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Part I1 Sonm

(1) General charscterization
In this part we shall study some special classes

of canonical transformations which are most useful for
an approximation téchnique to be discussed later. They

are of the form

Py = p +A4A(p.q)

Ts (1=1)
S q + B(p,a)

where A and B gre a sum of homogeneous polynomials begin-
ning with the second order. Every canonical transformetion

which is analytical in the neighborhood of p = q = 0 and

'has this point for a fixed point can be brought into this

form by a suitable linear transformation of the variableé
(ef. Section 4 part I; we shall ignore here the exceptional
sﬁecial case IITM! for which thils is not true)e When we
express the condition for a canonical transformation in

terms of A and B we obtain

Pr Ap > A,

= {- 5 o+ P .75 b .
g o |7 T A Tle Tl et ]
5 1 (1-2)
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or 9"AP+PB¢i=A".BP-AFB7)

(1-3)

_ OA .
Wher@ AP-_- ’—é-P 9 ett,
Thus any peir of functions A and B of the specified fomm

vhich satisfy BEgu. (1=3) give a canonical transformation
(1“'1) o

(2) A Specisl Class of Transformation
We satisfy Egqu. (1-3) by assuming
§TA P By =0 (2-1)
Ap Bq —Aq Bp = 0 = (2-2)

These two equations are a consequence pf Equ. (1-3) for
instance in the case that A and B are even functions of
p and gq. For in this case the two sides of Equ. (1-3)
are of opposite parity under reflection on the origin and
therefore must vanish separately.,
The Equ. (2-1) implies existence of a function
qb(p,q) such that

ik = J ?S? )\K (2-3)
B = Ja" ¢(P )
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The Equ. (2-2) when expressed in terms of gﬁ leads to
the relation '

Gé?f’ ) =t Prp i

This partial differential equation for ¢ is called the
eguation of Amp%ra and Morye., Its general solution is
known and can be represented in different wvays. Geo=-
metrically the equation z = Qﬁ(x,Y) represents a surface
with Gaussian curvature = 0. An analytical representation
can be given as follows: Let o(c) and P(e) be two
arbitrary (analytical) functions of a parameter C. The

equation
Z =¢x + ole)y + y(e) (2-5)

represents a one-parameter famlly of planes. The envelope
of these planes represents a surface Z = ¢(x,y) with the
desired property. That is 96(x,y) is a solution of the
Equ., (2-4) (with p =%, ¢ = y). 4n analytical expression
for ¢ (xy) 1s obtained by eliminating the parameter ¢ from
Egqu. (2=-5) and from

O=x +9'(c)y + vyi(e) (2-5) 7
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(3) ZThe P-Transformations

The special subelass of transformations which is
obtained from the functions

plc) = Ae

(3-1)
¥(ec) = arbitrary |

shall be called polynomlal transformations (P-transformations).
The elimination of the parameter ¢ from the two equations
(2-5) and (2-5)' results in a transformation

¢ (b0 = ¢ )

where w=ap + fq

(3-2)

and ¢ (w) is an arbitrary function of w. Powell considered

in particular the transformation which is assoclated with

Plwy= 4t (3-3)
We obtain in this case

A Sp~ Afp (aprpra)’
4 9, = f"?.;. Af-'ﬂ(o{r+{5‘i)3 (3-4)

with the inverse

P
1

P-’f’r‘* A/j ("’f"(f"*ﬂf 7:]3 (3=5)

\

9 - A« (”‘f”/wﬂf?,)a
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since

1ppg = AP pt Ppg, = W
The reality condition in case I (see part I Equ. (4-15) ff.)
are Hf = q while in case II p eand q are real. It follows
from this that in case I qb (w) must be purely imaginary

X
?9 () = - P () (Case I)
while in case II it is real
(}“/‘J) = ;é(u‘) (Case II)

Thus the constants A ,a and 8 in the special case (3-3)

must be chosen as to satisfy these conditions vz.

. ,

f;i*;'(jA } ‘Case I)

o* <o (5":,6 } @ase I )
A = A

(4) The Generating Function for the P-Transformation

Since the P-transformation is canonlcal there
exists a generating function F(p,}q) such that the corres-

ponding values p,q, y P and q satisfy

oF OF
T‘,' = 9, 5'.-7 - F hal

We shall determine this function first for the case

¢)(U‘) - ._’_ ur-hfl (1"‘2)

h-+i
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so that
h*fp”fﬂmﬂ’ }
T. = P g+ p auw” (+-3)
P= g+ fun ﬁ
- N ()
¢= p9q, - =

It follows i1va (M=1), (%=3) and (4=4) that
F y
o, - f 9+ Py W (4-5)
AF -

=1 P ""F’Wm

—

99

In the following we need the expression for

(4=6)

N

oWy 2
eq )ra_ Pl %(’51;),,, ) =l

and ?—&r J - q’ff"/H— & fz(ﬁ‘) ) (4+-8)
o /9 AT P4
Differentiating the first of Equ. (4=3) with the cond{}ion

dpl = 0 glves
(4=-9)

0= podp- pAnw" (adpps g ),
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from which we ohtain

