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I. INTRODUCTION

The Mark V or "spiral ridge“ FFAG sccelerator is a version,
originally proposed by Kerst,lsz of the fixed=field class of A=G
machines. In this design the general rK increase of field with
radius is modified, to produce alternate-gradient focusing with no
marked increase of circumference, by introducing a spatial ripple
into the guide field so that the particles encounter regions in
which the local "n" and restoring forces alternate. This 1is
achieved by constructing a field which, in comparison with the
average field et a given radius, 1s alternately higher and lower
along oblique curves which all particles must cross. . In practice
such a field would be attained by the use of spiral ridges on the
pole surfaces; supplemented, when required, by similarly disposed
current-carrying conductors.

It is the purpose of this report to derive analytically
information concerning the particle motion in the Mark V accelerator
and, in Appendices, to record some teehniques useful for further

study of the motion by aild of the ILLIAC digital computer.

'II. THE MAGNETIC FIELD‘

A. Form Assumed in the Median Planes

Without the ‘use of poles excessively close to the median
plane, the type of wariation of magnetiec field which 1s most
'readily realizable is sinusoidal. To obtain a field which would

subject ﬁhe particles to alternate focusing forces, it was originally
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conceived that the field prescribed in the median plane be of the

form

B,o = ~Balv/e) §1+5 sin[ & -N @1

In order that the field scale, however, in such.a way that the
essential features of its effect on all particles be the same,3
it appears desirable to mske the quantitetively minor modification
of adopting the form
Bao = - Ba. (/5 ) {1+ sin[220%%) -N @7}

with w constant. This revised form for the median plane field
will be the basis for the remainder of this report. The momentum
compaction is then clearly given by (Z}r/r)/(lkp/p) = Elr ¥

From these expressions it is seen that N is the number of
spiralling ridges passed over by a particle in going around the
machine once in the 6 directione. f is the fractional flutter, in
the magnetic field, due to the ridges. Finally, if the radial
width of the annulus is small in comparison to the outer radius,
Tos A =21 X = 2fr,w is substantially the radial separation
of the ridges. The angle by which the ridges spiral out from a
reference circle is of the order Nw and in practice will be quite
small. The exponent k is taken to be positive.

It will be convenient in what follows to work with dimension=-

less quantities defined as follows:

(::Tl)kﬂ - B

Il
=
I
=

X

e e
y = N
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the median plane field may then be written

Buo =~ &k (1+x)8 §1+£ sinld 2n(l+x)-NBI}

where Ng = N6 + &n (r/r.).

B. Development of Vector Potential:

To obtain the differential equations governing the particle
motion it 1s desirable to characterize the magnetic field by a
vector potential, which should be at least approximately compatible
with the prescribed median plane field and with Maxwell's equations,
in order that the resulting equations be rigorously Hamiltonien
and the soluticns thus satisfy Liouville's theorem. In attempting
to write suitable expansions for components of the field and vector
potential, one may be gulded by the consideration thet x and y
will themselves be gquite small but that x/w and y/w may, in cases
of practical Interest, be comparable with unity. In the work
described in the body of this report terms involving powers of
these latter quantities will be retained so far as practicable,
but no more than quite limited accuracy may be expected for values
of X or y nearly as large as w. kx and ky, however, will be
typically rather small ( £ 0.l). Also Nx and Ny are normally less
than kx and ky.

We undertake an expansion of the median plane field, through

cubic terms in x, to obtain

Bao = - é%". (1+x)5 [ +5 sin x-lg‘z2+5x3_N6)]

]

- e'%] [Ao +Al X +Aa x= +A3 X3J1
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whereAg:I" ‘F.A«/Y,NQ .
A; =k +F(wecoa NO -k ain NO)

Ay =BG e[ R oo NO +E5- - 2EL) .0 N6
A3 v k(k (k-2)

+‘F§ ~3p2 + 3k{K 2)+2 o NG +[ 121’-4\(2 _ k(ﬁ-bll]k-g” ) N@}

Likewise, for use in What follows,
, b
(I+XJBZOZ -éT:[BQ+B’X *nga +B3 XS,

where E3 =|-f Au/n.fV()
B, =k+| +f(w Otm,NQ-(kH)MN@ )

B, :T“H"*"([ LE% B O(NJNG*'(EWa - delkrl) 2’”) )AimNej
B, = {kqu{k )

‘ff{ w2+3K2-ImN6+ k {kH)g(K'I) ]MN@}.

