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1. Introduction

The eauations soverring the trajectories in on alternate-grodient
simechrotron hove becn derived, using o syecinl srstem of coordinates end
giving attention to coupling terms, in an Appendix to 2 report vy Courant
end Snyder (2NC/HSS-1, »p. KL £f.). Roference has been made to the results
of thls annlysis in EDO-}/!J.G-E and the subjoet has been reviewed in notes
prepared et AL by M, Hamermesh, The charscter of non-linear terms which
may be caused deliberately to enter into the equations has becn discussed
b Powell (MAG-JLP-1,2),

It 1s the purpose of the nresent note to reviev in a simple way for
internal use 2 derivation of these results for cases in which the equilibrium
orbit is sufficliently smooth thet it mny in effect be considered circuler,
The extent to vhich substantisl non-linear terns irmly nmorked modificetlon
of the nagnet moles will also be noted,

2; Use of the Princinle of Leaét Action

Since it is the Aifferentinl equotions for the trrjectories vhich are
of interest, rather thian ecuations for the motion in time, it 1s anpropriate
to conslder use of the »rincinle of leest action, This nrincinle is conven-
ient to o~ooly in the nrcsent instrnce, since the nognotic field (if static)
does no work on the narticle and the magnitude of tie mecheniezl nomentum
may be consldered coastant,

e accordingly urite
s /G + eB)Tm = 0, @)

vhere S renresents the mechonical momentum and X 1is the vector potential;
In cylindrical coordinates this assumes the form

sja{p (£ + 24 2'2)1/2 + e(rA" + A+ z'AZ)} a4 = 0, (2)

vith primes dcsiznating differentiation with reswcet to the azirmuth angle;
By application of Suler'!s equstions, one finds for the z-motion
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dy z! -
wlz o 2,2)1f2‘§ Slray - 3] = 0. (3)



Similarly, for the r-motion,
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In the abrsence of currents ':itnin ’cne vacuwn chember, 9xB =0 and
we write B =-U¥. Since V'F =0, WV =0. If no currents thread the
orbit, V will then be a single~vslued harnmonic function, Althoush exores—
sions for veetor motcntials for posdible use in (2) ~re slven, for exarmle,
by Snmythe ("Static and Jynaniec Teetricity", Zd, II, Secct, 7.05), it is con~
sidered nore exncdient to worl 'rith Ticlés derived in this way Iron a scalar
notential, for tiw following rensons.

(1) the vector ~otenti~l convsonante r~re iater-releoted,
(i1) the comleiencss of tic assumed. cet of vector notential

camponents nay ve nore Cifficult to esteblish, and
(11i) the use of the seslnr wotentisl csn sutomatically be ex."ployed

to eliminate fields vhiclh would imply currents tiirecading the orbdit,

In the usual design of an ideal mcchine, no-lectine azimuthal variations,
it is ap~roprinte for o first-order anclysis to telze

Vo= 3 [2 - n-—-z_7 (5)

The exmression (5), contmninb sccond-order terms, c~ives fields wihich are
satisfactory through first-order and satisfics T.anlace's equntion in zero
ordor

3. Potentisl Tunction

Harmonic »otential functions, suitable for use with.eylindriesl door-
dinantes, nre obtninavle by senaration of varisbles nnd r~re listed, for ex-
amle, :m Smythe (on, cit,, Seet. 5,291). Smrthe's exmressions involve

Bessel functions Jp(kr) and m, (kr) hynerbolic functions of kz, and eircular
functions of mf. The 1>nramater m is restricted to integral velues if
single-valued azimuth functions sre dcsired. In esddition sorie specielized

forms may be introduced: y¥+(; or 1)"(sinmf or cosmg), (nr er1)*(z orl),
Accordingly, esmresslions of interest for the radial function misht include

I Ger)i (e ) = 3 Qe )i (kr) J ()i e ) = 30 DU (er)
P ey A = AT S N = B =30 B AL P R =0

