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In the present note, we investigate the soluticng 2F
the smooth approxim&tion equations for one~dimensional \
alternating gradient orbits with cuble forces, The resuiis
will perhaps be of lnterest as an 1ndlcation of the validity
of certain approximation procedures for arriving at rough
estimates of orbit characteristics.

The equation of motion for an AG orbit on the necktle

diagonal, with cubic forces, is
" 1.3
x" = (nx + Jox )gls), - {1}

where we will tulke g(s) to be a square wave of unit
amplitude and period S, The equation of motion for the
smooth approximetion is derived in Ref., (1) (Eq. (43)) and

is
=+ $$ 0118 x5 (2)
where
Wl = %" . ' {23

The potential energy for this motion is ~,
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Th& potential energy erd phase plot for e > 0 are show: in .
#ig. 1, and for e < 0 in Fig. 2, The general charachus f
the verious types of motion 1ls clear from the [figureg. MHoow
the =:ablo fixed points, the motion x(s) 1s sinuscidal and
rsochrronous, At larger amplitudes, in Fig. 1, the pericd
decresses. The functlon x(s) approaches a triangular wavs,
while x'(s8) approaches a square wave at very high amplitudsg,
as can be seen from the plot of V(x) which shows that nearly
gall the acceleration océurs at the furning points in the
oscillation, In Fig, 2, large amplitude wotions within the
eyes have ionger periods. The peorlod approaches infinity
near the separatfix and the function x(s) is a square wa%@
in the cenfer eye and a series of pulses in the right and
Teft hand eyes. For motions outside the separatrix the periocd
decreases with amplitude and at large amplitudes x(s) 1is =
triangular wave.

In order to arrive at an approximate solution of Eq, (2},
we notlce that in all cases the motion is periodic and
oxcept for motionsg very close to the .separatrix in the side
eyes in Fig, 2, we can represent x(s) reasonably well by its
fundamental component. For oscillations about x = 0, a fair

approximation to the motion will be

X =A coswa, (5]



he will therefore substitute the expreasieon (5} Lo X Lo Lo

rinzht side of Eq. (2) and integrate:
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We now require that the coefficients of cos w s in Eqs. (6)

and {5) agree (principle of harmonic balance):

= & N~
W=kl % A za-n’ AY (7

This gilves a formula for frequency vs, amplitude which has
at any rate the correct qualitative behavioy, ' One will have
some reservatlons about the application of the prineciple of
harmonic bdl ance at large amplitudes, particularly near the
separatrices in Flg. 2, for although the fundamental
component in a square or triangular wave 1s the lurgest
component and the Fourler serles converges falirly papidly,
~this is certainly not true for the second derivativesof theso
waves, However, a little experimenting supgests that when

Eqe {5) 1s substituted in the right side of Eq, (2), with

prover frequency and amplitude, the resulting expression for
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the force has at least the right general behavior. BEge (43
predicts that when e/n < 0,w = 0 at an amplitude

A=iisel-g, Lese S5

The smaller value corresponds to motion on the separatrix
eround the centor eye, and is only 10% smaller than the

correct value

A=—‘,$,j-£ - /.273}_""9_’ (93
n

for the amplitude of the fundamental component of a sguarc
wave of amplitude :&*5%; o Near W = 0, the ccefficients of
the hizher harmonics in Eq. (6) become infinite, although
the amplitudes of the harmonics of the true square wave
solution do not, _

In order to'bbtain épproximate solvtions for motion
around the right and left eyes in Fig. 2, we substitute ths
@xpressiog ,

Z=B + A s wa

e,
g’ )]
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in Eq. (2), and.require that the constant terms 2nd the tario
in cos W shall balance, The resulting eguatiocns can bsg

solved for B and 4) 1n terms of A, with the result:

ﬁ o?:'f" A +§-]+4-e'A+? Y\LAA‘. (115

Q) = %ll*%A ""%%A.JI.B‘-*‘%B*—ZS‘%AZB;‘ (12)