We now seek a vector potentlial such that An and AZ vanish at z = 0

(in general, the components Ag and A, will be even functions of
z or y with A, involving only y2 and higher even powers of ¥y,
while Az will be an odd function)e Then in the median plane

Ag must satisfyu

+ Fll+x)Ag,d = (1+x) By s

Y
leading to the possible solution

%(/f‘X)AQG = C,X+O£X2 ¢ x3%04 X+ , or
5 o
F Ao D x +D,x2 + Dy 3 + Dy x*
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where C,="Bo = =]+ f .anNO

Cez_g' z w k* Ff(- EWWNQ + 2im NG )
(-fe - oMol , ek N9+/ gire + 44 ) NG T
C4:-4_ - fki‘/)k/k‘/}

" we,jj;’ Coo NG + 25582 HicH) klk-11] 0 NG,

LY

[j :(j : </ +Fa-NB

[ =l = ‘" F(zww\lg*?_mm/\/@)
D3:C3—C,2"'C

2

= KBSy e K g N +(-ghe + 25 ) 4 NG

D4: C4__C3 +CE—C1
o k34 k8 +7k -12
24

Lo JALE s B F 3k
o (B HCAOT o NGO+ [ 2 Ak 4 7 18] i NO}

To develop the vector potential for points not in the medien
plane we employ a gauge in which div A = 0 and note that, in the

rotation of E, S ;ﬂh]:{ele‘.,rjgL

{I _E‘"Ar_ Atg[Aeo E";J
= 2 Ae b1 aﬂec
AGO 619 Z {[(Vt Aa ¥* 66‘ Y2 98 é\r} ~
A A -2 9 Aa,
. Vta{m:e/qeo' F%) y—i4 ae&aa Y2 a_é(VtEA& a ‘Y‘Qé)
. A A
t2 et - L Eot . £
w VA o Y l' Pe) 2 8/4
e -2V (v 50’ =¥ )
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Likewise

_{Z'g'sAtf Ve Ao,

In this way we find

%Aa =L x +Dhx2 + Dy %%+, x#
- #|D+2D0, )+(-2D, +2D, +6D, +0') x
#2D,-3D,+30: 12D, -20; + ) x?
+5#1D,-6D,+12Ds +24D, -20)"+ 4D; ],

€A, [D/x +(-2D/+DL ) xelye + DS2Oe_ye
FA, =-slD/x #(-D) +D} ) x2 + (D -0, + 05 ) %3]
D200 )+30) - 403 6D, +D,™) x] |

primes denoting differentiation with respect to 8. These compo-

nents of the vector potential represent expansions through fourth

order in x or y and, as a check, can be verified to satisfy

d
G VA=Y, e A, e g

oX | +x% !+ X
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through third order.

III. THE EQUATIONS OF MOTION

A. "Lagrangien" for Use in Principle of Least Action:

The differential equations governing the particle tra jectories

in the aforementioned magnetic field may be convenlently obtained

from the principle of least action by use of the "space Lagrsngian"

A (x, y3x! ' 0) = pr1/l+x tx2ry? + e [(x)A, x4, *g’A]

e
& +y+3 —ﬂ——"'“j( L (xR )

+5ll+x)Ag +x'A, *3’A7_]
2| od M f (0 2
+2{D)x'xg + (LD xH(D-00eeTs D2 DL TG Ho
+Cyx +0ax® +Cyx3 +(C, x*
~5UD+20) +-D, +4D, +6D, + D) x
+-0, 49D, +I2 D), —D”+Da”)x2]

