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DETAILED CALCULATIONS OF A SMALL MODEL
FFAG MARK Ib ACCELERATOR®
F. T. ColeTand D. W, Kerst

University of Illinois and Midwestern Universities Research
Association

A small Mark Ib ring magnet with wide radial aperture
and small momentum content has a large proportion of its
circumference in fringing fields. The calculations described
here afe largély concerned With the treatment of such fringe
fields and other nonuuniforﬁiﬁiés of fields or gradients on
the oscillations around the accelerator., Factors influencing
injection irnto such a model are also discusseds

The modei has.eight séctors, a final energj of about
0.5 Mev, a radius of roughly 50 cm, a radius ofscurvature of
about 20 cm, and a radial aperture of 15 cm, The momentum
ﬁultiplication is about 5.5 » Witha minimum gap between
iron poles of about Iy cm and a straight section between
reversed field magnets of about l, ecm length, the fringing
field at the end of a magnet extends into the gap more than
2 cm. and the ¥straight" section is filled with fringing field.
These calculations were made to determine the influence of
such non-ideal effects on parameters which can be arrived at
simply using the matrices for sectors, straight secticns and
edges assuming no fringing - "hard edged". The calculations

using hard edges were made by Jones.

# Supported by the National Science Foundatione
# On leave from the State University of Iowa.
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If the iron gap opened by ahout a factor of 5 to pro-
duce the five-fold variation of field over the radial aper-
ture, the fringing would extend far'into‘the~magnets and
orbits at the lowrenergy radius would have a different c;
from those at the high energy radius where the gap is narrow.
The fringe field from the flare of the iron can be tafminated
by a current curtain at the ends of the magnets extending
everywhere down to the minimum iron gap or the iron pole
surfaces can be made essentially parallel with distributed
backwindings causing the radial variation of magnetic field.
The fringe field then comes from a gap of about the same size
at all radii so that o should not change with energy.

‘ The'aimﬁieat case 1s that for which the structureand
the orbits at one radius are exactly the same as at another
radius except for an enlargement or reduction factors This
factor is R/ﬁ' where R and R' are the radil of corresponding
points measured from the center of the machine, o's are
geometrical quentities, so they are constent over the radisl
aperture and this simple “Photographié" scaling ceauses the
gap to be smaller at small radii than at larges Thus the
fringe field occupies the same proportion of the circumference
at all radii. The edges of sectors lie on lines directed

toward the center of the machine.
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When the magnetic field
changes along the path of the
particle, s it does in the
fringing field, the sangle ©
is no longer a suitable in=
dependent variable because

the center 2and radius of

curvature are changing as
the particle progresses,
Instead the arc length s is

the proper independent variable.
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The linear differential

equations for radial and vertical oscillations about ths

equilibrium orblt are (x is the displacement perpendicular

to the orbit):

c/:} i M (s)
i e x

,/S'L /o&
2

:iz _ Wﬂrsi . s
ds? 72_1 J

f>and n are not constants, Since n =
74: E-/oyg we can write

Jip o 1*
d;i o+ Z( (;? 7

c,{, P
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d3 e JH -
Th (c/»'@- of:

£ dH .

and

o
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where, sincse is a congtant along the orbit, all of the

variation with s is contained in H and :I--/f:/ s Which are
evaluated along the orbit, 4

The ratio of the fields at the centers of adjacenf
focussing and defocussing magnets is not determined by
photographic scaling., Of the many possible cases consider
twos

a) Make H‘ = — H;\ o Then A 5/—"_-2_ and the

accelerator is a Mark Ib, In this case, since R, < Ryo

the spacing of orbits of different momenta is less in magnet

#2 then 1 t #l, Ik 3’_/_". ‘J_/."“*-/ by th
an 1n magne us /CJR,/ >/ QIR:_ N <]

dl, _ d4,
R, - df. "

factor Rl/Ren

b} Make This is achieved by making

Case a) leaves the g2 (centrifugal forcej term of the
x equation of (2) numerically the same in each magnet, while
the jég term is different, Case b) keeps the gradient
term the same, but requires different values for the H2
term in different magnets, The calculations made here will
be for case a)e.

The magnetic field is taken as constant from a to b
along the arc s in the diagram of the orbit. Thus the
equilibrium perticle has constant radius of curvature up to

be Between b and ¢ the magnetic field is described as

Hsﬁlp(s). At b F(s) = +1 end at ¢ F(s) = =1 for
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case a), so that H goes from Hl at b to =-H1 at co. From
c tod H= H2 end the orbit has the same radius of curvature
as in the first magnet.

We must first determine how H varies along the orbit;

that 1s, we must first find F(s). We must also find how

dH

— varies along the orbit
d & °
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I. Determination of F(s)

A method for finding an approximate fringing functionﬁ
F(s), will be explained. It has a reasonable basis and sub-
sequent calculations with variations on F(s) are used to test
the degree to which exact knowledge of F(s) inﬁluences G 'se.
We know for case a) that F(s) goes from 4+ 1 to =1 and is
zero near the center of the straight section. The point in
the magnet at which F(s) is about unity and the zero point
. are probably the most important features of F(s). We notice
that perpendicularly across the straight section the fields
are different because of the radial gradient of field,
Cbnsider two sets of parallel pole faces with H, within one
gap and H2 in the other gap back from the edge. Let the
edges be parallel, .The solution to the

fringing field problem is obtained by

N\
7

adding the solutions to the two potentisal p

problems shown below.