Numerical solutions to lg. (1) have bsen obtained on

tne Il ac computer, for the case
NN, e=x N, S = 0.1, | (13)

wileh is still perfectly general, since e/n and S can be
adjusted to any values simply by a change of scale., Formuls (7.

gives for the betatron wavelength, with the values (13X),

A,
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The batatron wavelength 1s hare expressed in units of the
sactor length S. The betatron wavelengths given by Eoémnla
{11) are compared in Tables 1 and 2 with those given by the
iilise solutions, for various values of A, In the‘Illiac

solubtlons, A was talen to be the maximum amplitude of

since the golutions are not sinusoidal, but the difference
Ls wrobably not significant in comparison with the arnproximatious

&?ﬁ%.iﬁ arriving at Eqe. (1)« In order to compare the Illiac

solutions for motions around the side eyes in Fig. 2, we
waaid from the Illlac results the maximum and minimum values

@y snd xp of x, during the oscillation, and define

B-k (2, + %), A+ £ (% - %), (26]
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condn fnonot gtrietly corrsct unless the zolubticor Lo

v Lowm (10), but is suffieclently good for the purnons %
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hand, The results are given in Table 3, The Illiac values |
in Tables 1, 2 and 3 were furnished by John Powell, Beyond
the maximum values of A shown in Tables 1 and 2, the Illiac
swiuktions become unstable, No such unstability appears in
the amooth aporoximation equationse

One may conclude from these results that both the smooth
approximation equations and the method of solution indicated
give a fairly good rough approximation to the alternating
gwadient orbits inslde the stability boundaries,

Reference
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Gradient Orbit Equations,” July 1, 1954,



- eioa TT——

4 ! Ky i ) . I
] ] v [ ¥ ¥ 4
- -% 2 5
Y
z/8
-3 - a 3
J } i ] } | i







Table 1

Sutatzon wavelengths for AG orbits with cuble ferce aldlog

the linear force,

Wi ‘,t b4 =
Smooth approximation: ) )\o/)"/ - A 1'_%‘44

N A : )\amooth ’\Illi&ﬁ
36 0 120.92 120,83
3.16 2146 23,88

Lal3 12,04 1l4.36

200 o 21.76 21,69
| 1.12 13,54 14,37

1.56 10,0l 11,16

1.79 866l 9,81

2,01 T.49 8.85
2.2 6,48 7.87




Pahla 2

3etatron wavelengths for AG orblts with cublic force
opposing linear force (oscilllation about x = 0},

Smooth approximation: \ = '/\o / J?_A’;_ ﬁ At

N

| 9 u' 36

200

A A smooth
0 120,92
295 234
separatrix
2.32° 94,05
2,88 45,58
3.16 35419
3.48 27042
3.79 22,22
4oll 18.32
hoL3 15,11
0 21.76
067 28,26
1.0 49,06
separatrix
1,96% 145,09
1,96 115,09
1.97 42,76
1,98 ' 42,01
2,00 37069
2,01 36,2l

/\ I1lise |

120,83
26l

105.4
L7.25
35.3
25, Th
20,83
16§u3'
13,00

21,69
2757
53047

110
68,26
58,17
50,82
45,23
10,82



Table 3

Betatron wavelengths and centers of oscillatioan for Al
orblts about side eyes with cublc force opposing linsar
force,

Smooth approximation: 5 ’2..£A +r 4-A* 4+ Z5 35 /4"‘
A NS A S A «§6"“+-§;/4 B*

N A Bgmooth  Priliac A smooth A111480

36 0 1.732 1e732 60,46 60,02}
0205 1.677 1.695 67.8 66@3
035 1,566 1.61 89,0 83.5
olily 1-”-63 1.55 - 125,8 11hL

200 O 1.732 1.732 10,88 10, 84{ %}
.15 1.703 1,71 11,55 1136
29 1.619 1.63 13,92 13,95

42 1,488 154 19,69 21,82