2D -6D0, 412D, +240), -20)+4[) ]j

in which we have treated x' and y' as of the same order as x and
y despite the fact that these derivatlves may be expected to be

some N times greater than the dependent variables themsélves.
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The Euler-Lasgrange equations, if applied to the Lagrangian
of the preceding paragraph, lead to differential equations for the
motion which might be susceptible to solution by digital compu=
tation®, but which are not in a form most suitable for analytic
study. The equation for the radial motion,; in particular; is
marked by the presence of a forcing term f sinN6é derlved from the
term (14-01)x in the Lagrangian. It csn, in fact, be shown that
the magnitude of the (periodic) response to this forcing tem 1is
sufficient (&2 =f/N2) that non-linear terms in the differential
equations affect significantly the character of small amplitude
betatron oscillations=697 It i1s desirable, therefore, to under=
take a change of dependent variable such that the forcing term is
suppressed and the resulting equations, if then linearized, may
be used to provide an analytliec basis for determining the character
of small=anplitude free oscillations.

The Lagrangian as Written is in a form somewhat Inconven=
ient for the analytical work to follow bscause of the presence
of terms arising from centrifugal effects, Since the fi:st deriva;.
tive terms which result in the differential equations are in prac=-
tice small for excursions of the order of the forced motion (at
least in the case of "full-scale" high-energy accelerators), it

i1s expedient to simplify the Lagrangian 1n siuch a way thet ths
troublescme terms are removed but with the remaining terms of the
differential equation modified only slightly. We accordingly

continue by use of the following Lagrangian, which yiglds
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differential equations free from terms involving first derivatives
of the dependent variables and, in the remaining terms of the
equations, modifies only slightly the originel terms involving

v2, xy, xy2, x2y, xy3, and xi:

2 .p
s X +Y X<
of:: - + X+ 5
p - £ s
+EIE X +E, x2 +E5 xP +Ey x4 #hy 92+ x 92 4B x2y2 +G 47,
with
D
-3t =P,
) D"
1 '%Q -3D;- 1
3 27 0’ D
Ei[lr’[%e_lzfl:% -0l -8 -7

D, _ Do, b 0" , D
zz2-4 2tz tiz .

m
I

O

ol
"

Ez:CQ*'eg"!
E3203 +§C‘2]
E;=Cp+3C, G

pil <1
lle He

.

B. The Forced Mction:

With the aim of separating out the ma jor effect of the forced
oscillations we now introduce the new dependent variable u by the

substitution

X =K, axnmNO +K; coa NO + e,
a numerical integration for a particular example having suggested

that the forced motion is in fact close to sinusoidal. The

resulting Legrangian (after subtracting a term which is a function

only of ©) is:
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'

Lo BT SR o O 2t BB ) 2
HI+K, 2imNB +Kecoa NOJu + &
+ 24, 12F 1K, 2inNG +Ks crs. N6)

+3E,(K, 3im NB +Ky coree MPHIE, (K, aiNB Ky cos M) T
JE,23E, K aimNA K, ¢« VB) +OF, (K, 41 NO Ko coa M 2
HE+4E, (K 4in N6 K, cow NOJJu? thy it

AR +F (K, i NG +Ky ot NEOJ+E (K 4 NO+Ks ot NOFT 52
L F +2K (K ain NO+ Kz con N) i, 5
rRouty? +0y*}

of which we shall be chiefly interested in terms of second or
lower order In the variables uyye:
This Lagrangian leads to a residugl forcing term in the

equation for the u~-motion given by

[HN?+)(K, 2im NO 1K con NG
t Q[E,- *eEg(KfA{m N8 *Kg CA@NG) f3E3 (K AimNQ"’KE CA‘\‘LNQ)
+4E (K 4:INO Ky cou NE)' |

&
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= [ +(N?+1)(K, i NO +K, cow N6)
+;’?{—/+me9 - # 20 e ora N Hk2) i N . N K V)
- E L coa Nttt £ ) NOJJIK NG K o B

S ) NGt et £ N )

and 1s to be suppressed by suiteble choice of the constants
pl/p, Kl’ and K2' It appears frcem this development that a meesure
of the sdeguacy of the analysis 1s afforded by the degree to which

the values found for Klfw and K2/W are smell in comperison to
unitye.

