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It has been suggested by Crane and others that the varila-
tion of wavelength with amplitude afforded by non-linear
restoring forces might be used to overcome the resonance
difficulties in AG synchrotrons. This note reports on a
preliminary investigation of the possibility of such an effect
using a simple first order perturbation treatment.

Conéider the equation for the uncoupled radial or vertical
motion,

x" + hE(Q) x = <M (8) x3 $«F(0) (1)

where E(6) and A(6) have period gﬁﬁi' and F(0), the driving
force due to misalignments, etc., has perlod 2 W" ol is a
small constant.

Note that this 1s not a realistic equation of motion; one
cannot construct a magnetic field with a linear and a cubic
term. In order to satisfy Maxwell's Equations, mixed terms
in the horizontal and vertical displacements must eventually
be added.

(1) satisfies the initial conditions

x(0) = X,
' ' (2)
x1(0) = x’Q
- We attempt to find a solution of the form
where
xb(o) = xg
xé(o)-= xy
xi(OI = 0
for 1 21 (L)
xi(o) =0

This choice of X3 and X! 21) is most convenient and
assures that the initial coﬂditions (2) are independent ofeo< .,
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Substituting (3) into (1), we find to first order in
the two equations

X, + nE(e) X, =0 (Sa)
X, + nE(6) X =4 (Q)X] + r(a)] (6) (50)

The equation (5a) 18 of the type of Hill's equation, For
the case of stable oscillations, it has as fundamental solutions.

y = eiﬁ ® 5 (0)

y#= e-iﬂ © pR(6) : (6)
where 0 < /3 < 5 (6 real)
and ple + D) = (6)

The solution which staisfies the initial conditions (L)
may be written

X, = 2 Re (ay) (7)

wher "a" 1s a complex constant, The right hand side of
Eq. (5b) is now a known function. For the initial conditions
(L), 1t has the solution

e
X, (8) =j G (e, u)r(u) du (8)
o
where '
G(Q,u) = -i,[-y(e)y*(u) -y*(O)y(yl] (9)
It can be seen by direct substitution that (8) satisfies
(5) with G(9,u) given by (9), provided that y 1s so normalized
that
1im —4_G(e,u) =
u>e 4o

Both, G(O u) and F (u) are real. Eg. (8) can be written

(9) = 2 Im {y(e)j y3(u) r(u) du}
xl(G) = 2 Im {y(G)J/gy% (u) l:/‘L (u) Xg (u) + F(uﬂd}

=z 2 Im{y(e) f y#* (u) P (u)(3y3 + 3alalylyl2 4

.C;CQ- + F (U.)-] d‘\l}

where we substituted the solution. (7).
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Using (6) for y and y#, the integrand may be written in

the form
;i: olsBu p. (u) ‘ (10a)
s S '
1th
" b.(u) = 3 palal?lplh
pl(u) = 0
py(u) = A e3fpl2 92
p3(u) = ph(u) 2 cee = 0
p_;(w)= p# Flu) - (10b)
p_pul= 3 pan | a]? pu? | pf?
p_zlu) =0

p_j, (W)= K au3 | p[4

p_S(u) = P_é(u) 2 .e0 =0

For s even, p_ 1s periodic of period 2'"7N. We split the
range of integratfon into an integer number of cells and the
fraction of a cell left over

) k/N e
ST
o vk/N

where k 1s the number of cells traversed. The last integral
is always finite and we neglect it for our discussion of
resonance effects. For the first integrsl we use the relation

2 Tk/N VN 2 W/N
k/N
f eifu ql(u) du = _%?Tm_;l ol ?u q(u) du
) : e 1-1 (11)

o}

q{u) of period 2 YW /N

. \

For s odd, the only non-vanishing term is'P-I, which has
period 2+ We assume without loss of generality that
k'= k/N is integral and use the same relation for the integral
1nvolvin§

27k - 1 ar '

/ e PP (waws -2 P f e1fu L (wa
: - = - P ujau
0 1 e 271 P -1 Yo -1 (12}
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Using (10), (11}, =2nd (12), and keeping only the terms
which might give resonance,

res (o) o ST 2WisB kN _, 2T/ )
X{ (9) =2 Im {y(g) seven :2 2 Is B /N _lg otsfu
| 2wiBx _, 27 °
pglu) du + | :_m,i — _11f. e~ifu p_; (u)du (13)
o

The first term in the square bracket is due to the non-
linearities, the second one due to the driving term.. The
latter will give resonance when = m = integer. Then,

-2t Br/N _,
1im & ~

= N
BheerE 5 T Y

Thus, without the non-linear term (that 1s, with,ﬁ =0),
the solutlon increases linearly with the number of revolutions.
This is the well-known integral resonance of the AG machine.

On the other hand, the non-linear terms seem to give rise
to resonance where s B /N = m', an integer, since then, in
an analogous way, the factor in front of the first integral
has t he value k. Thus, without the driving term (that is,
with F= 0) the perturbation solution of the non-linear equa-
tion increeses linearly with the number of cells traversed
(and thus with the number of revolutions).

We wish to investigate the conditions under which these
linear 1increases wiil cancel ~ to the first order ino< .,
Probably the exact (at least for o< < 0), but the initial
linear rise indicated by this first order perturbation solu-
tion 1is correct.

Let us enumerate the cases where s/s/N = m!

l. s =0, any'ﬁ

2. s = ¢ 2, ﬁ = 4 n'N__
i 2

3. s--)_'_’ /8:.._%'_1‘]__

For all other s,

p =0
8



