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Perturbation Theory of AG Motlon with

. ; *
Non-Linear Restoring Forces.

F, T, Cole
State University of Iowa and MURA

In view of the great difficulties involved in
finding exact solutions of non-linear differentiszl equa-
tions, it 1s worthwhile to seek approximate sclutions as
g gulde both to quelitative thinking and to numerical

integration of the differential equations. Perturbation

'("\
theory, whnere the non-llnear terms sre small, has the ad-
ventage of utilizing our knowledge of the solutions of
linear differential equations. In the following report
a perturbation theory is developed and applied to the one
dimensional AG motion.
1. Introduction of New Variables
We wish to consider equations of the form
1,-'*4'17:(7,9) + j(¥,9)= O (1.1)
when © is the independent variable and where the generasl
solution of
7% fouer=o (1.2)
~
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is known. This solution will have the form
Y= ACH,a
)85 P) (an)
where a and ¢ are ariitrary constants.
Our method is an extension of & method due to
1
E. W, Brown. | We write the solution of (1.1) in the form
(1:3) with a and 9 now functions of 6, Thus (1.3) may be
called a trénsformation equation from the set of canonical
veriables x and x' = y to the set of variables (not necessarily
canonical) 2 and 9. The second trarsformation -qurtion is
' teken from

iy X oX
= ¥ = | — = -_— + 2‘? 82 92 d
d = 5% (L)

oo L da. d’ﬁ Jf,

We choose & special form for {l.4) by assuming

W ga , Jv dp _
J(ésf'?_ﬁggo

(1.5)

and thus
- if! - al’
d = de 26 (1.6)

1s the second transformation equation.

l. E. W. Brown, Rice Institute pamphlets, Vol. XIX, Jan. 1932.
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Because of the special form of {1.1) (f and g
independent of y) the Jacobian of the transformation (1.3)
and (1.6) is constant. Thus

o o 2 o 2 :

AT . d 9% 0y _ 9y
de ¢ 9?’97:? ?—65;3‘)

and since .
y " ,}"rx)a)-#—grx,e) = F(¥¢)

—

of T or QFE‘)_ x/9F 2\ = o

de ~ gl x 3= el Dy 575)

(This proof follows one given in a seminar by J. L. Powell).
| For one degree of freedom tha Jacoblan (1.7) is

directly the Polsson Bracket of x and y with respect to

a «nd ¢, Thus if we chooss the scale of a and ® so that

J = 1, the new variables a and ¢ are canonlcal varilables.
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We nete further that, since (1.3) is a solution of
(1.2), the equetion
Tx (x,8) =0 '
=+
J62 Frs . (1.8)
where x is given by (1.3), is satisfied identically in a
and o.
Differentiating (1.6)

dy % . I da ’
Y el ML o g8 L X 4
de?* 20* ""adaf-) A6 _:?939 c{ (1.9)

end substituting in (1.1) and using (1.8),
5 | >
2¥ da o9x dp . grv,e) =0 (1.10
9&9?« e * 5’;5}—" ‘?g Q-g ’ )
(1.10) and (1.5) may be aolved together for '%}J and = o

. ¥8
Thus

2 %

[-.9_2_?._-2.‘_ 2xX oy P, % gv8) =0
P Jadgp 2p2e 2a a8 oa !

{mh’l nnAand 4‘?\11"“.!5 Arma ~terAar dm o Asavad wmeaea laes T T Nt X

or, using (1.6)

W Ry RN zz'}’é&u_;azgu,e)
[Diﬂ 2a Fa. 37"'! 0@ 29,

The bracket 1s just he Jacobl:n (1.7) which we

choose equal teo unity.
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Then

5’_{9 I 4 &frx)g)
. B (1,11)

and similerly,

(1.12)

The assumption {1.5) thus gives first order equa-
tions in a &nd o,

If we define h(x,0) and j(x,0) by

ot " (X, 0)
Al B
, {1.13)
Fw FHO
2%

then the original differential equation (1l.1) is derived

from the Hamiltonian

(xy )= 29+ 146)+ K(x,0) -
Hg,o = 27 * 475 (1.14)

end the new differential equations (1.11) and (1.12) from
the Hamiltonian

ﬁ?@ﬁw==f[wﬁﬁthj (1.15)

B e SR TR e TR S =" Tl sy T RN TR e, R TN e, WESTATT S

~ SRS T T
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and therefore the canonical transformation from (x,y) to
(p,a) is generated by the S = S(x,a,9) which 1s a solution
of the Hamilton-Jacchi equation

./(_9-_5 v gme+r By
2 \ox

o6
(1.16)
with
- 25
d = s
& B (1.17).
fp 24
'
2. Perturbation Theory
We suppose that g(x,9) is small compared to f(x,8)
for all x and €, and introduce a coefficient A by writing
Ag Tor g « We seek a solution of the form
¢ - Eé’A @.10)
o (2.1)
a = S ANa,le :
“n
Substituting in 1l.1) gives
FXH = AT EFp, E0) § XN PN, 0,0
- 5
= /\ /9% | Foi b X
i ) (50?“ 0, + / /\q, j
'

of e GGG
(2.2)
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where the subscript O means the expression is evaluated at

