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In view of t he  g rea t  d l f f i c u l t l e s  involved In 

Cincling excct solratloris o f  non-linear dl.rferentta!. oqua- 

t i o n s ,  it 13 ~ : o s t l ~ w h i l e  t c  seelr ~ p p r o x f n a t ~ a  soJ.12t!.ons ns 

s guide both t o  gua l l to t fue  thinking and t o  noxe;:*icab 

i n t eg ra t i on  of tbe d:.f.ferential eqquat?.ons, Per turbat ion  

theory,  -+-here the non-linear terms sre s:~a:?.!~ has the ~ d -  

ventage of utill;:l.ng our knob~leagn nE t he  solutions o f  

l i n e a r  d f f f e r c n t i a l  equations,  Xn t h e  follow in^ repor t  

a per turbat ion  theory i s  de:re:l.nped and applied t o  the one 

dimensiorral AG motion. 

1 ; Jntrodue t ion of ~kd~J,~~+i?."i,:?;e~~ 

We vish  t o  consider equations of the form 

when 0 i s  t he  indepenclent va r lab le  and where t h e  tlenere.1 

so lu t i on  of 

{ ~ I x , Q )  =D (1,2 t 

*Supported by t he  Netional Science Fsundation, 



rhere r 

un. This solution will have the form 

Y - x (@,4>JP) 

k % and v are ariitrary constant?, 

Our method is an extension of u method due to 

E 
L 

We write the solution of il.ld in the form 

(1.31 with a &nd (D now functions of 8.  Thus (3.3) may be 

called  sfo or mat ion equation from the set of canonical 

verlabl tnd x b  = y to the set of variables (not necessarily 

cenonica~j a and cp. The second tray =formation q?xption is 

P taken from 

lde choose a special form for 11.4) by assuming 

and thus 
dr - ax J = z  - 

I s  the second transformation equation, 

---- - - -- 

1. E. W. Brown, Rice Institute panphle ts ,  Vol. XIX, Jan. 1932. 



Bec~use  of the  spec i a l  form of (1,11 (f  and g 

~naependent  of y) the  Jacobian of the  transformation (1.31 

and (1.6) is  constant,  Thus 

+ ~."JJ' al J 2.y J ' 
3cp 3cc J y  >a -22- -2 aa  a? a:, 

and since 
I = /  n,e)+ g rx,e)  = F ( p , @ )  

(This proof follows one given i n  a seminar by J. L. PowellS. 

For one degree of freedom thr: Jacobian (1.7) 1Ls 

d i r e c t l y  the  Poisson Braclcet of x and y with respect  t o  

a i nd  cp. Thus i f  w e  choosa $the scalo  of a and m so that 

J = 1, the new variables a a:.:#@ cp are cnnonical variables.  



We ncte f u r t h e r  t h c t ,  since 11.3) i s  a so lu t ion  ef 

(1?2), the  equation 

3'2 + f rr, 8 1  = O  - 
S t i t  

where x is given by 11,3), 1s sa t i s f eed  in a 

and 9. 

DXff e ren t i a t i ng  {l,6B 

c-nd subs t i t u t i ng  fn il,?.) and t ~ s l n g  i%; .Q) , .  
i- 

': @ 
(1.10) and (1.5) may be iolvad together  for , end & . 

, r i 3  

Thus 

I('Ph4 c nnmnC bol lm. .e  --a -.Ir.-- 4 -  .. ---alr-- r.. T T m - . - * ~  1 

or, us1n.g 11,6) 

The bracket is j1.1st .he Jacobli n (1,73' which we 

choose equal t o  ~ i t y r  
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Then 

and similarly, 

The assumption (1.5) thus gives first order equa- 

tions in a snd cp. 

If we define h(x,0) and j (xpe) by 

then the original differential equation (1.1) is derived 

from the Hamiltonian 

cnd the new differential equstions (1.11) and (1.12) from 

the Iiamiltonian 
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and therefore the canonical transformation from ( x , y )  to 

Is generated by the S = S(x,a,B) whlch is a solution 

I Hamilton-Jacob1 equation 

with 

2. Pertvsrbatlan Theory 

We suppose that g(x,9) is s m l l  compared to f(x,8] 

Tor all x and 8, and Introduce a coefficient h by writing 

hg for g . We ssek a solution of the f o ~ m  



where the subscript 0 means the expression is evaluated at 

a = a, and 9 = (goo We equate like powers of h to find 

Sinll.arly, from (1.12) we find 



f- 
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t h e  : 

d i t i c  

a. and caQ a r e  o f  course the  a r b i t r a r y  constants  of 

;elution of (1.2) and a r e  determined by the  i n i t i a l  con- 

ms. Then ai (0) = (pi!O) = @ f o r  i 3 0, so t h a t  

P\ 
and so on. 