The forcing term contains the following Fourier-components,

which may be made to vanish:
Constant Termsg “’ }?[‘H‘E’i fngZ _Z)qu K; 3 2@—(&2'*,(22)
3 B (K15 TCK (K 4K )],
Coeff. of sin Ne: (NZ4I K, + &/}: +°(KI f'l(-‘—-'BKEf-Ka)-f‘ﬂ)/(fQ +§_,4K,(K,2+K;)]]
Coeff. of cos N8: (N H)Kg P[xkev‘ (K‘_ 3K9) fLKl( §AKQ(K12+K£?)_,7;

k? % . / K2

a= "7 b=y <= szt o,
_ k3 Y e __ k ﬁ_
A"E' =T ow Tew? C"e t6
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We have attempted to find solutions which make these coefficients

vanish when the mac"ine parameters lie within what may be consider=-
ed the normal range of

valuess In this way we find:

K,_—': - i 2 f
I\ —(k+/)+§@r—fﬁ-)2 NE —(k+l)

2
K o f k or very nearly zero, and
2~ 4w N

bhe, k2 /f)2
PSR

The forced motion is thus represented approximately by:

Xforced = EI-E_()

]QE_?;:D_[ébW,VQ 47r(k@} Cwﬂ/pV6a7

21(%) sz(ku) aim NG

HE

!
Xforced ==

‘/2 (k*l [erd./\/() +4‘W‘(N" e /\/6’/

T o N f )
N2 '(k“‘,) A I\IQ )

accordingly, at © = 0, the "fixed points" are given by

i
Zfixed >~z — L (i)
2 N



1~ LJL(MURA)-5

]
*fixed 2 — th )
N2 =(k+/)
and the emplitude of the forced motion 1s given approximately

PRI L Py—
N2 - (k+l) °
The validity of these results 1s expected, as noted previously,

by the magnitude of the coefficient =

to be meesured by the degree to which Kl/W S 2f = L8
Ne=(k+1)

small in comperison to unitye.

C. Cheracter of Small-Amplitude Betatron Oscillations:

For smsll=-amplitude oscillations about t'e equilibrium orbit,
the governing differential equations will be of the form
u" 4 Fu=0
" g Fyy = 0 .
On the basis of the Lagrangian of the previous sub=-section, the
spring factors which determine the frequencies of the oscilletions
are respectively (neglecting Pl ; P , Ky, and powers of K,

above the first):

Fa_ = “"‘E?Eig "fikﬂlfs Ain PJG)
k + ! Ckxus@ PJE ( Y Aime NG
2 T
= K4l-2 %;‘)T;f*%f‘m/\f@+éﬁ%)‘ coa EING
K =-2FK —EK,EMNQ

~J

I

2
== ‘W‘ coa NG + Na ?;:./ ain. e NA

2
= 'fE % “w Cod NQ‘ f\(/'e/"ﬁ)*‘” coa NG,
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The linearized equations representing smell amplitude beta=-
tron oscillations are seen to be of the Hill type. Some alds for
the soluti-n of these equations = esgpeciselly for the determination
of stability boundaries and the characteristic exponents (o, and

(gyj of the motion - are noted in Appendix III. As Kerst has
polnted outs, useful orientation is readily provided, however, by
epplication of the "smooth approximation" technique introduced
by Symong. If the normally=-small contributions from the cos 2N6
terms are ignored and if k+1 1is neglected in comparison to Nz,

the smooth approximation leads to differential equations of the

form
u"+ 1/ ° u=0
u
v+ 2%y=o,

- 2
where %'2 2 k+/..Jé(w".f;J)2J-’é’é‘}fi’v)
= k+l a.nd

By o Ll f ¥
7/:1 ’_k+3(WN +Z W N
il g -.
=W)-k.
It is thus seen that the frequency of the free radial oscillations
is substantially determined by the exponent characterizing the
radial increase of avefage field strength, while axial stability