&= g, and @ = Pge We equate like powers of A to find

do

;{ -

d X

£ (Z) 5

Ny
|

do éii fﬁa fi ¥ //af) “ ] r
()G (e (3 S

(2.3)
Simllarly, from (1.12) we find
da,
de “°
‘da‘ _ ( ) 7o (8)
(2.4)

7 w0 ) o o) <
(EANCIBCREEIEN
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a, and o, are of course the arbltrary constants of
the sclution of (1.2) and are determined by the initial con-
ditions. Then ai(O) = ¢1(0) = 0 for 1 7 0, so that

]
@ o) = So %Z(e,a°,¢o)5(xre,do.a),e)49 |

e ’J ( Q)Cle {205)
g -—3',(6 ao P) xfs}a‘“l‘fﬂ))
s ) e
q,(9) . ¢ 9
and SO on.
3. 0One Dimensional AG Motion without Inhomogeneitles.
We take the equstion of mction
‘ Cro), 3 ’
X me) ¥ ¥ = & =0 (3.1)
where
M, 0<é<%
mielr = —ny %c § 2 (3.2)

Mee+T)

. B e | R R R e L e N L R N L e T R ORI e =L el L
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and

" O<@c T

e) >
er L i
o ETERT (3.3)
€Co+T) g
In corder to azpply the perturbation theory above, we

take

?p(x)e) w UNLE ¥

3
X 8) = dete) ¥
gt s (3.4)

We write the solutions of x" + f = C separately
in regions of n >0 and n € 0 and thus define arbitrary
constants for each half-sector. Thus, calling v, = fi,'VEE =%

Ay gﬁ‘if‘_&#(/Qt"fﬁ)

Y
R (3.
=~ o?/oa’g&&w(/ﬂe*fi) e

for £T<6< (E+4)T and

(3.6)

ior (i;+{)'r < 6« | A
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The ak:3 b, ¢ and Ek are not independent, since

the solutlons join smoothlﬁ at the boundaries. Thus,
with € =(R+i)T=S

bf&= 'fc- éw'z N aL,__ ,-;_( 4--1,2)
ff, il it A b & Bl

and at A~ (1+#0T “’7

a—-&n L'&{ S,e_w‘-({q)+ '3'&)1-% Mzﬂwvgﬂ)}

=y

+M(fj11+ (f&“) u-'.PS.‘}C’—‘*'&-(éW]*Sﬁ) (3.8)

k
The ék, bk, @k and § have been chosen so that they are

canonlcal variables wlithin each half-gector. We can then
apply the method of paragrapih 2 above to each half sector and
Join the results using (3.7) and (3.8}, which sre still valid
with the ak, bk, rpk and ¢ X eveluated at © =% in (3.7)

and 6 =% in (3.8).
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Thus in the kt?l positive cell, using (2.5),

(T

Cf&(('hi = 6‘5 (h 03(9)0/9
Pa-&)'r

af(thym) = § j (B, u*re) ¢ (3.9

L (‘P,+§)T

btgm = . 205 ewtherph do

7 o), et
% . 4 : )y

13 g

. £
¥ 5':2‘9[ w (f”'(fu&) — A (f—ﬁ T+?v )}}
13.10)

qg((ﬁum = & (Ef;e'y_‘ [cn"f(ajwf)— w‘fffﬁﬂsff‘_)] (3.11)
I = 3 /o L‘/a i

These are the change in q)k and ak in the kth

positive

cell due to the non-linearity.

th
In the k™ negative cell, AT

- €t e — Es /'97 yre)clﬁ
s& (o) = TEAT - £ (AN 2 g,m% 3

+057
— 1 e D:V)'y3f9)0’9
Y l\f(/;’;‘*i\'r) - )‘29 (L }‘%)T:) ? § 5'—';;4' v ‘

o0 gy )
L by (0 hab)Y (3.12)
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where the values of ‘%’ot(({’*‘bﬂ and Lf({l’éi--‘,;l'r)

in the integrals contain a contribution from (3.10) and (3;11)0

g((feH)T\ }‘(NE-A)r) 3-‘(/;#)1,_;1_ Jb#'
S"”
1’-{"{ [s:['“& 3/574 §‘,,£»)—M;?fcff.; g'f?]‘,_

T'dL

+_L [:_WL ‘/(J7+3'9 M’fﬂfﬁy‘ﬂ}

L(rbm)-x L (h+4)T) = L ((4+L) ™)

(3.13)
- & corodd (60 + B9 coad I (Cps %l
(25 f‘ ) [: L ‘:]
(3.14)

where b_c’k and So have added the contributions from the
positive cell.

