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ABSTRACT
In Part I the adiabatic solution to the coupled linear
phase and radial equations of motion is obtained. The solution
presented is a good approximation when the momentum gain per
turn is small compared with the momentum of the particle.
In Part II the effect of an accelerating electric

field which depends on the radial position is discussed.

PART I
In the median plane the coupled equations of radial and
phase motion can be derived from the following Hamiltonian:
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and ¢ = Wg . 7 1s the total energy of the particle, wso is the
frequency of the R.F. acceleréting field, e is the charge of the
electron, V 1s the maximum voltage across the R.F. gap, R, is
the radius of the equilibrium orbit and ﬁs is the relative phase
of the particle with respect to the R.F. when the particle is

synchronous. The field index n is defined in the usual way.
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With the exception of k,, all of the coefficients appearing in
Eq. (1) may be considered to be slowly varying functions of the
time

Xl = I.‘"RO

where r is the radial position of the particle and
Xy &R
where '7C is defined to be the difference between the relative
phase and the synchronous phase, ﬁs.
The equations of motion generated by Eq. (1) are linear.
Consequently the solution obtained is accurate when

/xy/ < R, T

Betatron oscillations introduced when the particle crosses the
R.F. gap have been neglected. This error is small when the
energy gain per time is small.

Although the variables in Eq. (1) may be separated with one
complicated time dependent canonical transformation, it is
instructive to exhibit the separation with the product of 3
canonical transformations. The first of these is time independent
while the last two transformations are time dependent. In the

third transformation the adiabatic assumption is used explicitly.

Transformation 1
Let S be the generating function for the transformation.
Let
Sl ot X2X2 - Plxl.
The new coordinates, Xy, and new momenta P; are related to the

old ones as follows:

pl:Pl, X2 :p2, P2="'x2. Xl:Xl



The hamiltonian then becomes
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Transformation 2

Let S, = (ul + a2u2) 4+ (alul + u2)P2 where Wy =
. and 3, = v Fos ﬂs - Uy and uy are
ell - n) 27Ry2w (T - nJ
the coordinates conjugate to the momenta 771 and ﬁfz
respectively.
X2 = a.;lul + u2
M1 = ety

The hamiltonian then becomes
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Transformation 3
In the above two transformations it was assumed that the V
is small. We shall now make the further assumption that (’.f)2

and 7 may be neglected. The generating function that
diagonalizes the hamiltonian is
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The hamiltonian is now separated and therefore the adiabatic
theorem for one variable may be employed. This procedure is
valid when the change in the frequency of the oscillation in one
period is small compared with the frequency. This criterion
clearly fails when the frequency vanishes.

After using the invariance of the action integral to determine
the amplitude of motion and transforming to the original

coordinates, we obtain
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where
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and Ay and gfi are constants. w, and w, are the familiar radial

and phase oscillation frequences.

PART 11
The effect of a radial variation of the voltage gain per
turn will now be considered. For simplicity we shall assume that
the electric field in the accelerating gap is localized in a
region from 8, - £ to &, +._§L where € is small. Then the
electric field in the azimuthal direction is

Eg = £(8)E,(1 + bx ) _Bo sinw_t
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= 0 otherwise.

Eo and b are constants. The torque is then

Ls@Ve 2 (6 - 27401 + gx )sin wet.
0

The S function is obtained when we take the limit in which t — 0.

$hle -2t = 1tn o 9))

e —» t
and

Vo = ROEEO.



28 -

Maxwell's equations require that a magnetic field in the z

direction accompany the electric field, Eg.
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The resulting radial force F, is

o % eVOQ }k:){ R S(9 - 271) cos wet
0

In the linear approximation
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A term proportional to the derivative of the ¢{\function has been
neglected. This term is expected to be small, but it should be
considered in detail for any particular gap field configuration.
The’jtterm is small compared with a similar term already present
in the radial equation of motion. In the smooth approximation the
J function is replaced by __1 . This procedure, of course,
neglects effects which depend oﬁ’zhe abrupt change of energy at
the gap. The error however is small when V, is small. Similarly,

the torque, L, is

AR P i}:cos g - bx sin g :} 3
{ s g s
2:7 RO

The coupled equations of motion may now be written as follows:

'x'l - alxl - 'Yzws:ft2 + -strzcx2 =0 (2)
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The time dependence of the slowly varying coefficients has been
neglected in Eq. (2). To lowest order in N the solution to

Eq. (2) is independent of ¢. In fact the solution to Eq. (2)

and to the equations of motion derived from the hamiltonian,

Eq. (1), are the same. Consequently, the introduction of a torque
which depends linearly on x; has no effect on the motion of a

particle when V, is small.
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