacemgnt o the equilibrium orbit, 2( ’LV +—-—)9 bs
9

2N
2 N
S e AN AT S
+O(n11/2 sin 1/2|2

2
GADE ALty Zees Y,
4 2Re (1ng)2 / (iz-]_ ai>\1 ) /
! =1 .

J
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and the RMS displacement is given by '\1\52 ('91 + %)o

The last two terms on the right are small compared to the
first tw and if we neglect them, it is found after a little

manipulation that

2 Ty = g2y[i=ees0™) 5 . 22 tane o
A (’l/ol+2N) eN(1=cosNU') B =g“ tan® /2 cot NO/2 B

2 (22)
¢+ & tan O/2 cob N O/2 COSE,YI/EQ

where /
1 =1 2r M

B B s (=M, 5M,.cos2 Y L 11 22__lM sin\r
l-co0s2C 12721 1/2 5 21

(23)
2
pold sin‘?Y

{ - '?,O ‘
and the Mij s are the elements of the matrix M M( 141 191)9
Eq. (8). ~The figures in the first column of Table 5 of the

text were computed from Eq. (22)e
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Now consider a machine in which each 1/2-sector may
be displaced an amount E%i.(i = 1, 2¢00.2N)s The equation
describing the transformation of the phase vector in going
through one period of the machine, from the start of one focus-

sing secter to the start of the next focussing sector, is

Yi+2 = MYy ¢+ MD(lme)Ei $ (1 - MD) Ei+19 (24 )

where M is defined as before, MD is the matrix for the trans-
formation through a defocussing 1/2-sector, Mf is the matrix
for the transformation through a focussing 1/2-gsector and Ei
is the error‘veqtor with components é:i end 0 as before.

Define
Ef 3 Mb(lmmf)Ei ¥ (1~Mb)Ei+1, (25)
then Eog. (2l) becomes

= ; 1
Y T WP R 5 L86d

and it 1s easily seen that

N=1
- TN M E? N=2 E! coo 4 B!
Y1+2N Bry - il 3 * 2N=-1
N (27)
= MNYl s > wim :
121 2i=-1

Following the same line as before it is assumed that the system

is not on a resonance and it is required that Y1+2N = Yl, then
N i
v.8 (1-MV)"1 MY ¢ m"1 gy (28)
AL ) %gl 2i-=1
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gives the coordinates of the equilibrium orbit at the start
of a focussing ssctor in the machine.

Expgnd E! along the eigenvectors of M, ‘Al and /23

2i-1

B! ~ yo 4 pt FQ i (29)

2i=1 2i=1 ! 2i-=1 2

Equation (28) can now be written

! N
AN ol
Y1 “A.l_ Z /\ 18‘“21@1 (Pl
1“A§ i=l
(30)

I
+ bt
1A§ i:]. AZ 21-1 %2 ’

and the eguation for the displacement of the equilibrium orbit,

at the center of the l1st focussing sector is given by

Y(LQ"’%) = Mmﬂf%/ﬂl ) ¥ 101) + (1-u(d 1'—'11? ) )E,

N N ‘ ] (31)
“’\ /\ - a:;i=- \-_M( 1 2N 19 ?
lmxg i=1

N N i}
! /\2N = A ' P211 [_M(qol-\-%h{)\az] ’
A |2

2

t (1-M( ’014-—2% |'191) E

1 2
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where the matrix M(ﬂ +'JI'\19 ) is defined by Eqs. (15) and
(16) of Appendix 1l.

The. computation of the constants in the Egq. (29) is
a little more tedious here. One finds
[(MD)21 My - o), 4Pyl €

21~
=il (32)

43

21-

+ [_':(MD)21+ P (Mp)qy “pléhi
T
where (MD)ij is the i,j element of the matrix Mb, Mij ig the

1,j element of the matrix M gsnd & and ‘@ are given by Eg.

(17) in Appendix 1.
Taking the y component of Eq. (31), squaring, and averaging

yields *
Yz(ﬁkfg% ) gIE;ﬁ&F%;%; | a',z , coa?é;ﬁin{l/esin QYi/z\ .
(33)
-211:121!-% ( :izz-n) { 1S (ay )2(0"8’)[//2 n ’in’?//Z)}

l=-cos ‘V ; s -
+-—_~__&ZE Re Elai ieicr(N/a 1) (cos 11/2 Txnll/gin'Y1/2{}

sin N &
2

4 (1 = cos ’\P\]_/z)a 62 ’

E—— S t— ———

and the RMS displacement is given by '32(91 4 :21%):.
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The first two terms on the right of this equation are the
dominating terms, and so long as sincgN/sino can be
regarded as small compared to N only the first term is impofw
tant, The figures in column 2 of Table 5 of the text were

computed from Eg. (33) using only the first term on the right.
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