may be obtained concurrently if (WEN)Z is sufficiently large to

dominate =k,



-16= LJL(MURA)=5

It will be noted that these features of the betatron motion
differ markedly from the performance which would be expected on
the basis of an expansion about a circular reference orbit while
ignoring the presence of the forced oscilletions. This situetion
can be understood physically6’7 by reference to g diagram on which
are drawn contours of constant magnetic field strength in the
median plane, with the expected equilibrium orbit supesrposed
(Fig. 1). One notes that the field gradient is in a sense to favor
radisl focusing over a smaller intervel of € 1f one examines the
gradient in the neighborhood of the scalloped curve than if one

merely examined 1t along a line of constant radiuse.
IV, ILLIAC STUDIES OF THE PARTICLE MOTION

Although the results of the foregoing analytical work are
believed to decsribe reasonably well the general character of
particle motion in typical Mark V machines, it is clearly desira-
ble to study the motion in'representative structures of this type:
by means of digital computation. Such a program not only would
provide a useful check on the analytical results and provide
information concerning structures for which the approximations
which we have introduced are irwalid, but can take account of the
inherently non-lire ar character of the dynamical equations and
provide accurate information concerning stability regions. Work
directed toward these ends is listed below:

(1) Exect differential equations governing the motion in

the median plane have been prepared for use with the ILLIAC
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("Ridge Runner" program).

(11) Relatively simple, approximate differential equations
for the three-dimensional motion have been prepared, attempting
to take account of the fact that x/w and y/w may be la ge (compar-
able with unity), but supposing that the variables x asnd y them=
selves will be small("Feckless Five" program).

(1ii) More accurate, but somewhat more eleborate, differential
equations for the three-dimensional motion have also been set up
by Vogt-Nilsen, based on recent vector-potential developmentsh
of E.S. Akeley ("Feckful Five" program).lo These computer progrems
are being directed toward a comprehensive study of the pearticle
dynamics in Mark V machines, chiefly through the efforts of the
Illineis groupo*

In Appendices I and II to follow we outline the development
of the eguations listed as (i) and (ii) above. In Appendix III
we describe some techniques which have been applied for obteining
information conecerning solutions to the Hill equation developed
in Section IV of this report. In Appendix IV we make some numer=-
ical comparisons, in certain examples, between results obtained
from the analytic theory and from the ILLIAC computer. As Appen=
dix V we present a stability diagram computed from the analytic

# Note added in proof: See also the similar development proposed
by Powell ZHURE-JE?
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APPENDIX I

EXACT DIFFERENTIAL EQUATIONS FOR MOTION IN THE MEDIAN PLANE

For the accurate exploration of the cheracter of particle
motion in the median plane of the Mark V accelerator, and for aid
in checking results obtained by other methods, exact differential
equations governing this motion were prepared in a form suitable
for ILLIAC computation. It is clear that this is possible, since
the field «- and hence the nature of the forces =- is prescribed
in the median plane. The resultant program has been termed the

"Ridge Runner".

For Z identically zero, the equation of motion isll

d ( e ): y + LB
dg \Wrz 4+ ¥* | VY% + vy oo

With r = ry (l+x),

d X! - 1+ X ey;

adf \M1+x)2 + p= )‘W 3 P (I*X)Bz .
We let = )(" or :___ X pX

Gy e vl
TP B <p s NO=NG + £ (/)

to obtain the simultaneous first order d fferential equations

BR’'=VT-FRZ - L;'- (]+ x)f"*’{) +f,4im[—‘;f_7=_.?m (/+x)-NQ7}
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/[ These equations are clearly in Hemiltonian form, since
ax’/ax = - 8px'/9px, the "Hamiltonian"™ being

A oC /+x)V/-p2 —%’{/’xmx)!ﬂf o
= "(H-X)WJ-;LIX(HXJHI {/+f—d»'/v[_7}r fMﬂ*X)ngZ;C/X)

in which the second term represents the contribution-—%% %};%5
!

from the vector potential._7 For automatic digital computation,

r, may be taken so that Pp =P (for convenience).

