. R s

FFAG WITH SPIRAL POIES - SMOOTH APPROXIMATION*

K. R..Symon, Wayne University and’
Midwestern Universitiea Research Association

" November 19,,195&

B Equations of. mot gn-

- The equation of motion of a particle 1n a magnetic field is

m E' -p"?' g% = g-gvx 7 R Y]

We will omit the second tenn on the left, which gives rise to

i adiabatic damping. We assume that the orbit ‘lies near a reference

,1_c1rcle of redius r, and we use polar coordinator X, Vs e as

‘shown in Fig. 1., We will write:

o o
Pi‘\

A

FIGURE 1,
- A A A
H = Hyj + Hmn +  Hgl, (,2)
- ' A : : .
v = vi + xn + yj , (3)

‘Substituting Equations (2) and (3) in Equation (1), we obtain
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D a ,%{H, A, w
AT - %f‘?a_ )
*"i'fg = ﬂ-x- H‘y -.Ql-/}&, L ' (6)

We will neglect the last twe terms on. the right in Eqs.. (4) and (5),
and will neglect x, y in comparison with v, so that v becomes the

censtant speed of the particle. We now introduce & as independent

variable: : ‘ |
o vit = (r + x)Jdo, o (7)
8o that Egs. (h) and (5) bocome‘ |

'__:\.f:.‘: . _ & 8
V"i—& Zdé f"*x Copen T Mme HY . (8)

er~ | (9)
r+R ﬁ T 75 = Amc Fx | |

which reduce to

= .-&(rﬂ) *(”“*"*)[/ * rﬂ ] o klo)
Y’,S- %(r*x).l*(r*x)(‘r%) . - (11). .

We will neglect the terms involving é—;.)s') ’ (‘rzf) s We now assume
that the mean field -ﬁ‘ on the reference circle 1s such as to main-
‘tain the particle on that circle if it alone were acting:

2 . |
= T | : (12)

Equations (10) and (11) can then be written:
x”..( “J)I‘ —2rX/MHr=MHrxt, X : :
Jy : (13)
9
v/ , 2 '
Y'= #x(rry) | TN

We now assume that x,y .are- small, and expeand the field in powers

of x, ¥, keeping only first order terms, and assuming H, = 0 in

~the horizontal plane:
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/»‘(f‘o) + e (1. 8)x |

o as)

/’(x = /*r(") &) Y .' ‘ (16)

Where the subgeript "r" denotes partial differéntiation, To first

order in x, y, the equations of motion are now?
f[ FH5® , 2r _{7- = r*[At) -H(s)] o
# T Y Gd (17) N

dty rt4 6‘9) - ' . ‘ L
»z@-—g;—‘—-Y—O . Cam

The solution of Eq. (17) can be written as a steé&y state sdluticn,

"which represents the deviation of the equilibrium orbit fram the
reference circle (scallops) plus a solution of the homogeneous
equation which represents the betatron oscillationsg Hence 1in a
linear approximation, scalloping of the e“quili'bri"um orbit has no
‘eff‘ect on the betatron oscillations. We will neélect the last
two terms in brackets on the left in Eq. (17), which ig valid if

M>> l, and write the betatron focussing equations in the form:

| §
x ?."‘r/;‘-ghx) . (R (19)

Y’= E/-;#FL Y | | (20)

_ 2. The smooth approximation for force functions of arbitrary

shape, Let us considei- an equation of the for'm{

" = £(e)x L (e

where £(e) is a force function with N sectom in the period 2w ,

so that we can wpite the Fourier series: - T
fe - ;*Z A Sint (306 —e(f)] (22)
According to KRS(MURA)-I;, an approximate solution of Eq. (22) 1s:
x = X+§ | - (23)

where

fer=xJ[ £4, rm(a,m )Jal&- @
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and X 1a a solution cf

X fX*f'(@f ()
The integration constants 1n§ are to be chosen 80 that; is

periodic with zero mean.

The cross terms in ff drop out when we average over 0», so that

X'll‘[’?-é .7)( - 5(27)

3. Application to spirally ridged fields. _

we obtain:

Let us assume that the magnetic field in ‘the median plane of
a spirsal ridge machine with N sectors around the circumference
is given by: ‘
Hver B [l 555 Saplo-#01]
Where the f” are constant coefficiéhts which determine the shape
of the field as a function of €, #r) is a phase .fuh.,ctiori which

.determines the spiral shape of the ridges, and F(r) is a function
~ determining the radial dependence of the field., We will require,

at the maximum energy orbit,:
Fr) = /J Pls)=0 (29)

We now calculate'
W= My Fl[ Lt Rl 27‘” f copme-t,
In order that Hr(r e) shall have the same functional ‘dependence

on @ at all radii, we require?