3 ,  &e Dimensional AG l$@?-Qnwithog$ Inhomop:eneities. 

We take  the  e q u ~ t i o n  of mction 

where 
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and 

I n  order t o  a p p l y  t h e  pprturbat ion theory above, we 

take  

We wr i te  t h e  solut ions  cf xw + f = 0 separa te ly  

i n  regions of m > O  and B < 0 and thus def ine  a r b i t r a r y  

constants  f o r  each hr.lf-soctor. !C.h.us, ca l l i ng  +q = ,D , G2 = b 

f o r  87.c 13 .c (9+$)7  and 



k k k  
The a b , $4 and a r e  not  independent, s ince  

t h e  solut ions  join srcoothly a t  the  boundaries. Thus, 

J', ' T - 5  with  6 -(  e+;I 

and a t  d -  (1:t l)T = 7 

k 
The E?', bk, Foi': and $ have been chosen so t h a t  they are 

canontcal var iables  wit::?ln each half-sector .  We can then 

apply the method of paragraph 2 aSove t o  each ha l f  sectoa and 

j o i ~  the  r e s c l t s  ustng (3.7) and. (3.81 wialeh a r e  s t i l l  va l i d  

and 8 ill 63.18)r 
, 
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Thus in the kt' positive cell, using 12,5j, 

k These are the change in cp and ak in the kth positive 

cell due to the non-linearity, 

In the kth negative cell, 

. ulte) c J ~ ,  
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4. A 
where the values of 5, ( a d  b, (($+$)7) 

3 integrals contain a contribution from (3.10) a1 L l l c  

(3.141 
where bo -& -k and Po. have added the contributions from the 
positive cell. 

We can use (3.7) and (3.8) to calculate the change 

in ak+l and cp kA1. due to the non-linehr term, From(3.71, 

y1 and b4 are imctions of a k and o k . Then 
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is fnc 

B e t  from the second of (3.76 
e 

34 ' -9- 
k lependent of a , so that 

Similarly, from (3,8) 



These can be written more neatly by noting frnm 

(3.61, C3.7) and (3.81 tha t  

Then 
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where we have dropped the hl her order co-rections due to 
'C 

- q C  and in, r" 
This compilcated expression is the change of pnase 

in traversing the kth sector due to the non-linearity. It 
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snt  t e rn s  increase. Thus we csn nefllect t h e  o s c i l l a t i n g  
k terms, The t e r r s  I n  Aq with !lyperbol:.c funct ions 2re 

z l s o ,  because the  motion is  s t ab l e ,  Then the  ( 

ulliclr contr ibute t o  kt~e sum rver Idally t ; ~ t ; t ~ ~ s  e!c? t '.. 

~ u r l s ~ a n t  terlrs i n  zg and z, and t h ~  terms proportlr  nal t n ' r  
e- 

Then the  phase change due t o  the  non-linatir term 

f o r  m sec to rs  Is 

(The rigorous proof of (3.26) foliows the  sketch above and 

i s  laborious) ,  
k.+l  

The same argument applied t o  Aa shows t h a t  the  

amplitude of the motion does not  lncrease with 8 ,  since 

there  a re  only sinuso?,dal terms i n  t h e  slxm, Thus the 

"secular  term" d i f f i c u l t i e s  of per turbat ion theory do not 

a r i s e  i n  t h i s  method and t h e  p ~ r t u r b a t i o n  theory can be 

applied over long in te rva l s .  This is  c lose ly  connected 

with the  f a c t  t h a t  a and cp a r e  canonical coordinates and 

therefore  s a t i s f y  LiouvSl.lets Theorem. 
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f.s thus a cor rec t ion  t o  t h e  6 of l i n e a r  theory, 

We can reduce (3.23) t o  a simpler approximot 

expression by adding up the  phase changes over many 

:s. To do t h i s ,  note  t h a t  
#at I a 

-4 = - 31'kJ 
0. JJ 8 +I) 

and by i t e r a t i n g  t h i s  

k s o  t h a t  we can s u b s t i t u t e  f o r  a. i n  (3.2&), ~ r o m  (3.5) 
P  WE^ see t h a t  

0 s o  t h a t  a, i s  given i n  terms of the  i n i t i a l  conditions. 

When the l i n e a r  motion i s  :*table, the  phase change 

per  focusing sec to r  is tilways l e s s  than r, so  t h a t  % < s 

and Pk r c  Then the  s i n ~ ~ s o i d a l  terms i n  z: and z2 w i l l  
an 

give,osci l lat ing contribution over many sec tors ,  while the  
i- 


