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I. Introduction,

It is shown that focussing by sector boundaries is important
in Mark Ib FFAG designs, especilally for smaller numbers of sec-
tors. An approximate method of including the effects of edges
is presented. The transfer matrices for edges and for straight
sections are found, and the general resulting &=  expressions

are given.,

II. Approximate Treatment of Edges using Lens Analogies.,

In Mark Ib FFAG the radius of curvature on any equilibrium
orbit is the same in radial focussing sectors as in radial de-
focussing sectors. It is therefore convenient to express all

guantities in angle variables as in EDD-HSS-~1l, .Using the notation

of Symonl
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1. K. Symon MURA-KRS-6,
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The above differs from MURA-KRS-6 in that (4 1s defined as
positive here. Following the notation of Hammermesh2 we con=
sider sectors with subscript 2 vertically focussing for a positive
momentum compaction design,

In Mark Ib the edges are vertically focussing and radially
defocussing due to scalloping of the equilibrium orbit, with

the focal length across one edge pair given by
1 - & tand

F =
The equivalent edge focal length for a complete sector with two

edge pairs is one half of the above for very long focal length,.
A = 4 4ana
T P
where -ye is the focal length of an equivalent lens which
replaces the edges for one complete sector. As shown in the
Mark II case,3 a series of lenses of local length ¥ and

spacing T will produce an oscilletion of wavelength 7%

where 7\ - 5177"\/30—'7‘\_

. &
¢ = &TT _\F‘“%ﬂ_

So, for edges alone, the for vertical oscillation is given

by \[—ﬁ-\'f'and\

For radial oscillations due to edges,

O = L f]/ YT YandA
© (°

2. Argonne Accelerator Group Progress Report #l.
3. MURA-LWJ-7
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To approximate the edge effects, for small angles
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The edges should improve the stability characteristics of the
positive momentum compaction Mark Ib, which has too little ver-
tical and too much radial focussing. The total CTT— , in-

cludirg edges, can be approximately determined from
2 A~

where @  is found neglecting edges. The above is a good

approximation when all 0 g are small, and O % is not equal

and opposite in sign to Oe %

L]

For a positive o Mark Ib, neglecting edges a typical

set of parameters is
(=&
(L, = 8124
2 NS L.
O_} /



i MURA-LWJ -KMT -2

For 20 sectors and this C,

oz | 2 %

The resulting T T € are much more nearly equal. C
could be decreased to 4 and still have radial and vertical
stability. This is smaller than would be possible neglecting
the edges. Since the edge effects are inversely proportional
to the number of sectors, it is most important in small radius,
few sector machines.

The above expression for 9 e« checks the exact matrix
solution of the following section in the small angle approxima=-

tion,

III, Matrix Formulation of Edge Effects.,

For the geometry defined aboﬁe, we define the following:

LP, :\/—;_@: C\)gMB, K':m

o — o Ky=VMe
v, =V By Qoimie

If the magnet edges are considered as thin lenses, the matrix

elements for transformations across the edges are given by:

o
(&‘I‘llhd ,) for radial motion,

(’&'l'illﬁd\ T) for vertical motion.

In Mark Ib, the edges are radially defocussing and ver-
tically focussing, hence a positive momentum compaction design
(where the radial focussing is already stronger and the vertical

focussing weaker than considered optimum) is more desirable than
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a negative momentum compaction. In the following only
positive momentum compaction is considered.

The cosine O~ expressions are given below,.

Cosc;'c:-C'OQd))OOSLi(ba"R'LKASind),SML‘ 4).z+—&+an{| n¢,cas|'l§a+cnstb sm"'ld)a. -T:Ol? dsfrn ¢,5"”}‘¢,1
™ . \ Ka 2

MY e ¢ \ g & :
cag[);: c,r:n:,.g’;‘1 Cod\.,-, ‘%‘%ﬂ Em h Cosh "V| + cos L‘P&Sin h ﬁugjf'_‘:’_:_‘:\f_d sin L,stml-\ Ll"l

For a particular design, N and ¥ determine all geometric

parameters, using the following:

= QTP( —) ,'-F ‘5|'n-§l-?_e__'qr?dﬁlln.%g 8-?..
- 2 < 2

ﬁlz%n:Tﬁi

The small angle approximation for é%h_ is good to three
significant figures for the 20 sector design below, although
the values of 3, B& are quite large.