I 4 ? ' : ' |
F§ = -KF, - (31)
where K is constant, so that: o .
$= xlnr, (2

Equation (30) then becomes:

/vl,. # /:(r-)[) +-é.f ]//7 kNLI/N(?No_ﬁI¢ +<{?«) (33)

f~-.X§ "r"(f”’ @} ;o (26)
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' wherei- : '
fK L o (3

We lubstitute‘ in Eqs. (19) and (20), _compare with Eq. (21), and
use Eq. (27),_ -The equations for t'heﬂ smooth betatron oscillations

| .-q[x , "= .uy Y, | | ',_ (35)
4*4 kéf (/*' 'T/ﬁ':ﬂ_‘) L e
2% ,4‘k 214(/,_ ‘PN) (37)

where we have set: ; 4 £ Ny / - ,
. ) ‘ N ol N i .
LT _e.__/*/f;——#—*——ﬁ,:_ o (38)
' The phase shifts’per 'Sector are given by:

oy - :‘%’w,( L, 0= i,’rwr . | (39)

s afY be independent of energy, then A must

. w_ith:

If we require that 01

be constant, and the function F is determined by Eq. (38):

el w

The function ¢ is then, by Eg. (32):

# =k Ain"¥, o a

_'We will show later that KN -is of the order of the number of ridges
counting radially outward across the donut, Jay > 10. If we
assume j2K2N2>>1, we have the very simple result:

< Ao L3k
2= +f P AR | 4 (4:3)

where (9) is the periodic part of the azimuthal fileld depandence~

PR (L)
ﬁ&) f///f//& N
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- If we substitute Egs. (42), (43) in (39), and solve for fz,,‘,
‘we obtain, for a given N, K, d’ d"y' 3

A= o () o (15)
;CT.; XA P - | - (16)
y t.F‘t *"'"""'-—;: -
If we set: N (r :."47’

= Tv/rx R | (47)

V]

A = 2oy | (48)

~where A 1is the number sectors per radial betatron wavelength,

these can be written: A z !—(ﬁv‘)z(/-‘ Aﬂ ' (4L9)

-.3.-..(—4)2 [#47 |
RN (50)

The number of ridges counted radially across the donut is.

: /vk( 5o

where the subscript ‘6‘ refers to the values at injection, and:
: —LMF‘ s L m ‘fo/ ; :
R T S i & )
Lmr 27 5
if p, ~~ 400p;, and [r - r1/<<r . We can then write Eq. (50) in
terms of m: —-—3"_ 2 e a /+ALV
< .-

The circumference factor for the spiral pole machine is: .

cai’;ﬁ =/+)f,w | (5k)

where f, ., 1s the maximum value of the function defined by Eg. (Ll).

The function f£(8) which yields a minimum £ .. for given FE 1s the

f© = f:; ., oLguecH, (55)
| s Wy L p# 6 LIT,
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with: QA//‘:"Z
I

/-4t o (s6)

~“.1'11e circumference factor 1s then-

c==/ /m‘ /=A% j (57)

We note that, happily, it does not help much to use very small
values of 4 . If we. take A =§,A‘h { in order that the smooth

ﬁpproximation b'e at least roughly correct), we obtain:

8.
2 € (58)

C =

Thus with m A»15, we get C '~ 1.5, and hence an overall radius
no larger than in cbnve_nticnal AG machines, i
| It should bé pointed out that non-linear effects may be much

more important in the spiral pole machine, so that the above con-
clusions based on a 1ihear smooth approximetion must be regarded
.as provisional. , | '

For a 20 Bew} FFAG synchrotron

Take _A_-":-4- .so that the smooth approximation is valid
and A = Vz_ ' |
. Then kKN =mif€ BY (51)
and by (56) Zz 7/6/ 2

V—— 3’5',//'»'\ with € ~1 FoRr /’/j "400

-
For g =~ , & step function, we have
f = ' 5//[\’"\ N So 1if ,/M $.ZSr1dges across pole, \

= ,34  or a 34% step up and the same step down
must be built into the field, and C“ 1435,
Although the snaoth appvcximation doesn't hold for -A-

emall, we cen see the trend if we takeA '% FAN _%/{B
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:g; 2, | | ;- B T -
Then f = % = o/4 _.:or{zs_ ridges across:

If w teke J‘ 100 and f%:hoo. thon = .
(f,{)‘ f’f' and r/,, =1.061. At V% =10 on

‘this mesns & 6. meter radial sperture with N  tbecoming
35 - ridges smgugd the machine; but if we teke J# = 500, then
% 21.012 or & 1.2 meter radial aperturs with 77 ;‘-mgu
around the machine.results, R

By (42),(43) and (39) 1t is clear that the stgn of _4 can
be reversed and ﬂ— and o Y Just exehange nume rical
values. If_)£~ is negative we have negative monentum com~-
pnctioh-ﬁhat 1s the high energy orbit has}a, smaller radius
than the lew energy orbit. The advant-agé of this is that
a froquéncy modulated syhchrotron using such a magnet woﬁld
have no transition energy because the particless would alwsys
increase their angular velocity about the mackines as their

energy increased,