WNE
,/:;///

|

V=0

I
V=O V=0
V=4V, | V=o
=_\1 V=0
) V=0
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Coils are at magnet corners.
If A is the position on a line perpendicular to the
edges, the function £y (<) describes the magnetic field

dependence in both cases if 4. is measured in the appropriate

direction.

P
|
|
I

The complete solution is the sum of the two solutions:
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We obtain an f(4 ) which carries all the way across the gap
end into:- the magnets over total path of 'Ada which reaches
equally far into both magnets to the point where £ (&)

can be taken as essentially unity.

'T/ML) = -Tfi (&) + if, ('d"u-"‘d’) ;—é—/l-_g (3)

Hisy = Hy Fe) W

in the case of interest HI and HII are not uniform in the
interior of the gaps but rather each has a gradient with a
component parallel to the magnet edge and a component per-
pendicular to the magnet edge. We will use r (A) mainly
to determine the position of the zero of field in the straight
section by finding the ratio Hyy/ Hy for points at opposite
ends of the perpendicular path ascross the straight section,
This difference in field results fran the diagonal path

which a particle must follow across the straight section to

go from Hy to an edual and opposite field H To find

20
Hy and HII determine the variation of field along the direc-

tion Ry and R,. N, = £ QQE is a2 constant along

Y dzx
R1 in the center of the radial focussing sector. But
F Lo dH
= D i o A ) ’n = = —
f% /%o 3 by scaling lso 2T Y o is a constant

along Rzin.the center of the radial defocussing sector with

E jE. Integrating we have for magnet #1
e i
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s
(1
it
S
S
>
|
=L
g
=
i

(5)

end in magnet #2

m, B
e £
Ha = %‘(ﬂé Al g_) | i

where k is the same for both (l}) and (5) for either case

a) or case b). For case a) f%w = /ﬁ/o and Aéo=--/ﬂo

50 %
/L/’ { /_/0 //g) Lok %;M_,Ef:fnlia i
Ho- -4 (E)* oo

are the fleld dependence equations on the center lines of

magnets. Rl and R2 are determined by the geometrical con-

figuration drawn for a hard edge machine,which gives a
sufficiently good orbit for
this approximate calculation.

The field at R is equal in

Ea
magnitude to the fileld at RE,

so the field at opposite ends of
Ab has the ratio RE‘:."' 'gs“"'ﬂ-

Pes

3

)

where we ignore the slight curvature of the machine
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in the straight section and we use an average jﬁ between the

orbit along /é and the (curved) /d-é ¥ " Bo

H 11 | + )i

& - ( T\)EW ¢ where REQ is taken off of
the hard edge sketch or calculated from the geometry. One
should take a ratio slightly higher than that which has just
been calculated for hard edges because if ALL were extended
into magnet #1, lower pole strengths would be encountered;
and if it were extended into #2, higher pole strengths would
be found. These interior increments of pole strength are
however shielded strongly by the edges. To include this
effect we replace V4 by A +§ y where G 1s the gap between

the magnet poles. The zero of %(4) is then at I?m, By (3)

(4§ )s.:J ©
720/(,07) = ./f/ (Aza_-,aaa[/_-f- --—-—-—-R (8)
I3
L8
An P(s) which describes the field variation along the
orbit can then be constructed approximately by forming a
symmetrical

IPRNE R

(9)

which carries one between equal and opposite fields. IfR1is
replaced by s cos P we have an approximate function along the

path of the particle, But this function must have its s
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distorted so that its zero occurs on the radial line RO
containing,daoo lhis can be done graphically or by replacing

A by (S # A S 7s
Soe

) cos ﬁ5 s which displaces the
zero by an amount & , The final function is approximated
by a power series for use in the differential equation(2).
fﬂ(*bj was calculated by Vogt=Nilsen and graphs
for various ratios of pole separation to gap are given in

Graph 1.
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IH ‘
Eo Varietion of du &1o_ng the Orblt

% -varies in the regions whers f‘F“J/ = |  because
of the wAMation of perperdisular separation of adjacent

aﬁam ‘orbite representing slightly difrerent momenta;

¥ = /? &8 | Edbe'
- Ax = 4 Kcos g o
20 aR= AR K
"Fhen ' R
d# :li/; g.f) see ey {10)
1 Kies
dH

Tnis vartation of J‘:; coeurs
s,

amryﬂhomn In eddition, when., 'd.s 75'0 s particles of
ﬂif??miﬁtn& smplitudes ses different fields because the edgos

‘gre ‘Hot perpendicular to the orbits. Thus in  (2) we must
. "“‘_.._, ‘

vy

.é_H_. JH, ﬁ‘__m;ﬁ653+ ’cJF s

- - D, ds
i dy, R Sx s

whm m ‘Pivst term comes from (10) and in the second term,
Ss 13 the changes in puth length when a particle is moved

a diﬁmca S\x perpendisular to the orbit.
; * a=Lline quffJ = consh

From the figure,- &LS & tanﬁ
X
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-

and the differential equations (2) become

<

1( c/}( 7‘- _/;fi)-f- __,' /—(5) Rl S&C¢()+ F(S)‘t[d.u.¢(s

ng— /9 /40. R(:) | a

d’3 |
o_/-sé— B { 2’-’ Fes) ’?l m¢(s)+ Frs) %w;ﬁcs (12)
: . 2y Pls)

4

where
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IIT, Hard Edge Orbits

When we neglect the fringing fields altogether, b
end ¢ coincide with the edges of magnets 1 and 2 and F(s ) =0
between themol Then F/ (s) 1s zero except at the edges, where
it is :I'st-so) where J(SJ is the Dirac & ~-function,
Then there is an infinite acceleration and a discontinuous
change in velocity by an amount if:iécat each edge. The

©
transformation matrix for edges clearly has the form

/ o

f‘i_“)é y (13)

and the matrix for the straight section 1s multiplied on the

right and left by matrices of this form with appropriate

g 1s.