(2 et
29 ) . . |=nap 4~ e
Sirilarly the last of Equ. (4-li) gives with dq: 0
O=Pdq - maw™™ (yp~'dp, +4p dg, ) P
2 -
('3?, _J ok L AN (b
= no:/J =l
It follows
-4 B ,2/79, 4-13)
=g - L.fl -
( ) /mx/}%r”’ / x 9/3,)7

The equs. (1+-5) and (4=6) can now be integrated with the
result

P v - 4w -

This is the desired generating function in the special case

of Egqu. (4=2). In this expression w must be considered as

a function of p; and q. We can generalize this result without

difficulty for the case of a convergent power series

?5(”') = Z a, w’ (4-15)

Y=o
with arbitrary coefficients a,
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In this case

(’QE)P =, B

97: _ -/_ °(?'¢/ , o
)y = Fr TFap@ o
The integration of the equations
F )
:a.a._c-’ = F" r'.'. F)QS/ (4=-19)
glves
F o= P_'P'CiJ-' (1; pr q:g(d,’)l' (‘1@20)

(5) The Fixed Points of the P-transformation

Ve consider the P=-transformation of the form

T3 b= § (P-/ﬁgj 6514”" (5-1)
% =p"(9+x0)
W oo pr (9

and shall try to find nnder what condition there exists
a fixed point (other than the origin) p = u, q = v with
the property

i (5-2)

q! = =
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We discuss first Case II where j) is real. Defining the
real polar coordinates r and ¢ by putting

P’ remyg Fl"' CCﬂ‘P,
9= Fhuy 7‘ = L W¥ey, (5-3)
we find 0 < F"Be

O, = (‘Vc""P"’"ﬂ""“‘P)”s W
The equations (5-1) become then
%= §lrap-pria,) } (5-4)
Lo, = §7 (rbvg + arme, )
Eliminating eo ve find
r(acogsnmue) =1 (< 'cod,+ ppouy,)
Awny+Lany

dpcod,+ (bpaiud,
For a fixed polnt rq =T and 97 = @, consequently the angle

or (5=5)

S|

¢ must satisfy the condition

(¢

e et ~—

A+ APHY o
g = ey

This is & necessary but in general not sufficient condition

—

orY

(5-6)

for a fixed point. We may state this result as a
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Theorem: In Case I the fixed points of the P-transformation

mast all be situated on the ray

u=1rcos o

v=1s8lng¢

with k= B

/3

The angle ¢ i1s determined by (5-6) up to an additive

multiple of 7.

(5-7)

In order to find the distznce of the fixed point

fromthe origin on the ray (5-€) we return to Equ. (5-4)

and determine r = r from either

Ly = fu Y- r(br"' Be
or  Pm{ = PUEwgs PT AT B

r Q’-l)i—imp : (P-1)tny
a B, £ B

(5-8)

We must have a positive root r for a real fixed point. When

JO is real the condition for this is easily found. We

discuss the case n odd Q*l). In this case ru.I must be

positive or

dn

WL of the same sign as JO- 1.
¥ @,
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When this is expressed in terms of ¢ and p we find

Lo SN Ly P hedl s (5-9)
o O, /5F (=8 o Cdp-)“ (f.,.;)n

The condition for real and positive » may then be reduced

to
p-1

> o
5 (P+1) (5-10)
This result is summerized with the
Theorem: The P-transformation with n odd (#1) and JJ real

has exactly two fixed points outside the origin if and only

if elther
=1 5 °([3>~:>
or f<-—l, cr/$>o
or -—|¢ Pt Al < O

The coordinates of the fixed points are then
f

U= + [( ! j press P h—
=T A5)" (P+1)" y CELH ¥8)" (p+1)" {63y

In Case I we define the real quantities r and ¢ through

a1
[ AL (5-3)°

=

.
re d

-1

i I
(i._, re ‘P 7l= €. (P'
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This leads to

6 r"es

L3 » : .'
-'tp '
Oo = ‘(0“3 -:;/JQ"‘P):tu‘,"
The Equ. (5-1) becomes then

A f‘(’"Q_'(P =B r" (9.:)
T (5-4)°
. ’
ne "= P" (re'fv o r“Qo) ;
Corresponding to (5-5) we find the necessary conditlon for
a fixed point:

2i ¢ of

e = e (5-6)°
A7
The equations which correspond to (5-8) are then
net Pt 19 p=l i
Vo g & s e (5-8)

o
Because eo is purely imaginary, the last two expressions
are conjugate to each other, hence their common value is
real., Closer examination shows that {cr n odd it is always
positive, while for n even it is of opposite signs for the
two angles ¢ which satisfy Equ. (5-6)'. Hence we find the
Theorem: The P-transformation with n # 1 and ;> complex
has exactly two fixed points for n odd and exactly one
fixed point for n even outside the origin.
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;;e shall now investigate the nature of these

fixed points in the Case I for odd n. To this end let
Mere™'?

J -

O (5-12)

be the coordinates of the fixed point 8 with r and o

(4]
given by (5-6)" and (5-8)°. For a point ¢, in the

neighborhood of & we write
o

P= u+x
- Vg

where x and y are considered small guantities.