A particular Mark Ib design is therefore completely speci-
fied by N, ¥ , and /VU .

IV, Straight Sections.
The length of a straight section, A , can be specified

in units of the radius of curvature, ¢ , by 5= 'Q'/(J .
The matrix for transformation across a straight section, horizon-

tally or vertically, is given by:
qu s ('I fé;
) & 1

This must be inserted between two edge matrices (e.g. radial),
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(‘hiho{ Cl))

in finding the transformation matrix for an entire sector,

each of the form

The expressions for cosine O ,radial and vertical, are

given below, where the abbreviation 4 =tan A is used.
COS Uy = Cog , cosh P4 (1+q+Stat é‘*’%smcpj
sinh E—Z(—r}- K, )(""‘ES).‘? (4{'4‘£s_} éfj
+Sin ¢ cosh ¢ .zt+£-“§[(' {-
on 81 cooh b 1o45) [:45 s ]
* ! (chg)EtH"S “‘}\/ 5J

cCosS g, "Coiq) co(s\'\t (1 qgf+4 T',""’cs\'?)-a-srnt*“a_
& -2t + 2 S 2 ol
1N "{JiL &K —-K §f_J "'SI'h ",,%,..

os: £ (- £8) [Fattt*s K §] 4205y,
sl LT tS)[g£+-b“S1—|<,5]

When effects of edces may be neglected (as in large N designs

where tan o =% J ) the above expressions may be reduced to

Cns O' = LO0% d), COo: [”Cb:{‘"smdblsmfn CD‘LE-R’_ ﬁ -
K g ? _] K, Ssmﬁb cosh ¢, + i

Ky S cos ¢1 sinh CP.:&

COS O" = CcOS Ya cosh l.|.J| + sin \V sfnl'y Yy
[K252%] +KS [tospasinh ¢ — inVa
Qosh \_'Jlj
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When straight sections are introduced, the geometrical

relationships are altered somewhat.

@|1—®4+ 2 @S = ""—“;Qvﬂi

~ 4 cosd

. F?| 4-F?gh

4 R ) is not short compared to S; and S,, then Ju.) X °(‘Q_

and the above expression for Cbs is less valid. However
for X € < R, the expression for &\ given previously is
a very good approximation, and the values of (@  will re-

main unchanged.

V. Approximate Effects of Straight Sections.,

In‘order‘to gain a first order "feel" for the effects
of straight sections, the procedure used in MURA-LWJ-7
is useful. If S is the path length of particle in a magnet

and K 1is the length of a straight section,

5+5,tal 9—%—'?—:5
The first integral of the motion of the particle in a sector

=
g - j’ H' v ds PJ’AHJ_D

iss

where 7C may be factored out of the integral for small T .
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When straight sections are included,

S /
[ / /
S‘F!CJS = +4, SL 1-}452 fiﬂ_ ®
(=]
If the region with gradient extended across the straight

sections, '
SPH s = H./e (5:*‘@*}“;@_(5;*"@),

where the subscript €& refers to effective values,

Thuss
Ve
F#i'é .: LJK ‘é%#JL

/ _ =

Introduction of straight sections reduces the effective
gradients from their local values within sectors.

For the same turning around the machine,

S "
‘S F{O‘S = 55%751

0
With straight sections,
= 3+ S
SHch*’HiSI H"Q L
@
For no straight sections but the same RJ

.I'SHJ s = H, e CS:*‘Q‘)‘L H.ie (5.1 ”"Q')

S - S
Hie =H, 25, Hae <Hi S50
_|PH? _ ’PH’el
M = _’_TZ- 5 Me'pptC'L'lve. - Hea‘

_571-52\'1' 21

/V1€ = M S+ 35, j>
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Thus introducting straight sections increases the effective
Y. over Y\ within the sector. For a straight section de-
sign, a first approximation calculation would be to find a de-
sign neglecting straight sections and then to reduce the Y-

+S
within the sectors by é?t;s 3; 2 , keeping the same
| *~

W and N . This new ™ would then be tried in the
expressions of Section III to find the O s . The
circumference factor C is increased by straight sections.

Without straight sections,
C = S+ S
° 5 -5,
with straight sections,
S,+';€.+5;L*’e‘_C Sa‘i-':.bclf-;i‘g_,
- ©

—

-~ T <2 55:'+ :il

The smooth approximetion indicates that, for fixed N and

0s , the product MC should be invarient. From the

above, Mc Co — m C