L o
/" f
- §. 4
/4
= __? '
/i(_j.‘l Ag. (11{.)
& ==
l+(2)"‘
fﬁ"yﬂ = Ra f::fi%fe)
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7éu~69 = Jf?s;vbﬁ%__
/ K, -p + Vo
%M 92 - _/0 S"'l“'/g"

Rj,'*’f’ - /00-6-4)49\_

/05; N A

These geometric formulae show that photographic scaling
i{s possible, since all distances are given in terms of/ﬂ g

We have calculated © x and @ 2z as functions of W

and ﬁﬂ g In these calculations we have partly
included the effect of equation(10) by taking %7 in the
reversed field magnet as 7, = 4@ -53 » For the radial motion,
calling a
[w,: m
c, = Crew 4
S, = St a?/et
: w, = Vn, =/ (15)

'

e, = c,a-a—Lwa/s,_

g = sind wz/s,_

g /+J-/au¢’

'il= I + Jn%&u—ga_

7 = ( Fau g + Foue f )4 § fan B Fou g,

-~
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then the transformation matrix from the center of magnet #1

to the center of magnet #2 has the form

" a b
( " o (16)

where
a = E,C,C Jwisc,_-,/— 105 3'“!)55
-y
5cicl+w——5ﬁz_+ rosL-A _’z: 5)S2

/ (17)
C= 7 CCr = Fw St Fu,CS.— WSS

Ca

Since the center of each magnet is a point of symmetry
‘of the differential equation, the matrix to transform through

the rest of the sector is just the time-reversed matrix

Jd b

(18)
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and
cos & = ad# be = 2ad -1
For the z-motion, 1 and 2 are interchanged, <, = V", ,

&, =¥ Ny | and }é and ﬂﬁ- became the negatives of‘ their

previous values,

The results ere shown in graphs 2 and 3. The importance
of the edge focussing 1s evident in the curves. . The vertiecal
motion is quite insensitive to n for a givenlﬁg. A calculation
of<{3 without edge effects shows that the vertical motion is
unsteble (cosCE 2 1)« The radial motion is less strongly
affected, Without edges, in most cases the radial motion is
stable, but close to the limit ( Oy ~~ T ).

On the curves integral, half-integral and quarter -
integral wavelengths are shown.

It is difficult to make a general statement about the
effect of the n-variations in all machines. Since n is larger
" .at the ends of magnets than at the centers, one can say quali-
fatively that there is an added lens at each edge due to this
effect; éhis lens 1s focussing in focussing sectors and defo-
cussing in defocussing sectors, but the focal length of the
lens pair depends, of course, on the length of the straight
section. We have treated this effect in an ad-hoc way; we

approximate the curve of n(§) by several steps. In the one

case treated, we find
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Because of the greater length of the radial focussing
sector, the equivalent lenses at its edges are stronger. Thus

V. increases and 'Va decreases,

IV,Soft Edge Orbits

We are interested mainly in the effects of fringing fields
on the frequencies of betatron oscillations. However, we must
treat the problem of eguilibrium orbits in soft edge fields
because the oscillations depend on the position of the equili-
brium orbits. :

One may ask two distinct questions sbout equilibrium
orbits in soft edge flelds:

1. an one construct equilibrium orbits in soft-edge
fields without reference to hard edge orbits; can the geometry
above be carried through for soft edges?

" 2. If the edges are "goftened™ in a fixed geometry, how
do the orbits move?

The second question 1s closely related to the question
of "tuning™ the oscillations to a desired frequency in a fixed
geometry, i.e.;, in an accelerator already constructed. The
"tuning" and the second question will be discussed in a later

report.
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To discuss the first question, let us describe the equi-
librium orbit by the variables ﬂ s the engle which the perpen-
dicular to the orbit makes with lines radial from the center
of the machine and R,the distance of the arbit from the center
of the machine. ?s changes because of the bending due to the
magnetic field and because of the rotation of the radial line.

The bending due to the magnetic field is, in distance ds

ols
Y = o?/,,é__: C:Ea%.a/t~f/o/'-¢’5)

cgfol‘lv

/'_(s) ds

so that

f ¢ - L Fo - 3‘%? (19)

- — /:Y‘) e E%;J?
/Aa (192)

ahd

(20)

The meaning of the% equation is not guite unambi’&uous,
because we do not know F(s) exactly along the orbit until we
have solved the equation to find the orbit. 'But we can use the
equation to find what features of the motion depend on F(s).

The equilibrium orbit has the period of the sector and is
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symmetric about the centers of the magnets.