Por wvork with functions of the =bove form it would be coavenlent to c:mand
then about the radius r, of the equilibriun orbit, as may be done conven-
iently by refcrence to the differeati~l equntion for t.-esc functions,
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Suitable series, written through terms of fourth order, wouwld thue include'
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These serics, wideh satisfy 3essel's equetion throush terms of second order,
arc seen to ~) ronch t:¢ ermensione for sinltAr and coskdr, resrectively,
vhen kr, is large (in commrioon both to unity and to m), Similarly, for

X = 0, the series becone the nxpansions of -(!'r /m)ﬂr/r Pl /r)fj and
of —/Tr/r e (r /r)j resnectively; with hot n esnd k equal to zero,
Ry r e:\.resents kro 1n r/rol

- The cormlexity of selecting a sufficiently gencral notentlal function
by means similar to those indicated above sugrests that it is »nrefersble to

follow the nrocedure of Powell (MAC-JLP-1) and urite the potentisl directly
as a pover series in the quantities x s Ar/r, and y = z/ro .
il=z+r[2ﬁ+Ax+By+cx2+m+”ya

o0 + Fx3 + Gxey + nya + Iy3

* J_xu + Kx¥y + 12%% + MmO + I'Tyu]. )

i

through terns of fourth order, vith § and the coefficients A, 3, ...¥
functions of the azimath ansle J .

It has becn suggested by Powell thoat it is adequate to require the
potential arising from the terme vithin the square drackets (7) to satisfy
Laplace's equation in rectangular coordinates; if we do not make this ap-
nroxination at tils moint, hovever, ve require instead that

r:e
(1-»-x)2-‘—g- - (1+x)ﬂ + (14-::)?9‘2’ 322 = 0, (8)

PP °x dy 36

If, follouing Powvellts notation, ve introduce the coefficients _
a = A, a = -8, d = -4%L, ~nd
B = 3, b o= 1 ‘%' e = g(x-u), (9a..h)
n = =D - I J
’ c = -,
3

the coefficients of (7) rre deternined by Tamlree's equation (8) to yicld
tae ~otentinrl
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. he + }b -_\_5&)11;4- (5/2)8% + nt xz'y ) %xaya

_Yde - 3 + (3/2)n - (5/2)3n - au xy3
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This notentinl maoy be used to cbtrin exyressions for the field-comionents
valid tarouzh termsof, third order. '
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a + (a.-¢'“-92-')x - ny

b - a + (3/2)a - att + 5¢n 2 + -6b + n ~ gt
n x —

+ S Xy
b + o - (32)a +an - 547 2
m :
, &3¢+ (5/2)e ~ (15/M)a + Sat - (37/2)8" = at + ¢t .
S
. Bo+ 3 - <z/2)§ + (5/2)3# + nt 2y - _g -
4o -~ 3 + (3/2;1;- (5/2)p" = av . (11¢)

e correctnest of thesc Tield cormonents ney be chec’zed LY use of the con-
dition VB = 0, The field commonents (1la,0,c) are found to satisfy

a3 ¢3 23
2z r é
(L4x) ( 3 * =3 ) Br 73 0

thrauch terms of second order.

4. The Rquotions of lotion

The ficld comyonents (1la,b,e) may be sudstituted into (3) and (1) to
obtain the conrtions soverning the trnjectories, ‘le restrict ourselves at _
nresent to marticles rossescing the caullidrium nomentum, i,e,, p = Py = eBooro.
Since it siarll Ye s~ssumed thet % and y ~re no greater thon of order =2<X1,
1t is nernissitle to renlace n

-~ 7~

a 2! ) y a s r! ; xt
=7 ] R4 and 4 —5 i by =—.
ap ! (raﬂ,,aﬂ,a)lfz J 1+x af ((ra ,2+z,2)1f2 l+x
To the srne order we nub L3 1.,

(r2+r|2+2‘2)1[2

One then oovtains for the axinsl rotion
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y" + ny a + (a+§m-¢")x

+ (10 +£av>+gd*%'i‘-&¢)“) £ - (3 +32-n+§é|—')xy

- (-zc-)-ﬁ «go, al Eﬁ")y ;

J (_6+ 0+ }m a.“ au E¢n %_

+ (e-%&b*%n-'-%ﬁ"q-«ﬂ-)xy

gener-geeg g

§ded e

- x! (o¢' +a'x +B'y -ntxy), (13)

in which terms through third order in x,y are retained in the part of the
expression not involving x!, Since the terms involved in the coefficient

of x' will presumably not be introduced intentionally, we }:eepexplicitly in this
coefficient only terms through first order in x,y, and the term °

-n'xy which is necessarily present.