APPENDIX II
APPROXIMATE DIFFERENTIAL EQUATIONS OF MOTION

In the attempt to permit relatively simple exploration of
three-dimensional Mark V motion with the ILLIAC, relatively simple
differential equations of motion have been formulated. The Inten-
tion was to retsin the dominent influence of the quantity x/w,
which 1s not necessarily small in comparison to unity, but to
make approximations consistent with the supposition that x and kx
will be small in most cases of interest.s The resulting progrem
is termed the "Feckless Five",.

We employ the notation

- , D b

¥ = =5 . nhk) —epe
" 7 L

6 = Z,'am"l[“{f-”W] e & =i+ k) w2 2
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=1 B Ak ke +1-N*) w2 -i(2k+])wf

DI k=N wt -2 k]
NO=NZ+ Lnlv/v).

'

The field in the median plane 1s taken to be

B =~ *p# )"{Hfm[%r,em(ux)—/\iej}
SRR (I LIRS R Y

‘D' /! (k-ﬂ-”x 2
o - 1) f S aimfloNB)- T250 e—f; o (V6 +4)}
)

in which we regard the last term as a small correction.
If the vector potential in the median plane is taken to have

a @-component only, we employ the relation

(l +X) Bzo ) %[L\t‘:{h Aeo]

to obtain k+p (i e1)x
& o (140 _fwe Y.
—_ —-ﬁ }-FX)AGQ k 4 2 PTYS 8 uOTL(}y- NQ *6)
4 w_ﬁg'%,fs,- coa (NG +d)
or

. k+l ke x /
-8 A= U - ST o e MO 1)

- faex d”g%{i Oon(N@ ).
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For developing the vector potentiel at points not necessarily

in the median plane, we note

(kJJX e 3
div, Ag, =NFfw %M’—OJT— M(T,;:}- -NG + 5)+7érm of Urder g;ﬁ

and apply the methodsh used previously in Section IIB to obteln
J’HE

S it < E D o
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The equations of motion are now obtained by use of these

vector potentisl components in the Lagrangianll

L1 10t 0 99 e Sl g A ' ]
e x + —é‘%# 1 %[(/+X)Ae ""‘Q‘]!A;}](SUJCC we lake Aréo)

or the Hamiltonian

e (/+x)[ - A -Azﬁj C(/%x)/lg
: _(14x)])- &2*§’FA*) [ -S (1+x)g.

One thus obtains, if P is set equal to p:

x! = (14x) py
g1 o= (1+x) A

op = = (kel)x - Kkl 2 _ feailllic)
+§232 ¢ kzg(k-l) o
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L #
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_ 2/, 2/, _
P = kg +kExy + G 2y - JUEEL 2‘2) g’
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e T=a bt i 37 -NO 46)-B 2o i WO+)lad 55 4 im g
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- ety o (V945

'ﬂ%//ﬂ)@(k")x A aim /-%, -NO+§)
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It is believed that soluticns of these equations for certain
cases, involving motion in the median plane only, have been in
good agreement with solutions of the exact equations of the "Ridge
Runner"™ prograsm. More accurate, and more elaborate, differential
equations for the three dimensional motion have been in prepara-
tion by N. Vogt-Nilsen,lo guided by E. S. Akeley's 1:1'*ealtmen‘r,J‘L

of the wvector potentlal,

APPENDIX III
VARIATIONAL METHOD FOR DETERMINING STABILITY BOUNDARIES
AND CHARACTERISTIC EXPONENTS FOR THE HILL EQUATION

By the change of varieble N6 = 27, the Hill equation
encountered in the body of this report mey be put into the

standard fam:

LY LA +B coa 2T +C crs 4T)Y = 0.



i LJL(MURA)=5

Information relating the coefficients of this equation at the
stability boundaries may be cbtained conveniently by variationsl
methods, since the equation then has a periodic solution. By

considering the "isoperimetric" problem

k) o

6] Y ABeral T +C o AT) V¥t =0
o

J;‘é’ YidT = |

J

with -A playing the role of the Lagrange multiplier, we arrive

at the result
B m

J: 'ci"[Y/z—(B coa 2T +C arﬂ,AT)ngd’C
"% v2uz

A=

E | s .
By use of trial solutions =mn,
Y = 14+2P cos 2% + 2Q cos LT teceo
or Y =cosvy + Ucos 3T + V cos 5T 4eee

the expression to be minimized mey be put into an algebraic form
appropriate to the O = 0 or O = 1l boundaries, respectively.