Thus 'fé -0
at & =0 and © = T (21)
N

Between a and b, F(s) = 1 and between ¢ and d, F(s) = -1

By integrating (19) from a to b,

/
= — __ @ = ) /_. e /
7 2T T ATE (22)

(23)
In the magnets we have the geometrical equations
o e
Rh'/a’ S 8/
L ¢ '
ﬁi‘/oo* (00 S.‘_'WQ:’
/
S
ﬁa"'/oo =/"?¢:%i7 W
. /
Tic.:z /0°'£&:¥QLT—
S S

We connect these across the straight section by using

/
(19) and (20). We call AS the angle between Rb and Rc

(é}l L4 %/+ AD" A )s S the length of the orbit between

M
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b and ¢ and c
fF'(s)cJS
£= -
S {25)
I is, of course, dimensionless.
By integrating (19) from b to c,
/
jéjz ﬁé + 'S-:_'Z-_ AB/
and, with @2) and (23),
/
/éi/+ Ek/:z /e,ﬁ-éy’+- qurl_ As@
o
or
/_ﬁ/+ 3] Vi
/ 2 T L
F Po N (26)
From (19) and (19a)
Aeée = JAS -+~ o
2, (27)
and from (22)
P - R - &wcfs + &
c b _ b
_ (28)
whereo{ a nd g are correction terms. We estimate the valués of

e and g by using the values of fbé 5 Rb and S8 from the

hard-edge orbit. There is a cancellation between the two

largest terms which makes g very small and some cancellation in

¢ « * That is
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— / * /
““ifé-:r"-(-wééiméé” 48

e

- ep [ - ﬂ =t

+$@Q6ﬁ“%%% E-dm%E—+

S g, [ £]ST .1

-+ smaller terms

and the coefficient of 82 almost vanishes for any Ry, and
g& in the range encountered. Proceeding in the same way,
we estimete K 2 0, 004 , which we use., Equations

(2.), (26), (27), and (28) are thus seven equations in the

variables Rl’ 32, R‘b’ Rc, ﬂllﬁ /‘9/2’ S, I, /QJ ’ 1’ é'

We choose I,/% , © & and & /2 and calculate the remaining
seven, Because of the smallness of & and g s the equations
do not depend on the shape of F(s) but only on I, the net
turning through the fringe field. Thus many different field
~shapes which have the same value of I have very nearlﬁ the
same equilibrium orbit.
We choose /0, = 20 em to fix the size of the machine.

Of course all distances scale, so that we are really consider-
ing one member of a one-parameter family of orbits. 8’ 1 and

69% may be chogen arbitrarily, but we are'guided by the
fringe-field calculations of Vogt-Nilsen and choose them corres-
ponding to desirable 591 and 52. The only approximation in our

procedure is in the choice of I, due to our lack of knowledge
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of the exact functional form of F(s). We calculate I along the
hard~edge orbit. The value of I depends most gritically on the
"shift of the zero of F(s), since most of the contribution to
the integral from the region where F(s)< 0 is cancelled by
contributions from the region where F(s) > 0,

We eliminate between the equations above to get

L(A6- ) "
c.o-sé _OOE) +C«c‘f/3‘fc-w. L (BE-y)

Le’ Sata ) / 7 ! o = T
e ) [eoty/cos 8% 5B, me,[caf,'a,’cc,q%m ?
‘ 9! / , /
g S |4 S o (ape) S288 0 S By CoVp)
swo | R, cHpleme el | (29)

/ o / /
where ﬂ, is the only unknown (AE = o;.,’f.. 6 =& ) (29) is
solved by trial. Mr. T, B. Elfe has aided us in the deriva-

tion of (31) and has done the numerical solutions.

With & 1ittle practice it is possible to guess a trial A’
quite accurately, so that the solution takes only a few trials.

There are two checks on the correctness of the solution.
R, may be calculated from either the last of (26) or from (30).
Also, }35 and R may be expended in power series about b and c
and their values at the point where F(s) = 0 may thus be calcu-
lated in two ways. We find that the calculations are not sensi-

tive to the values of J and o< used.
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S8everal orbits are given below

9,’ B‘I , I pll "‘r ?{“) ?L"""J
1. 10.55° 2.26° -0.0116 0.4951 0.0972 53.42 51.90
2. 1.1.32 3.03 -.0L45  .5276 .1295 53.02 51.30
3. 10.88 2.26 0 4887  .0960 52.76 51.28
. 9.975 2.83 -.0126 .5355 .1368 £0.79 58.89

5. 10.26 2.4 -.0116 .5138 .1155 56.89 55.19

RED RS S 47 4! 4 g

1. 49.16 49.12 9.0011 0.3110 0.1367 0.3403 50.38
2. L4B.86 LB.63 7..494 .3301  .1824  .3h32 49.99
3. 48.61 LB.4B B8.876 J3oh6  .13s5h  .3328 U49.80
b. 55.24 "55.01 10.399 L3613 .1862 .LOTh 56.90
5. 52.02 51.84 9.653 L3347 L1599 3725 53.42

Ed

where ¢. and R, are the values where F(s) 50.

Case 1 is the orbit in a fringe field from a gap scaled
up "photégraphicslly® from i cm at the injection radius to
S.6hl; em at the outer radius, in order to keep ¢ constant across
the aperture. The geometry 1s that which gives, in the hard
sdge approximation, V * 2.87 and Vé" 1.74.

Case 2 is the orbit in a L4 cm gep, i.e0., one where the gep

‘" 4{g not scaled up.

Case 3 is the orbit in the same geometry, but with the shift

of the sero of F(a) neglected.
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Cases L and 5 are "scaled-up" gaps, used to search for

]
desired VS,

Vo, Oscillations about soft-edge orbits

The oscillations satisfy the differential equations

3
4‘5 [Pﬁ Flre)+ m'f-ls) .).? &c¢{53+ Q/F s ;ﬁfn S
pe K ol (30)
553 - — F7 ,f, y + dF-fnk,¢fﬂ
e rd /ao 5) FN‘) Sec ¢rs /c rj
We first expand lf;sec}ﬁ(s) using equations (19a) and (20).
We define ‘)
‘ g, oo
e et
4, mw/um 4.)
{m)
A = . (Q-AC /
0 C/#.ﬂ ﬁ) e
and thus
;sﬁcgfts): /é ,4,-/—(,4.;6_,(.___})51‘-
(s) +[Z(A/f/¢ S ,,)+ 10+J_(cosﬂ ;JJS;—}
ﬁ ’Q0+A S +’Q— S+;tl} (32)

where #’ ga) etc. may be calculated from (19a) and (20).