Similarly, for the radial motion,

zB B4
xh - (Ql+x) - (QL+x) + (1+x) yl=m = 0, (1)4)
: BOO BOO
x" + (1 -n+28)x = -8 + (a.+¢"+-g»’)y

+ (gb+%n-l-s+%'i)x2

+ (3¢ +5a+1-+-———-¢L)xy - (g'b +$-%"') :v'2

- (-%-Tb-Sn—EEB"+I—2') x3

+ (%-!- 6c + 2a - o + af - 4p") xay

1 n H nn
, (e'nﬁb“s"ﬁ—' E
n u n
- G+ 3 R R Rt AR R
+ ¥ (2¢' *a'x +3’y - n! xy) \ (15)
to the same order as eq. (13) for the axial motilon,

It is noted from eqns. (14) and (12) that the coefficients of y' in (15)
and of -x' in (13) are identically the same expression &(V/ryBeo)/2¢ .



_7... ..

By way of comparison, the potential cited by Powell (MAC-JLP-1, p; 3),
if employed in accordance with his procedure, leads to the equations?

y'+ny = o + (a-¢") x + &(Bc-a")’xe
- L(6v + 80) 5y - 6o + an) 5P
* %‘(d - af + ¢iv) o + %(n" + lhe) x2y

- -:-Lédxyz + Tla-(n"-lte) y3
- x! (2¢'+a.'x +B'y ~a'xy + ,..) (1)

and
™+ (1-n)x = -8 + (a+@")y + &(Gb + p") x2

+1i6e +at) - F(6b - pn) 5P
2

- L (pn 3 i
12(11 + Y4o) x7 + 54 xy

- %_-(n" - le) xy2 - %(d + al + ¢iv) y3
+y' (2 +a'x +B'y = n'x;f-i-..:). (1)

Lﬁvidently the coefficient of n"y3 in (i) and of anx> in (ii) was mis-

written on p.5 of Powell's report; of somparavlenote are the terms i—t—n" xgy

in (1) and -):_Lr n"xy® in (i1), which also appear in (13) and (15) respectively,/

It would at this point appear reasonable to adopt the following view-
point concerning the functions in (13) and (15) and in the corresponding
equations (i) and (ii):

With care in the design and fabrication of the magnet structure
one endeavors to secure
a and B of order l/n. or less,
a, b, and ¢ of order no greater than n;
d and e may be made delliberately of order n3 if
significant cubic terms are desired,
¢' no greater than of order /& and @" no greater than
order n}
the rate of variation of the function n with azimuth will
be limited by the pole~face discontinuity being removed from the median plane
by roughly ro/gn§ ~~ this may result in each differentiation increasing
the magnivude of Ghe Jouctliopn by ac wove whad ons oidsy of ¢ and, in
such eases, the extewt of the region in whieh the darivatives are large
will be short compared to a sector length,
the derivatives of the remaining functions will be subject
to limitations similar to those applying to n,; and, finally,
x' end y' will be of order 1/,m .
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If the foregoing conditions apply, the equations (13) and (15), or
(1) and (ii), reduce withim a.sector .to the similar, and simpler, form

yhrny = 2p'x + (a-fx + 2G5y - ) - 6P -2,
3 6
(162)
"+ (An)x = 28"y + (a+¢")y + %Bxya -2) + §Py - )
(16b)

if these conditions are not fullfilled, recourse might be had to egs. (13)

and (15),

The linear terms in these equations (16a,b) fall into the form of egs. (1)

of EDC-3/lAC-2, which originated in the Brookhaven report EDC/HSS-1 (pp. 37 ff.)
of Courant and Snyder, with M =a and § = 2¢'.