We can use (3.7) and (3.8) to calculate the change

£ N
in ak+l and <pk'l due to the non-linear term. From (3.7,

4
3"‘ and b are functions of af and fpk. Then

; “'§+( )‘fﬁ'w‘/‘;’f) 1&
® (3.15)
3 24¢
(B b g‘;s&),?‘ ! '5;4)“'
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But from the second of (3.7)
L -/ f
Sg = =Sy b T(F falprrgh)
ls independent of aks so that

v hoi C(Q -n‘2 ac.’((oy+?“)
o ' sech®(£7457) (3.16)

T’f d Lf ¥ [(?& ‘*f—) “f w‘”ﬁ*ﬂ‘)} ¢ o

HLF s “f-‘-"ﬁ“”fff*ffﬂa,*

(3.17)
Similarly, from (3.8)
Les by feu ket ) 4
apt o
R
[ Aat « '&ab”f"a aqﬁ“bﬁ (3.18)
| R i 2,

Af {” g.&uﬁ. f..fr "’)
P

d z e et e A
=/EM(!7+};£}+/“’£M J'?"f"g)}l'* (3.19)

42"4//3!4_;) el 4(,{7-,.#)}5]4

}.
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These can be written more neatly by noting from

(3' 5), (306)1 (307) and (308) that
‘ Y ‘ . L
E:_L " -S Sef«a.(.h'-lf) =‘5m’(ff*f&)“fw 991‘4»?(‘)

G 1 osllpsish) P

Jt (%) (3.20)

=, = [_;i m_af{,,%jﬂ@) £) }Ag;u’(/,ﬁ?,mﬂ"

. p oseTmept)
] ﬂtk!(f};_‘_}{)

l

D ey

3, (440 it
[t wﬁfﬁ«»s%; sed?tly 58]

1

Then

Ag S ;}A(‘Lfd) ;,{‘

E'H / é A J VL_'; J’ *
i 3,_(&:) b /( )SM ( [ f} (3.22)

)cjl’{
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£+’ § ——
A = - £ AT f
f }(If/)/—‘ 54' 3‘/4) B —e_"ibu T+%fﬂﬁ~£—3“7ﬂf")

~ S

< ek 30ies ¥5 e [wM/JT ;9,;‘..14(;;«;19] ’IIJ [
. o

N QD e ] {3
= -‘P""z £+’)/3/3;é)[l:’r4 ‘,_i M(Fj_;?ni)__w?//gr*'Fof)J*

_ £
[; 4(P3'4(la )—&Mq{f’ﬁ‘r.f?o 2]}‘*'
32P

Ez_ﬁ 3(_3)[ T+ S[g,w,&,aré?}}'f) Mué’”f*fj

(3.23}

where we have dropped the hi her order corrections due to
'Eﬂ- and LjL ,
(-]
This complicated expression is the change of pnase

th

in traversing the k sector due to the non-linearity. It
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constant terms increase. Thus we can neglect the oseillating

terms., The terrs in A¢k+l

with hyperbolic fiunctions zare

finite also, because thé motion is stable. Then the only

terms which contribute to the sum over nahy seators are tis

constant terrs in zy and z, and the terms proporticnal to T
L A B -

in ¢3f {

Then the phase change due to the non-linesr term

for m sectors is

> 32 R e, ¢ 42 ﬁ)}T
QpimT) = MAT = !e(ﬁ' " V%f)[_?n|+??:.71‘-(\/:‘~'+ .

{3.26)

(The rigorous proof of (3.26) follows the sketch above and
is laborious). _

The same argument applied to Aak+' shows that the
amplitude of the motion does not increase with ©, since
there are only sinuscidal terms in the sum, Thus the
"secular term" difficulties of perturbation theory do not
arise in this method and the perturbation theory can be
applied over long intervals. This 1s closely connected
with the fact that a2 and ¢ are canonical coordinates and

therefore satisfy Licuville's Theorem.
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is thus 2 correction to the ¢ of linear theory.
We can reduce (3.23) to a simpler approximate
expression by adding up the phase changes over many

sectors. To do this, note that
Lﬂ £
5N

—4 = B~ R~

By ERELD)
and by iterating this

a'& rc'L” 3{(&")9,{&'2’ N 3,/0)
3.08) Byt oor Gall) (3.24)

e

so that we can substitute for aok in (3.24). From (3.5)

we see that

B e, 7%
C.liJ = a’px, +g/4 1/° {3025)

so that a;' is given in terms of the initial conditions.
Now, calling M gf;ﬁ;ﬁ*’ -./M, + f‘”"

3,(4) = '(- +f_) ”(/'5 _4) SES
b < £ (h1g) ¢4 (o) =7

When the linear motion is :table, the phase change
per focusing sector is slways less than 7w, so that Lk < T
and V-, < 7. Then the sinusoidal terms in z, and zp will

an
givehoscillating contribution over many sectors, while the