In the same way we expand tan’¢ , calling



. MURA-FTC/DWK-1
t,= fad,
-1‘;{= S«&C2‘¢°
¢,= Lsecd faud,

e ot

(33)

so that
| (34)
) 7 w2 A
71@4.%(‘)‘ to'}' to ¢Ds+i—(to ¢c+t0;é § e
4
L R f/5+tas+"'

In the region where/F(s)} % 1, we will approximate it by a
power series. We expand about the point where F(s)=0 and use
odd powers of s, with different series for s<0 and 820, since

F(s) is not an odd function. Thus we assure a form

; Ets) qzs""aass"" By 8 Lo s (35)
. call
f)’)‘,f{), ,d,m = Am
/ﬂ.,"/Po
i - "
7 . e
ot

Then the differential equation (29) is
2
d—’i +{CFzrs)-f- (A +A s+ /-\zsz-f-»f,)/-“rs) >
- / B, s, )t Xx=0
-+ F(E)KBO'J'E/S'}' " AL

or
2 " . A
z_{{_)(l_'_/C[a’Zs’*,'za,qgg _/_ajzs =) Qa,“‘rg _/.,”J-f-
5 . Y a,s+a,s"
+ (A¢+Aj5+AlS'f‘"’ . =t 3 e f;;)-f-
+ (B4Bs+B, 52+~')(ai4'30'352;‘5-!1555*"')} X = 0
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We introduce the abbreviations

ﬂ-zc. Y/ A
Qa,a,C = 3/ i :
6( i }/ éﬁmﬂv\ - IP
A= A T (57
N &, B,M— /344444
A solution is assumed of the form
e 58,87
’].1
and by substituting, (382
blz ""Lj L
b, _-,-l-—_l_Ko(/a-F-j’)b > :f,b]
by = = [(rotye 3y =25 bt Gt b

b *;‘; [y 4t $y= 2 3, (et )]0t (G9)
[0 %t Ty = F 5 ] 0§

b= =4 g£7+oz3,+o(,3 ¥ zj”’*“ﬂ‘*fs)“
A 0

J.(:x,”—]")_;. 4T,]L -+
N + Ed30+°(12+ Ty = ‘;‘jf f¥’0+j1‘jb
Now X(0) = b, and X' (0) =b;, so that the two solutions with

by =0 or bo=‘0 are linearly independent. The solution with

b, = 0 satisfies x(0) = 0. Since these are the conditions

satisfied by the elements My 3 of the transformation matrix,
these solutions are directly these elements. Their deriva=-
tives are the elements szo Thus we can calculate the

transformation matrix through any part of the fringe field,

using
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B e "—]’ISL_ -i— (0(,,){—3’3_)53__ E‘L()j+o<”+5;_iz_3.’z)5g_
[ G+ X Ty - B (o AR
A A P A TR A R LA A7 K/ L
Mo ™ = 55 = L (b T )s™ - L (0] v, + £, £ 52) 87
"2/'/'[0(39"‘“(/: = —_g-:,(o(,‘,«hrz)]s?——

‘< "'L[V:"'“s;"""//a*55‘_,7:11“7"'%'""33)“

o
9 3 =
- L rn ) £ T, PN

FI- 9 / =
s ~Liv s, pT, -+ r)s o
_( /"' /i 2 ¢ /
i
”é["(g +¥/2+3—9——f,(0(/o+j1.) e
(40)

(These truncated power series give at least four significant
figures accurately, which is enough for our purpose).

This, of course, is the matrix which transforms from 0 to
Sa For the first part of the fringe field we use the inverse
matrix to transform from -s to O (not the time-reversed matrix,

since we do not want to reverse the sign of the velocity).

For the z-oscillations we need only set every '}/i' 0
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and reverse -the _sign of every & = and J,, to satisfy (30)
instead. of (29}.-‘ In those. parts or the magnet where F(sg)= 1,
we can use the smeae expansion of F’ .:u¢ (g) to find the
'oorroct;on_tgrug due to the variation of n. The effect is

¢f course much smaller, since n rises quadratically from its
value at the -center of a magnet and the ends, which give the
uﬁjqr centribution to the orfocf in herd =dge approximation
Bave now heen esten awsy by the fringe field, When we

oxpand abont the :center of a magnet - ¢ .('-a)t = 0 in‘Q'tﬁerorofo
wAey = .. (29) ‘and (30).then reduce respestively, where

Plp) = #1, $o. 7% oo I3 e e 6 Betrasbiveds
" !+ ™ A—ﬂ <
= i [ —x 7 ' +....J”"’ )
" , '
e = ’ 3—1{ b A' ‘H;J L gl ('l‘|-,2.);

8ince the errect is so smll, we hoop -only the first
correction term. For (41) '
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and for (L2)

May = WM.@;; PR ... Y (L)

m; " K0 fbt
= VN / my A 4
M u—vk e LZ_*§
B fo 9 Lo

Where F(s) = =1, the matrix elements have analogous form,
but the orbit length in the magnet 13‘30 short that the effect
is quite negligible.

The product of these matrices in the appropriate order
is then the transformation mat¥ix from the center of a radially
focussing magnet to the center of a radially defocussing maegnet.

& may be calculated in the same %ay as it was above for

hard~-edge orblts.