This form is suited to rapid solution by a high-speed digitel
computer12 == by the minor modification of leaving the normaliza=-
tion of the trisl functions unspecified, the same general technique
may be used to provide simultaneous homogeneous linear equations

suitable for solution wi th a desk corrqm.z’cer.,13
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With a bit more algebraic complexity similar methods may
be spplied to estimate the relation between the parameters of
the differential scuation and values of @ away from the stabi-
1ity boundaries. For this purpose one notes that on the basis
of the Floquet theory, as Courant and Snyder have pointed out,lh'

solutions may be written in the "phase-amplitude! form

Y(,L,) ; W{,E,)Cti[L’?: +4P('l:)]

where, in the stable case, w(7?) and YW (T) are real periodic

]

functions with the period () of the equation and L is & real
constant equal to c)‘/ﬂ‘ . One then considers the variational

stetement

m
S wre-(Bees 27 +C oo AT (Lt ¥ Frtfrz=0
Lz' wed? =/,

to obtain

-

- T
£ E_"'[W'Z -(Beea 2 T+C cou 4?/')W34([*V72}r_‘57d’5
A - 7y "
1 I?W‘d'r

By the use of trisl functions ~min.

W21+ 2P cos 2T + 2Q ¢cos LT + eees
W1 2 2R cos 2T + 28 cos LT + eees
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the expression to be minimized again assumes an algebraic form
which, by 2id of high-speed computation, can give estimates of
the value of A associated with specified values of B, C, and
L EG/MT.

The foregoing methods have been used in ILLIAC computations
to provide tablele giving the estimated values of A for values

of the remaining parameters in the range

&t
(1]

0 (0.1) 1.0

Be 0 (0.2) 5.0

C2-2.5 (0.5) 2.5,
together with the values found for the coefficients of the trial
functions; For convenient use, and because the estimates of A
are somewhat inaccurate for values of L close to but less than

unity, supplementary graph316

have been prepared from these
data giving (1) A vs. cosG for various values of B and C and
(11) A vs. B for various values of C and O .

As hes been remarked, the foregoing me thods appear to suffer
somewhat in regard to accuracy for values of T near but less than
unity, although very close agreement with known values for the
stability limits is found in those cases for which comparlson can
be made. It is believed that close to the& =7 limit the form
assumed for the trial function which represents W' is not favor=-
17

able. It may, therefore, be appropriaste to mention & modification

of the variational procedure which might be useful if more
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accurate results should be desired fa other applications. 1In
this modification the single trial functlon w is employed, use
being made of the identity we(L + pr) = K2, a constant.
Specifically,
& (" 2_
o = / = 1 = el
Tl=5 —J; (LH”)d’ZI —K_fwzclz‘ =K <awe ) |
or
F<2 . -
<7 T~
'\‘w2> ’
Since, as has been noted,

A - -/‘»W’__z‘ (B coaPT +C Cmd'?f)w‘f ¢[Z+y1)2we>
{witp

we obtain thg'equivalent result _Lji -nﬁn)
(w2 -{(Bewa 2T e 'L’)We) (&)
A= {wt,

For convenience one may meke the chnage of variable “min.
v= we
to obteln
Ly y? 2
A =2 (‘f)“((BmEZ’*CcNdZ’)V>*<R_>
<V‘> min.

These expressions are conveniently homogeneous of degree zero in
their respective trial functions. The trial functions should
be non-zero, continuous, have a continuous derivative, be periodiec

with the period T , and (in the case considered here) be even
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about O and T /2. By virtue of the property last mentioned,
the averaging need then be taken only over the imterval 0 to 77 /2.
A limited number Qf hand-computed exasmples with simple trial func=-
tions Indicate that this modified procedure will give good results,
even for values of L near unity, although in practice some of
the integrations associasted with the averaging process may have
to be performed numerically.

