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It has been suggested by Crane and others that the varia­
tion of wavelength with amplitude afforded by non-linear 
restoring forces might be used to overcome the reso~nce 

difficulties in AG synchrotrons. This note reports on a 
preliminary investigation of the possibility of such an effect 
using a simple first order perturbation treatment. 

Consider the equation for the uncoupled radial or vertical 
motion, 

t� x".,. DE(e) x • ~j< (e) x3 fo(F(Q) (11 

where E(9) and ~ (9) have period ~ and F(Ql.t t~e driving 
t'orce due to misalignments, etc., has period 2 tT • rX:. is a 
small constant. 

Note that this is not a realistic equation of motion; one 
cannot construct a ma@Petic field with a linear and a cubic 
term. In order to satisfy Maxwell's Equations, mixed terms 
in the horizontal and vertical displacements must eventually
be added. 

(1)� satisfies the initial conditions 

x(o) :: X o 
(21 

xt(o) • x'o 

We attempt to find a solution of the form 

x ::� X o + 0( Xl t 0<. 2 x2'" •••• (3 )' 

where� 
xo(o) :: X

0� 

x6(O) :: x'0 

xi(O} = 0 
for i~l (4)

x' (O) -- 0 
i 

This choice of Xi and X' ( i?l) is most convenient and 
assures that the initial co~ditions (2) are independent 01'0< • 
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SUbst,ltutlng (3) into (ll, we find to first order in 
the two equations 

X t nE(Q) = 0 C5alo Xo 
Xl t nE(e) Xl ~ (e)x~ t F(9)...r(Q) C5b) 

The equation (Sa) is of the type of Hill's equation. For 
the case of stable oscillations, it has as fundamental solutions. 

y = ei~ Q p (e) 

y*= e- i (3 'Q p~·(~n (6) 

where 0 <: (3 < ~ (f' real) 

and p (Q t -¥> =' p (e) 

The solution which staisfies the initial conditions (4) 
may be written 

X o =- 2 He (ay) (7) 

wher "a" 1s a complex constant. The right hand side of 
Eq. (5b) is now a known function. For the initial conditions 
(~), it has the solution 

ll 
Xl (ll) • J G (ll, u) r (u) du (8l 

o� 
where� 

G(9,u) = -1; [y(9)y*{U) -Y*(9)Y(uj (9) 

It can be seen by direct substitution that (8) satisfies 
(S) with G(e,u) given by (9), provided that y is. so normalized 
that 

lim ~ G(e,u) =1 
u..,Q de 

Both, G(Q,u) and r (u) are real. Eq. (8) can be written 

~l (Ill • 2 Im [Y(Q) f y*(u) r (ul duJ 

Xl (ll) • 2 Im [,,(lli;" Cul ~ (u) x~ (u) i F(U~ dj 

:: 2 Im fyell) .r ,,* (u) V(ul (..3,,3 + 30.r0./2y /"J2 f 

.e.e.) + F (u0 d0 
where we substituted the solution.(7). 
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Using (6) for y and Y'*, the integrand may be written in 
the form 

L eis~ u (u) (lOa)1"g 
s 

with 
Po (u) = 3/< a I al 2/ p}4 

PI (u) = 0 

2P2(U) =/1 a3rpf2 p

P (U) =P4(u) = ••• ; 0
3

P- (u)= p~:- F (u ) . (lOb)
I 

2P-2 (u)= 3/< a* I a 1 p*2 I p12 

p_ {u) = 0
3

P-4 (u):/< a*3/ pi 4 
p_ (u) =P_6(u) = ••• = 0

5

For seven, p is periodic of period 21i/N. We split the 
range of integrat!on into an intege~ number of cells and the 

fraction Of~~ell=~ O~i~ Q 

t [kiN 
where k is the number of cells traversed. The last integral 
is always finite and we neglect it for our discussion of 
resonance effects. For the first integral we use the relation 

21r'k/N 

f 
~/N 

e2 1T' 1~ kiN -1 -. i liu[ e i "u q (u) du = 21T" i gIN- e q ( u ) du 
o a 1-1 (11)o 

_q (u) of period 2 ')( IN 
. P

For s odd, the only non-vanishing term is .1, 
I
which has 

period 2 1( • We assume without loss of generality that_
k'= kiN is integral and use the same relation for the integral 
invo1~r1n¥ 

21( k -2~iP k1 - 2"'"J e-l~u e -1 f -iP uP- (u)du= --""-~-i-A~-~ e p (u) du 
o 

1 a-ILl,,., -1 0 ..1 {121 
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Using (10), (II), and (12), and keeping only the terms 
which might give resonance, 

The first term in the square bracket is due to the non­
linearities, the second one due to the driving term."' The 
latter will give resonance when rS = m = integer. Then, 

e-2 'irit3 k/N -1 _ 
lim -2 Jr 1tl - kiN 
p~W/ e� -1 

Thus, without the non-linear term (that is, with~ =O), 
the solution. increases linearly with the number of revolutions. 
~is is the well-known integral resonance of the AG machine. 

On the other hand,. the non-linear terms seem to give rise 
to resonance where sPIN = mt , an integer, since then, in 
an analogous. way, the factor in front of the first integral 
has the value k... Thus, without the driving term (that is, 
with F= 0) the perturbation solution of the non-linear equa­
tion increases linearly with the number of cells traversed 
(and thus with the number of revolutions). 

We wish to investigate the conditions under which these 
linear increases Will cancel - to the first order inoC ... 
Probably the exact (at least for oC< 0), but the initial 
linear rise indicated by this first order perturbation solu­
tion is correct. 

Let us enumerate the� cases where s~ IN =mt 

::1.� s 0, any!� 

m'N ­2. s -- t 2, P= t ---.-.. 
2 

3. s • -4, fJ -- ---iO'N� 
For all other 5,� 

p -- 0 
8 