Such celculations have been done for the soft-edge orbits
given above in Section V and for some others. In order that
hasty conclusions will not be drawn, we will defer presenta-
tion:of these results to a later report, where more comprehen-

give results will be given.

Amplitudes of oscillation may also be calculated from the
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% trans{ormai:ion natrix. é'he.se. also will be discussed in later
3 ‘peport.

Note: The cancellation discussed above which makes S
gnall does not occur for F(s) sich that 52 is small.

 This may make it necessary to recalculate ﬁ,/ using the

. value of 5 from the first approximation.
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This repdrt is & combimmbion of o repert of the sswe bible
{-FI0/DNR-4) By D. Wo Kerst and the present. writer; which will be re~
ferved to us A, In A methods were develeped for discussing erbits in &
Wazix Db FPAC medel in which the vertionl focussing ddpends stremgly on
Tedge® facussing. The present repert will umplify some points of A and
give sesults of caloulstiens denme te date, i
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*Supparted by the Natienal Sclence Feundatien.
Tén 1enve from the State University of Towm.




B Vs S )
g‘,‘:.’»“ay-w‘g.“' u"‘*:’

~ L. FURTHER DISCUSSION OF THE METHODE OF A.

1. Eguation (19) ef A can be derived alse from ths Lerentz ferce equatien using
the R equation (A.20) and the relation ketween & and s, both of which are geo-
metrionl relmtions following frem inspectien of the figure on page 19 of Aq B

cylindrical ceerdinates

.fJ.._ . dF s et B 15 Sfe -
L8 G W
where m is the tetal mase. For & particle eof censtant speed
’ i ,
A = Ko - $ @.E’.'_"’J (2)
We intreduse the new independent varimble s (arc-length) by
/.
J, ™ ¥ =  censtant. (3)
~ Then |
oL Aol ‘ K
3¢ = RN A 7»-@3
x W
: J’ ."f- i
i s " - e C{ 3 .
i~ = # F = ”T 0 ...gr.
- &t P (5)

frem the figure en page 19 of A,
From (A,20), |

AR
T sac ot

-peng) -~

and since

- ‘ ";. ! - |
. P ¥, A [ = 4 /3 P Hr (6)

i
e
e,
= t"‘In-.
- o
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L sy b ey 105 .
Bl (1)
-..0
. (:"/f{ e e Cis
ST IR e e
o/ < = : :
. (8)

2. The sabiguity 1nv'01ve¢ in the ¢4 and R equitiens'( (19) and (20) of A)
which 18 diaaussed on ptge 19 of A m be cliuinﬁted.hy nmsiderlu & function F

| - defined in space rather than alcng the erbit. Sucr_x & functien dees net depend on
the position 'of the erbit: Supptu that; in the tﬁ_'ﬂmiml gpace of the

o~ median plane we use the pc;itiﬁn variables R and Q}tu. The magnetic field

MR )= 7 (K%) ’ (9)

apd (10)

As in A, the turning due te the magnetio field is in distsmce s .

f-“ ll:[c. ’ "‘"’ / ‘} &/ ..

J9 - 'ff Bl g
: £ 4 ” b |
¢ i ¢ Ve ) _

and from this must be subtracted thé change of’ due to the change of & ., The

clesed arhif equations may then be written .
(4 Krs)sef =1 .
~ £ .t iR, (11)
: ; et '&‘ g /\j 1Lf’- e ’
- J" ' .

These equutions are mere difficult te selve for the clesed orbit than the
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¢ and R equatiens of A, and since we saw in A that the erbit dzpen_ls'atrmgly
enly en- j/:'(s)ds ) 8 /  and 03_’-) it does nol seem woerthwhile to de mere
than peint out the possibility of reselutien of the ambiguitys

3. In Sec. III of A, the Lransfermation mtelx fec hard edges is derived using
an infinite ferce at the edge of 2 mugnet, At first sight this sspears strange,
since ali the f.orces in @ regl magnetic field are finite and the fecussing effects
ef edges are physically due te different path lengths in the magnetfoc field. The
§ = functien which gives rise te this infinite force arises frem thg Rinear

sppreximation because ene takes the derivuﬁiw $ sand Fs)is essen&.iuny 'Y
step-functien in x becsuse of the different path fength,

The result can be derived witheut reference te inﬂ_niie ferces. To first
order in x, the difference in path length between 'thl‘equilibrimn orbit and an

orbit of displucement x is

g = z.‘Mﬂ | (2)

us en page 12 of Ay
' The angle turned threugh due te the magnetic field in this distance is

« _{__ oF
% . A&

= L2 g oen) | (13)

and there is thus (te first erder in x) a change in mgle! :—" )for a particle

of disslacement x by an ameunt

B} . M ’*’m;’“f! | (1)

frem which the transfermgtien matrix fer edges (A.13) fellews immedimtely. This

~ 18 essentially the same derivatien as that of Jenes (MURA-LWJ~T).

