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1.f.Introduction

As J. B. Adams1 has polnted out, particles with wmomentum
different from the equilibrium momentum are presented in a synchrotron
with a different n-value. Since during the relatively slow
synchrotron oscillations the particle momenta have values differ-
ing from the equillibrium value, 1t appears that resonances may
thereby be reached in the A.G.S. It 1s the purpose of the present
note (1) to review (82) the dfective change in n due to momentum
errors, (11) to indicate (83) the changes in n which appear tolerable,
and (111) to examine ($%) the magnitudes of the momentum errors
which may be expected to arise from synchrotron oscillatlons in a
typical case.

2. Differential Equatlions for Betatron Oscillations

A simple derivation of the differentlal equation for the radilal
motion of a particle with momentum p differing from the equilibrium
momentum p, commences with the force equation
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primes indicating differentiation with respect to the azimuthal
angle, quantities of second order being neglected, and the mass
being taken as constant since the magnetic fileld does no work on
the particle.
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where p represents the mechanical momentum and A is the vector
‘potential. Considering a magnetic fleld of constant gradient
independent of azimuth, as might be expected to hold within an -
individual sector, we neglect the impulsive terms of the character

discussed by Powell3 and employ a vector potential A¢.(r,Z)3‘
for which - :
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at points in the median plane.

Since the magnetic field does no work on the particle, we treat
as a constant and our action principle assumes the form
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where primes agaln designate differentiation with respect to the

angular coordinate # and where p, = eB_.r .

The differentlal equations for the trajectory result frow
appllication of Eulert's equations
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where F represents the lntegrand of the foregolng integral.

For the r-motion we accordingly obtain.
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. 4
when operating near the center of the diagram (n = N82/16).[u",

The tolerable momentum spread is thus found by the relation
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or an acceptable varlatlon of roughly + 1 per cent for n = 400,
Use of larger n-values would imply still smaller tolerable varla-
tions in momentum.

4y, Expected Magnitude of Momentum Errors

A, Differentlal Equation for Synchrotron Oscillation

‘Oscillations of particle momentum will be associated with the
synchrotron phase-osclllations. The differential equation for the
phase-oscillations 1s customarilyS-7 written

d 2 |
—_— (Es ¢).-. :) h i?_ (sin g, - sin g)
at \ -Y¥ re - 27W
eV o o
= a%z h E?? (sin g, - sin £), (5)

where W, 1s the correct (synchronous) angular speed for a hypotheti-
cal particle with velocity c; £ is the electrical phase angle; h, the
harmonic number; Es’ the energy of the (synchronous particle; V,,
the peak radio-frequency E.M.F.; and Y= - (d W/ W, /(dp/ps). (6)

The equlvalent alternative firigm
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has also been cited and derived 1n a separate treatment by Courant.5’9




If we select g. = M/6 radians (the range of oscillation then being
-39° g £ € 180° and encompassing 52 1/2 per cent of a full :
revolution),

(¢)max = 1.37 A, (14a)
()0, = 1.17 aAM2 | (14b)

Thus, following injection, a wilde range of phase oscillation
amplitude will imply values of ¢» as large as
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with the asgociated momentum spread glven by
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1 1 eVy/27 (16)
gV nivl E

If dp/dt for the synchronous particle 1s constant, as in a
mggnetic field which 1ncreases linearly with time,

dE/Turn = 2TR [1 ¥ 2’.‘,‘;;] ® (17)
and, for a phase angle g, of 30 degrees,
eV, /2™ = 2R [1 +, 2k ]QR
2% RJ dt
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¢ . acceleration time

2 x8.50x 1.3 x 25 x 109

3x 108 x1

18.7 x 103 ev in a typical case. (18b)



simple argument suggests that the momentum oscillations may become
quite large at that time. Thus, for adiabatic changes of small 1/4
amplitude phase oscillations, the amplitude "damps" (¥l /E) 1/
when the R.F. voltage V I;e%:};ﬁ, constant. The frequency of Smase
oscillation varies , 80 we then ex that ax
varies as 372 and ap/p as (1/9 Y(1/4v1 ? /E(l/E)sﬁu m

To determine the nature of the momentum oscillations at the
transition energy it is necessary (i) to study the adiabatic damp-
ing, following inJjection, of the initially large-angle phase oscllla-
tions and (11) to employ a special solution for the basic differen-
tial equation in the neighborhood of the transition energy where the
change of the parameter Y 1s no longer adliabatic. This latter
solution can be matched asymptotically to the result of the adiabatic
analysis.

i The damping following injection can be evaluated through

(1)
use of S, C. Wright's observationll that the action, J‘ E ) ag
_ v / %%

remains constant under adlabatic change of the parameters. In terme
of Wright's notation, :

F( Py, $,) OC (- 7/35)1/2

and thus, for ¢% - ¢, small,

~ /% -1/4
- ¢° w ‘rl Es s
as stated above.

From Wright's table (o . cit., p. 3) we have specifically, for
our 1nitial amplitude of oacilI tion,
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Accordingly,
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The waximum momentum spread at the transition energy is

determined analogously [ 1/_ b
3 a - .
' & 1.93] :
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or, typically,

- 1.46 1 1/6 b1/
= 1.62x10
0.995 n5/12 0.995(1.87x10%)1/2 0,537 (1.62x107)

(0.988x109)1/ ! 1
(0.938x109)1/3(9.75x109)1/3  (0.88)1/%
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‘ For operation points remaining on the diaggnal of the neck-
‘tle, the characteristic factor exp(+ik) is glven by ' '
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Ns Ns

cos k = cos8

(Ni being the number of sectors, or one-half the number of sector-

pairs or periods) and, by differentiation,
, 27 Y 2%
(sin k) Sx = T |sin v cosh 2TV cos 2—1:@—
NB\/H Ng Ng 8
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In the present application we have selected Sk = + T/ , SO
Ns/?
fn = + /2 (sin k)/2 | ‘
— _
sin 2% v cosh 27(-/5 - ¢co8 _2.'_}‘/_3 sinh M
Ns Ng s Ns
2TVE
For points near the center of the necktie, ‘f- =N, sin k = 1,
and ~ N 2
s
v
§n = + + 0.204/m

2 cosh (TM/2) -

for a point further down the dlagonal toward smaller |n| , such
that, in our notation, 2Tvh _ | ogy /cf. EDC/HSS-1, p. 20/,

8
sin k = 0,807, and one finds

dn = + 0.31 4/n.
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