In concordance with an observation of Courant (EDC-}/MAC-E, p; 2), the
terms involving x' and y' in (16a,b) mey be removed by a suitable
transformation., For this gurpose we introduce the quantities u and v

as new dependent variables” :

x = uecos P + veing, (17)
y= -usinfd + vecosd. 7
(It is noted that, with this substitution, the bounds on x and are

gimilar to those on w and v in that, in particular, x°+y2 = ud+2,)
Our equations (16a,b) then become:

v o+ v[j¢'2 + % + (n - %) cos 2¢ - a sin 2§ /
= ufacs2p + (n- %) sin 20 /
+ (3u°v - vB)Cj% cosltf + % sin 4¢ 7/

(3% - o)) [§ cos¥d - $aing] (182)

un + u[?¢'2 + % - (n - %) cos 26 + a sin 20/
= v[acos2f + (n- %) sin 2§ ]
+ (3Uy2 - n3)£T§»cosh¢ - % sin 4¢ 7] N
(v - v3)[7% cosltf - % sin 4977 . (18b)

*This transformation was suggested to the writer by discussions with
Professors Langenhop, Maple, and Thielman of the Department of Mathematics,
Iowa State College. As has been pointed out by Powell (private communication),
this corresponds physically %o a.rotation of axies at a rate proportionsl to
the longitudinal field -2¢'B .
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The terme involving =a' and a" in (13) and (15), or in (1)
and (i1), will play a dominant rdle at the transition between sectors,
The equations would then assume the form ‘

b4 it
" o= +-§-2—y)+%-x2y +n'xyx' , (19a)
) .
o= -Exd- -y M (19v)

The discontinuities which result, according to these equations, in
passage between adjacent sectors have been examined by Powell (MAC-JLP~2)
and by Snyder and Sternheimer (HSS/RMS-1), presumably with the condition
in mind that the transition occuples an arc-length comparable with the
aperture,

2
%, +¥2

I F ol Xo¥o A1}
Ay' = T.. ’\y‘/ +* 5 \x/ eAn , (20a)
U ox 2y 2 XY 7
axt = | 2t (x‘) SRV (20b)
. o3 5 .
yo Xoyo ‘ )
Ay = + v An , (20¢
¥ ! 12 4 i )
)"x 3 x yz \g T
- om o oY 0 .
Ax = [12 + 3 J an (204)

Powell has checked this result by appreal to the condition that the
Jacobian of the transformation from -€& to +€ shall be unity, A

second check of the results for Ax!,Ay' may be obtained by noting

dH/d.g‘ = '«)H/@é: by forming the partial derivative of Powell's Hamiltonian,
considering it as the total derivative, and integrating it throush the
transition, one may compare the result so found with that resulting from
the values of Ap,, Apy (or ax', Ay') found previously. In the present

case the results appear to be consistent with

AH = ';-_(1/14)(::02 + ¥ A= -y 1) - f2)(x? - Yoe)];An :

In conclusion it should be remarked that neglecting relatively small
terms in a differential equation does not necessarily lead to solutions
which remain close to the correct form. Thus the terms a and =8
(in (13) or (i) and in (15) or (41)) -- or the terms a cos § - B sin @
which would then enter in (18a) and -8 cos ¥ - o sin ¢ in (18b) -- repre-
sent periodic forcing functions which, even when small, may have grave
consequences under resonant (or very-nearly resonent) conditions
(EDC/HSS-1, Sect. 6a).