L. The estimate of the correctien term § on page 22 of A depends on the
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Wmﬁmtﬁm F"( - S
o). = 55
vhish ig velid enly wvhen the fringe field is clese te a linesr fimctien of -
distence, When a fringe field of the ferm
Fes) = a5 ¢ «,3% (25)
vith the same net tmw(f/’r.srcf;)fm b to the peint where ~¥3)*C and
frow this peint te © is used, the series given in A fer | cenverges very slewly.
1t ie series i3 truncated mfter the terms given en page 22 of A, ene finds a
value fer O of =1:7x This gives an K. and an Rz smaller than the values
for the linear fall-eoff law
. P : (16)
wherens they sheuld be grester, since the."'cubic" fall-eff law (15) begins te fall
off goener than the linesr law (16), end the crbit therefere moves eut.
| We nust therefere estimate the value of d in a different way. We denote
quintities pertaining te & linear fall-off by a superscript L and quantities re-
ferving te & cubic fall-eff law by & superscript Cs Then

, S
me e R

/;ad_ o R{,L ~ jor‘;“"‘“" ¢!_°‘H . , a7

D e > & ' ‘
wheze A, mnd X¢ are evalumted at b and C for the cubic law, se that s is
the same variable fer beth fall-off laws. Frem (17),- |
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The twe fulleff lews wiid heve ~75) - @ uf the same & , singe this 1s
itexmined sapurately (5o S0c. 1 of A); thus ¢ = 6 vharw (€80 ot
sthand o, © danges ky sheut 18° frem b te o, o0 1t seens oudh e deyume

(19)

fe.ec] € 1° > cog

e
,J(&-..e')dsl< [ ;..'wp"’-\ Co (20)

tibagrals of We Mgk delis Wmis sigh of (29) s do m




LY L e, L 7
SNCEDEEY .-
F (- _c) = ¢
Foige L - -
. ¥ ) = - *(21)
F e, 5y =~y |

far the jeft wild vight heives ef the "straight sectien” mw*-
wrves, mt&oWa gise, the ether ceefficients ure fmwmw

e : e
© (g [ _
J:F“‘.'f .Ufg".s' } -3 . ()

whers @ is the peint where Fise0 e magim_mﬁmwal:hm
~ cubic and linesr cases. T o . o
The result ®f the mmm,.’murmwc(munmu
of simple functigis of S¥, S, w the ditferences ¢5% - S°) wa
(S = Sg) + The result 1s sl for valws of S‘u S mmw

&f {sterest. If we take

| =8 em,

w

3’ - f '
et e Ly -
S, = si z 'é - m
/0 = @0 Cm
mmmmm».m«uts. umtm
L -;L‘,: - ) : ‘
S’ = 'i b Ch’. . L]
gl ....;, “.-' ] ¢ .v
o 2 AR gﬂ.b - V¥ .
we find & valus 6.8, mmmumw,mm thmm

-'f—tohlm
' This it i safe te sstimate

kc“ﬁ‘j*(?f_;ﬁ‘)/ £ 0.3 cm, S (e
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S is quite small { ~ O./Cm) fer the linear fall-off law snd thz difference
R = 5 us enlouluted by the closed srbit methed of A {s saall,
Thevefore . for the cusic fall-off 18w must alse be quite small and may bb
neglectedy
Buperience with the clesed erbit calculstien shews that the value of @

affects the mmerical results much less than that ef ar '

5. There is &n errer in egwatien (32) of A. The term

inc, and the terms

in . sheuld be muitiplied by

o ) - ) ...A,= S.u:.,.

These terns alvays sppear in the series combined with sther ()/ il .
mmiﬁmmmhlm, ss that the errer affects enly the feurth sig-
nificmnt figure of the frequsncies obtaineds The error algo enters in equatiens
(b3} mnd (LL), wist there A, =/ und the errer venishesa

The errer in eguatien (38) was peinbed eut Ny Mr. G. Mshan,
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IT. SOFT EDGE RESULTS.

The freguencies of oscillatfen about equilibrium erbits fer varieus seft
edges have been calculated by the methods described in A. The cases were chesen
with the Lwe purpeses In mind of eheosing the magnet geometry fer the Mark Ib
medel and of exploring the impertance of varieus physical effects. Besause of
the greater emphssis on the first of these ohjuthms,m genersl survey of the
m@ng diagram his besn made, bul seme cemments can be made absut the physies of
soft edges.

In the tsbles helow we give the fellowing parsmeters: 1) Gap - the vertical
distsnce between iren pele sufuce, which determines the distance inte the magnsts
te which the seft edges extend; 2)¢, and €., - the sngles of the magnst edges
messuced frem the center of the mashine, which determing the gesmetry ef the medisn

~ planes 3) ) - the valus of n at the center of the wide (radially fecussing)
magnets h) Zere shift - the distence aleng the erdit that the peint where Fis)=C¢
 is shifted tewsrd the wide pole béosuse ef different field strengths at the seme
radius in the twe megnets; 5) ‘; = the valus orf n_tthspomtmm Ftsy=0 ;'
mnd 6) W‘; sl \'3 = the nuuber of radial snd vertioal escillatiens per reve-
lutien.

We shew first the effect ef diffevent "eat-in" distances due te different gup
siges. We give results fer the hard-edge onu, for u gap of &k om, for n gep of
5.6l ca, which ia the gep at the high energy radius ebtained My soaling wp
shetegraphically frem @ gep of L em at the injectien redius snd fer a gap of 6.5 cam,
@htnimdwsmmgwﬁu-hunttm imer redius of the vecum tube. In thess
calculations the fall-eff law was tuken @s & linear functien ef distance. In
sdditien, the varistien ef n within the magnets (Wt net in the fringe fields) was

~ emitted.
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Zere

G B G mn g v
Hard Edge  1.51  13.17°  L.93° 2.87 1.7
SRR 151 13,17 L9303 0.3532 2.9k 1.5
2. 5.6k 1,81 13.17 .93 0.13 03403 2,98  1.L8

3. 6.5 1.5 13.17 L.93  0.13 0.3318 2.97 1.37

The effect ef the M- veriatien within the magnets is smmller tham in the
hard-edge case calculsted in A, because it extends ever & smaller length of erbit.

We give two examples.