If the trial function v 1s taken to be of the form

ve1+ 2Py cos 2T + 2P, cos LT + coey

we thus obtein

A< '_<(49Me'zr +BRaindL +f

2
. L -BP-CR

+ ]
,+8E)CUGET:+EQM¢AZ-+"' ’> <I+E’Ew2t+£’@ca@42’+">

In tabulating the results of a minimization procedure based on min.

this method, 1t would be desirable to include the valui of (1/v),
since en estimate of 1/(L +'7"')%, which equals [%(%.jz , is
ugseful in judging the amplitude resulting from scattering and for
determining the displacement of the equilibrium orbit due to
migalignmentse.
APPENDIX IV
NUMERICAL COMPARISON WITH ILLIAC RESULTS
In the table which follows we give comparisons between the
results obtained for radial motion with the ILLIAC, using the
exact equations of motion, and the corresponding values predicted

by the equations of this report.
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The theoretical equations used for estimation of the fixed

points are

Xrixed = = 5 (£/N)
x! = - Nf {EI P °
fixed N - (k +1) % fixed

For comparison with known results in one cese, we take the predicted

amplitude -(about the fixed point) for the forced oscillastion as

£
N2 - (k+lI)

The phase shift, csu, experienced by the small-amplitude

F

radial betatron oscillations in traversing one period 1s given by

the smooth approximation as

Gy = Elﬂ”;f+l

For a more relisble estimate, we determine the coefficients A, B,

and C in the standard Hill equation
d2u

d Tt HA+B con 2T +Cc,o<:.4’l') =0

using the relations

(e 1 - & L]

cEFE
¢ ___(_’%_)Zé/‘ N/;/fr()ku) .

and then interpolate c;u from the graphs mentioned in Appendix III.

)
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As one measure of the extent to which one might expect

in edvance accurate results from the theory, we list the quantity

F/w

N& -(k+l)
unity.

s which should be small in comparison to

It should also be mentioned that the examples given do not
necessarily represent practicable combinations of mactiine parame-
ters, the first exemple being in fact axlally unstable and others
having possibly undesirably large values for CSuu

APPENDIX V
DIAGRAM OF STABILITY REGION

The first stability region has been plotted (Fig. 2) as a
function of machine parameters on the basis of the theory presented
in this report end assisted by the graph316 describing the cherac-
ter of solutions to the Hill equation. The basic variables are
k/N2 and f/(ng), for k> 1, and the computed results are expected
to apply for small-amplitude betatron oscillations most accurately
when the ordinates are small in comparison to unity (say;%2u<% )e
A more sccurate plot of this character could be prepared, if re-
quired, by use of ILLIAC solutions of more accurate equations of

motion,.



COMPARISON WITH TLLIAC RESULTS i :

| 0w
|
2g | ¢
O wm
) @
& 3
Q0 @
o I« ja?
Machine Parameters Fixed Points Forced Amplitude * 3
| 5o
x ! A o
k| k= £ [1/w |N _2£Zw . Theor, Observed [Theoreti~-|Observed B B
k+1 Ne-(k+1) 3 X cal c fm \
i E X
| )
75| 76 [0.25| 167|27/ 0.06L [0.0000,3 |=0,0000l 0.1,097 &0.65w
-0,0103] -0,010l 0.2291| Y0.657| 0,65
0.0073
75, 76 /0.25(10l7|27| 0.401 |0.000043 |=-0.0000k 0.1291| Q.65
| -0,0103) -0.0108 1.4372] 0.827| 0,797
Approx. 0.2879
299 | 300 [0.25 [L000 |52 0.416 |-0.0000116 | -0.00001L); §20001ou 70,0000987| 0.137
-0.00541 -0.0056l 1.48
0,307
150 | 151 l0.25 (2094 [37| 0.430 |-0.000023 | -0.0000L 0.1125| 0,667
-0.0076 -0.0079 , 1.53 0.917| 0,867
j ‘ Approx., j 0.3287

G=(Vann)1rT
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