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smooth Solution to One-Dimensional AG O~~,,1~1 

with Cubic Forces 

Keith Ro Symon, Wayne University, Jttly 15) 1934 

In the present note, we investigate the solutione 

the smooth approximation equations for one-dimensional .. 
alternatinG gradient orbits with cubic forces o The reI2JUltr:\ 

will perhaps be of interest as an indication of the valldi 

of certain approximation procedures tor arriving at rough 

estimates of orbit characteristicso 

Th~ equation ot motion for an AG orbit on the necl{tie 

diagonal. with cubic torces, 1s 

l' 3x" • (ox + Jex )g(a). (1) 

where we will talee gee) to be a square wave of unit 

amplitUde and period So The equation of motion for the 

amooth approximation is derived in Ref. (1) (Eq. (43» and 

is 

where 

The potential energy for this motion is 
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T~s potential energy e~d phase plot for e ~ 0 are sho~~ 

If'ig" 1, and for e <:. 0 in Fig. 2,., 'rhe general ch 

tbe VB.r!l)US types of motion 1s clear from the figures" 

tho ztablo fixed points, the motion xes) 1s sinusoidal 

~.sochronous. At larger amplitudes" in Figo 1. the perled 

decreases~ The fUnction xes) approaches a triangular wave, 

while x' (s) appz-onches a square wave at very high amplitudes, 

as can be sleen from the plot of vex) which shows that nearly 

~ll the acc:eleration occurs at the 1:urning points in the 
." 

oscillation. In Fig. 2. large amplitude wations within the 

eyes have longer periods. The period approaches infinity 

near the separatrix and the function xes) is a square wave 

in the center eye and a series of pulses in the right and 

raft hand eyes. For motions outside the separatrix the period 

decreases with amplitude and at large amplitudes xes) 1s Iii 

triangular waV80 

In order to arrive at an approximate solution of Eqo (2)~ 

we notice that in all cases the motion is periodic and 

oxcept for motions very close to the .separatrlx in the 3ide 

eyes in Fig. 2, we can represent X(8) reasonably well by ita 

fundamental component. For oscillations about x = O. a fair 

approximation to the motion will be 

z =A C08 W .40. 
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\;t;i '1Jr.tl1 therefore substitute the expr-Gss1on (5) [(;(i,' :iii,.it. 

7."j.[~ht side of Eqo (2) and integrate: 

We now require t hat the coefficients of cos ws in Eqs.. (6) 

and (5) agree (principle of harmonic balance): 

This gives a formula for frequency vs. amplitude which has 

at any rate the correct qualitative behavio~... One .nll have 

some reservations about the application of the principle of 

harmonic bal ance at large ampIitudes, particularly near thv.!l 

separatrices 1n Fig. 2, for although the fundamental 

component in a square or triangular wave 1s the lQrgest 

con~onent and the Fourier series converges fairly ~apldly~ 

this is certainly not true for the second derlvatlv6sof thes0 

waV0~~ However, a little experimentinG suCgests that when 

Eq" (5) is substituted in the right side of Eq. (2), \,;it;h 

pro-per frequency and amplitude, the resultinr.; expl'>osslon fOJ:' 
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tl'lG force has at least the right general behavior... Eq.. (.~,,} 

predict~ that when eln ~ a,LV = a at an a~11tud$ 

The smaller value correspon.ds to mlJtion on the separ'atI'ix 

8.2"ound the cent:;:)!' eye,) and is only 10% smaller th..'";1.n t;.he 

correct value 

A= .!l:. re ­
1t'.~ -~ ­

foC.\!' the amp11 tude of the fundamental component of' a square 

"rave of amplitude ~ -~ Near u..> := O. the coefficients0 

the h~t&;har harmonics in Eq. (6) become infinite·. although 

the amplitudes of the harmonics of the true square wave 

solution do not o 

In order to obtain approximate solutions for motion . 
around .the right and lett eyes in Fig. 2, we substitute the 

axpl"'ession 

in Eqo (2). and require that the constant terms and the 

:1.11. cos W,a.. shall balance. The result1ng equations can b0 

solved i'or B and (),) 1n terms of A. with the result: 

13'-:~ +f1EA;l. +~I ++tA'-+ ¥ ~AT) (11) 

(12)� 



Numerical solutions to Eq. (1) have been obtained on 

the ID1ac computer. for the case 

(13) 