7 Zers
Gap Y, o €, Shift ,{ v jii'vvv-riuti.n

2, 5.64  1.51 13.17° L4.93° 0.13 0.3L03 2.98 1.8 No
Lo 5.84k 1,51 13,17  L.93  0.13 0.3403 3.04 1.18 Yes

1 4,0 1,51 13,17 L.93 0,23 0.3832 2.9L 1.65 Mo
5. 4.0 1,51 1317 k.93 0,13 0.3532 3,01 1.61 Yes

The effect of the ere shift is shewn in the following exmmple,

Zero
G’ﬁ? ‘Y‘ I 1‘_‘ ] ﬂb slift 4‘ f‘ \P‘

6. 5.6l 1,51 13.17° L.93° 0 0.3328 2.92 1.4t
20 S.6Lly 1,51 13.17  L.93  0.13 0.3403 2.98 1.L8

Varying n and the geemetry preduce the seme qualitative effects as in the hard-
edge sppreximaticn, ae shewn in the examples heim;; vhich all use linear fall-off

1awe,
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Zero ¢ Ve <
Ga; Y i & Shift (
P ) - 2- ‘a, &
2. B.6Lk  1.51  13.17° L493°  0.13  0.3403 2,98 1.8 |

7. 5.6l  1.h0  12.61 5.03 0.13 043727 3.16 1.0y :

8. 6,5 i.3 12.87 5,02 0.13 0.3627 2.% 1.79
9, 6.5 .2 12.87 5.22 0,13 0.3627 2.80 1.8

The effect of the shape of f /) is shewn In the fellewing emple. The |
first calculatien uses a linear fall-off law, as in equatien (16) cf this repert,
while the Second uses & cublc law as in equetien (15), with the ssms net twrning
(r“—-“- ) te the peint where n“’"' &g the linemr law.

Zero Fall-eff -
Gap Ny @ @, shift J, Vi h Law
9. 6.5 1.2 12.87 5.22 0.13 0.3627 .2.00 1.81  Linear
10, 6.5 1.2 12.87 5,22 0.13 0.3655 2.81 1.7 Cubic

While {t is difficult te drsw general conciusim'.from nmerical examples,
the resuits seem te be susceptible te seme physieal interpretatien. As the edges
tseften," \-;; inoreases slightly and \)";) decreages much mere. The two main
causes appesr to be: first, the negative ,pole is "eaten inte"™ preportionally
more then the pesitive pole, so that there 1% mere radial snd less vertiem! :
fecussing; second, the angle f s wWhich hes n defecusging effect en the Mal
and & fecussing effect en the vertical metien, is smmller mll sleng the erbit in

softer edges. This fellews frem the equation of metien (in integrated form.)
: s,
‘ = " J F"p Vol - e
¢ 7~ s,

Bven when the net turning due to the magnetic field (,'f""-" “J') iz the
same for emch side of the "strajght sectien" in seft ws in hard edges, the integral

- —



MURA-FTC=2 clvv 12

reaches ité full value st a 1n£ger © in soft edges, se that the negative A &
tern is larger and / 1s smaller, -

| Comparisen ef 8 and 9 shews that ,";- Isaiﬂitlnﬁmﬁntof Ly ,lmilc
1, 2 and 3 sl"zow that , 1'a,l1ust independent ef ﬁ s Just as mth-mm .

edge appreximatien. It appemrs from this thet the moth sppreximation rule

., vals —a
is qualitatively correct. |
The vertical frequency V‘ mm-s te be almest dtrectly prepertionsl te
,z‘ ,thevalueof ; att.!mpointuhere £7(-) 7 ¢, vhich is clese te the ,
mmcimm value of P . This is true except for case 10, vhich has & smller
then case 9. This muy be esplained by notin. that the cubic mx-«r iaw eats -
~ further into the magnets than the linssr lav, se that g6 has smller values for
& lerge i‘rlctim of the orbit. 4:’ is mlgse smller for a isrge fractien of | )
thcmitinttwmbic case. (A useful check en the cemputatiens at ury stage
is the deternimint of the tremsfermatien matrix, which sheuld be wity, Caleu-
latien of this determinant aids materially in quickly finding errerg, It must
be neted that by this criterien the cubic calculstien (case io) 1is less accurate
( v/ /) than the linesr (case 9) ( W . 4/)s A previeus cubic calculatien
with wbout 2% errer gave V= 1.70, so that the present. result might be a
slight underestimate. Hewever, it sppears ulﬁat ocertain that the cubic
Is uEtel G i linesr.) =
AL first sight, cemparisen of 2 and 7 seems te give a strangs !iaﬁl_t. ¥hen
the pesitive {rudial]y fecussing) pele is shertened, Y increases nt.hu- than
decremses; This paradexical result may be reselved by censuliting the clesed erbit
— data given in A on page &p'm the first line is eur case 2 and the fifth line
is eur case 7. Inmcqse?uwmlc mitm-wedmullrprnﬁiml

- /
therefere | 7 iz lurger, giving greater radial foouuin..
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The main effect of the sere shift is to move the equilibriwm erbit into smaller
radii (the equiliberiwm orbit fer this case is given hy the third lime ef the

/
table on page 2k of A,) so that £, and ﬁ are smller. Therefere beth Vj

and 1_‘_ decrease.

-

The largest physioal effect of seftening the edges mppstrs to be the chamge
in the values of f aieng the orbit, The effect em the relative mgmtic
lengths of ths magnets seems te be somswimt swmller, sinse M, does net
change by too much as the edges seften. However, the hard edge spproemimmtien
gives poor results for the rediel metiom also, because of the meveusnt of the
equilibrium orbit,