(5-13)

Since
€ = ((dr,-p(lar)" =l'[°((k+¥)4/}(y*q):]n
we find to first order in x and y
O=0,4+ n(ax+5y)+
(5-1k4)
inth B,= ((dqu+pv)”

The transformed variables

are tien related to x and y by the linear transformation
. . ? :
% = (I=inap)px - '"/51’01 (5-15)
' TR ’ . 5]
s BURTEEN & Ltetagp )p™'

f
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This fixed point is stable when the characteristic roots of
this transformet ion matrix are complex. The condition for

this 1is
e~ rinas (p7'-p) ¢ 2
‘ (5-16)
Since ? is complex (Case I) we may write
f = ?_/isb

Expressed in ¥, condition (5-16) becomes

Co¥+ nad pimd < | (5-17)

This can be further simplified by introducing the angle 3

ha{ﬂ

Aim § = -
pfﬂn a3)?
We obtain thus for the stability condition
Cﬂ)(#’-cr)f Cxﬂry (5-18)
The result may be stated with the
Iheorem: In Case I for odd n the fixed point 0, i1s unstable
if

Us-lleue < 3 bhud = ——:_._ﬁ_:___
Y1+ (ap)™

The same is true for the second fixed point = .
[

The stablility of the two fixed points W, and =40, will

Otherwise it is stable.

determine to a considerable extent the topological structure o
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the lines [? (pq) = const. This property is therefore of
considerable importance in determining the stability
limits of the canonical transformationF:

The topographic system ['= consto_is expected
to be of the general structure indicated in Figs. 1 and 2

for the two cases. The shaded area indicates the stable

region surrounding the origin

Fig. 1 The system fﬂ = const. for an unstable fixed
point & .
o



O

Fig. 2 The system [ = const. for & stable fixed point W,

48
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(6) Fixed Polnt the Iterated Transi

In this section we shall give a rigorous proof

of a conjecture by Powelll that for 2 linear tram formation

le Js Ls Pwellg M.AC"'JLP"'BQ March 305 195"fe

T the fixed polnts of ™ are everywhere dense in a sult-
ably restricted nelghborhood of 0.

We begin with a few definitions and preliminaries.
The region of points (v in the neighborhood of & stable
point O such that the curve

P(ps) = M(w)

is bounded 1s called the gtable neighborhood Us of the
stable point 0.

A curve C defined by

Cs rﬁ0= A

where A is a constant is called an integral curve of T.
It is saild to be in U8 1f all its points are in Ug.

CeU if well; for all & such that I (W) = A
An integral curve in U, 1s also called & gtable lntegral
gurve. Let us now consider such a steble integral Eurva.
To every such curve we can assign & real number kg'between

0 and 1 which we shall call “ts character. This number
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is defined in the following way. According to the theorem
of part I there exists a canonicel transformation such

that in the neighborhood of 0O the gransformation T is in

the form
P, = puma) B
a| = F-'(PQ)@
and ?(9433 is a function of theproduct PQ only.

In the stable case P and Q are complex conjugate and hence

PH(Ba)= p(2R)

Thus there exists a real phase angle ¥ (PQ) such that

; HL(PG)
P(PI)= & (ogd< 27)
We define
)
W e cuop

Since PQ is the invariant function X 1s a constant
on each curve | = const. We find immedlately: the

character of T" is 0. " where

%'z ne  (modt)

i

The curve C contalns (G perlodic point of order .4 1f
and only 1f %« 1s rational and .4 1is the smallest
denominator:
k= T
(rys iﬁtegers without
Crmmon Sivisor )
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Indeed for a fixed point of order-§,

3 = integer = r

therefore % it

—
—_— —

S5
ITf C contalns one periodic point then all its
points are periodic of the seme order. Thi: is so because
M, 1f a function of the curve only and its value is
independent of the point on the curve.
We are now prepasred to formulate the
Iheorem: For every non-linear canonical transfo'mation,
which 1s analyticel in the neighborhood of the s\eble
fixed point O there exists a neighborhood U of 0 s\ch that
in U the periodic points are everywhere dense‘.
Proof: Let () be any point in Us, let C be the closed inte=-
gral curve through € and W its character. We wish t.
prove that every neighborhood U of @ contains at least
one periodic point. Now the functiun
¢ () 1is analytical and it is
not identically a constant, because
the transformation T 1s analytical
and non-1 1ne_ar. Therefore theré
u exlsts a point (d’in U such that
X'zx(u) ¥ x(w)= ¢ o Since
K(w) is analytical it is also

continuous. Therefore there exlst
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points w! such that () assumes any value between
and x'a..dx o In particulér there exists at least one

w2 1in U such thatk(w') is rational.

According to ocur preceding remarks this point

is periodie, q.e.d. |
Remarks:

(a) It seems fairly certain that the assumption of analyticity
is much too strong for the valldity of the theorem. We : '
shall however not try to prove the theorem in its most general
form,

(b) The assumption of non-linearity is essential., Indeed

for a linear transformation ¥ is a constant and therefore

if y = :;:1;- is irrational there exists a neighborhood

of 0 which is entirely free of periodic points.