1,T]i;1i(:~h is still perfectly general, since a/n and S can be 

adjusted to any values simply by a change of scale. Formula (7 

gives ~or the betatron wavelength. with the values (l~)>> 

J (14) 

(15) 

r- The batatronwavelength 1s here expressed in units of the 

i:H:'C tor length S. The betatron wavalcmgths g1ven by li'oi-mula 

{li~) a.re .compared in Tables I and 2 with those given by the 

Il11aeaolutions, for various values of Ao In the 1111&0 

3 i.»),ut.lOllS. A was taken to be the maximUM amplitude of 

oscillation. At large amplitudes this is not exactly correct 

fd.nce tho solutions are not sinusoidal, but the difterence 

.:.~; p:c'oonbly not significant 1n comparison ~-Jith the a~proxil11atious 

In arriving at Eq. (14). In order to compare the Illiac 

i?(:r}u.'tiona for motions around the 81d. e7es in Fig. 2, we 

from the Il1iac results the maximUM and minimQ~ values 

':'Ild x2 of x, during the oscillation, and define 

A:: t (;l, - ~~). (Ib) 



hund" The results are given .in Table 3. The I1liac values 

1n Ta.bles 1" 2 and 3 were furnished by John. Powel1o Bey-ond 

thf.~ maximum values of A shown in Tables 1 and 2" the I11iao 

:~i)lur;iona be(~ome unstable. No such Wlstab1lity appears in 

the smooth approximation equationso 

One may conclude from these results that both the smooth 

npproximatlon. equations and the method or solution indicated 

give a fairly good rough approximation to the alternating 

g:c'adJent orbits inside the stability boundal"ieso 

Reference 

1 0� KRS(MURA)-l, nA Smooth Approximation to the Alte:rnating
Gradient Orbit Equations,n July 1. 19.540 
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Table 1 

3;;iGatr-on wavelengths for AG orblts lf11th cubic J'orG01.:,. 
the linear force. 

__--.---ft.~ 

SMooth approxir.;.ation: A= Ao/~ I + A'1. r-fi AJf 

N A AaMooth ~Il1iae 
36 120.92 120~83 

21046 23.,88 

120 04 14036 

200 0 21.76 210 69 

1.12 13•.$4 14031 

1.56 10.04 11.16 

1.79 8.64 9 0 81 

2.01 7.49 8 G 85 

2.24 6.48 7.. 87 



Tabl~ 2 • 
3etatron wavelengths for AG orbits with cubic force 
opposing linear force (oscillation about x = O)~ 

smooth approximation: 7i~= Ao/fi-A~~A

u A Asmooth A111ie.c 

36 0 120 0 92 120 0 83 
.,"# 

n95 234 264. 

sepaz-atrix 

20 32 94&0.$ lO5fJ4 

2G 88 45.58 1-1-7 0 25 

30 16 35119 3503 
,:).- '71GO(j,~3048 27042 

3079 220 22 20 0 83 

4 0 11 18.32 16",}J,.3 

4043 15.41 130 00 

200 0 21076 210 69 

.67 28.'26 2:7Q57 

1\301 490 06 53047 

separatr1.x 
'+10 96. 450 09 110 

10 96- 45.09 68 0 26 

1~97 42.76 58 0 17 

1.98 42.01 50 0 82 

2j!l00 370 69 45,,23 
2.01 )6 () 24 40 0 82 



Table 3 

Betatron wavelengths and centers of osc111atl0.1 ror AD 
orbits about aide eyes w1th cublc torce opposing linear 
torce. 

. ,. ~Al {i ~J L -;'~A"""7-
Smooth approximation: 5 =:J. - l' ..., - -rA + T ) 

. -----...­
.A• AoA'- ~~+ ~ A4 

- 4!J~ t- { 84 +-i: A':- D%.. • 

N' A Bamooth BI111ac ASl'l1Ooth /\Illia,e 

36 0 1.732. ·1.732 60.46 600 41(1) 

o20S, 1.677 1.695 67.8 66.3 

,,35 10 $66 1.61 89.0 8305 

~44 1.463 1.55 125.8 1.1l~ 

200 0 10 732 10 732 10,,88 lOo)84('?Y 

015 1 0 703 1.71 11~55 11.. .36 

029 13092 :;";1;)1.619 1.63 13 fH""

.42 1.488 1.S4 190 69 21 8?• CJ M 