— T e
For the terms considered here, el (=) T_al_:%)-'.- EZEE

k=0
end has been carried through the terms of fourth order in x,y.
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5:. Pield Plots

With reasonably large values of the index n, the distinction between
a suitable three-dimensional azmuith-independent potential and a similar
two~dimensional potentiasl beccmes negligible in constructing field plots
within the region of interest. One may compare, for example, the z-component
of the focusing field (exclusive of the guide-field) as given by potentials

of the f°”: ) N (e )3 (kr) - 7 (kr ¥ (er)
i - sinh kz ,
2 ] I\TO(erJl(kr(p - Jo(kroml(kro) |

k'r

(11) a| o 1an? | 27 (kr")e(‘*r)j‘! inh kz , from (6a)
1 X ‘r_o+-2-'r—°' ——-——6——-—-1‘—O-JSIZ, rom al,

the resultant field-component - dV/gz being proportional to (11b) when
cosh kz is expanded and suitable values are assigned to the constants

[n= kr,, b= -kr /6, o= }é((kro)j - (kro))_j'.

(4i4) the two-dimensional form -% sin kAr sinh kz .

A comparison of the field-values resulting from these expressions is
given i the following table:

(3) - B_
2z’ ~ “oo
]
0o
for v, =n =400, &r/r,=%1l/n
{.
(i) (11) (111)
° (Ar/rov) ﬂ 7-dimensional Series (6a) 2-dimensional
-1 (0.8426)cosh2Z | (0.8346)cosh=2 | -sin(~1)cosh2Z = (0.8415)comh22
T, To To To
+1 (-0.81+05)cosh.-§_1-_g (-O.S}El)coslrf-.z'- -sin(l)cosl%: (-O.ShIS)cosh%?-;
() 0 0 0
o T TR 3 3

The tiro-dimensionsl result is seen to 7iffar Trom the $threc-dinensional forn
by less thon tvo narts mer thousand in this exannle.
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It is of interest to sketch the field associated with situations
in which the field at the median plane exhibits a dependence on r of the
type currently under discussion in the Mid-West Conference., We use two-
dimensional potential functions for convenience and consider the region
of interest to extend to x @ Ar/r, =+l/n, y=z/rg=+1/n, 3
Non-linearities of amount characterized by (k:ro)2 =3in2 /—e = +'E—

will be considered; these values will imply cubic forces as great as
one-~half the linear forces for certain points within the region of

interest (see following table).

(,7) Lin B /6)%3 )
(0.5/n, 0) 0.125
(0.75/n, 0) 0.281
(1/a, ©) 0.500

The figures which have beern consiructed are listed below, with
Xanx, ¥Ysny, and %=X+~ iYi

Fig. 1. Conventional Quadrupole Field —-

2 .2
W = g-2g°> U=x-";Y
‘cm' _ ot - 4 - .
dz!y—o |1 Z§Y_O—1 b'e vV = Y - X¢¥
Fig, 2. Sinusoidel Field in Hedian Plane --
= Z 4 cos 2 U = X + cosXcosh Y
W i A .
l'a-z! = 11 - s1nZl Y=0 vV = ¥ + sinXsinh Y
= 1 - sin X
Fig. 3. Hyperbolic Field in Median Plane —-
| W = 2 - cosh Z U = X - coshXcos ¥
ai | ‘
‘E[ =ll—-sin.hz ¥V = Y - sinhX sinY
TClY=0 - ¥=0

1 - sinh X
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Fig. 4. Cubic field in opposition to linear field in median plane --

2
_ z=  Z 2_ b e.2 M
W= z-T e g IR i S 4.0 s
2 24
o c1-x+F Xt (x2-2)
az|y_, 1) Vo= ¥- XY eSS

Fig. 5. Cubic field supplementing linear field in median plane -~

Y
_ o, _ 25 _ % 2. .2 M 22 M
W o= -4 v - x-ELX 6§MY2+Y
3 2
aw _ . _ v _X e ey . XO(XE-YP)

It is notable the extent to which the introduction of non-linear
fields in the median plane necessitates a marked modification of the theo-
retical pole faces exterior to the useful aperture. By means of a plotting
board at Iowa State College, Dr., Zaffarano is undertaking to examine the
non-linear fields which can be preduced by reasonable poles of finite extent
(with or without the use of a neutral-pole structure), ignoring for the
present the influence of the coils which generate the magnetomotive force
in practice,

L}
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Figi 5

TOLUSTRATION
of
EQUIPOTENTIAL SURFACES

Cubic Field
supplementing linear field
in median plane
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