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Abstract 

The matrix representation of the quantum projective 

space CP Cn) is given and it is explicitly shown that the q 
elements of the matrix representation of CP (n) are the q 
annihilation operators of Pusz-Woronowicz oscillators 

provided they are rescaled. We also give an explicit 

construction of Jordan-Schwinger bilinears in terms of 

q-oscillators where different q-oscillators commute. 



I. INTRODUCTION 

Quantum groups appeared first as quantum algebras, 


i.e., as one parameter deformations of the universal 


enveloping algebras of classical Lie algebras, in the 


study of the algebraic ~spects of quantum integrable 


systems [1,2] • 


Other approaches to quantum groups, in which the 


objects may be called quantum matrix groups and Hopf 


algebras dual to the quantum algebras, are developed by 


Faddeev et al [3], Woronowicz [4] and Manin [5] • 


'A new realization of the quantum group SU (2) has been 
q 

obtained by introducing a q-analogue of the usual 

harmonic oscillator a~d using the Jordan-Schwinger 

mapping [6,7]. Similar deformations of the quantum 

harmonic oscillator algebra have attracted a lot of 

atten~ion [8-15] .The quantum group invariant q-oscillator 

is intimately related to the differential calculus 16,17] 

on the quantum hyperplane•.In the ~ef. 16, a formalism of 

a second quantization procedure based upon the twisted 

SU(n) group is constructed and the related twisted 

canonical commutation relations are investigated. 

Recently it has been shown that the unitary quantum 

group U (n) can be constructed in terms of n(n-l)/2
q 

q-oscillat~rs and n commuting phases [18]. This approach 

shows that the quantum projective space CP (n) can be 
q 

identified with n q-oscillators. Also Arik et al [19] 

constructed the quantum Grassmannian manifolds and it has 

been shown that the coordinates of this quantum manifold 

can be taken to be mxn dimensional q-oscillators. 

The purpose of this work is to show explicitly that 

the elements of the matrix representations of the quantum 

projective space CP (n) are the covariant annihilation 
q . 

operators of Pusz-Woronowicz oscillators. 

In section II, we will give the review of the quantum 
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group SU (2) and the matrix representation of CP (1). Inq . q 

section III, using the approach in Ref. 18 we present the 


matrix representation of the quantum projective space and 


show that the matrix elements of this representation are 


the annihilation operators of Pusz-Woronowicz oscillators. 


We also give an explicit construction of Jordan-Schwinger 


bilinears in terms of q-oscillators. In section IV, we 


present 	a discussion of our results. 
• 

II. REVIEW OF THE QUANTUM GROUP SU (2)
q 

Let us begin with some basic concepts~ 


The quantum group GL'(2) is formed by the matrices 

q " 

whose entries belong to a C*-algebra and satisfy the 

following q-commutation relations 

ab = qba. ; ae = qea, 

bd = qdb ; cd qde, 	 (2.1 ) 

be = eb ; ad da = (q - q 
-i 

) be. 

Using the above relations one can easily verify the 

quantum determinant 

:.D = ad - qbeq 

belongs to the center of GL (2). Hence,it is defined to 
q .. 

be equal to unity then M belongs to the special quantum 

group SL ( 2) • 
q

The quantum inverse of the quantum matrix M is given by 
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, 

-q 
-1 b]M-1 = :D -1 ( d (2.2) 

9 -qc a • 

We define the unitary quantum group U (2) by
q 

M* (MT )-1 	 (2.3)= 

Twhere M is the ordinary transpose of M and 
• 

a b* 
M* = [ c 

* 
d* 
].* 

The matrices in the quantum subgroup SU (2) of U (2) are
" q q

characterized by the condition (2.3) with the further 

condition:D = 1. After a(little algebraic manipulation
q 

we deduce that SU (2) consists of all matrices of the' 
q 

form 

M = 	 (2.4)[ a b ]-qb a* * 
where 

ab = qba , ab = qb a , bb* = b*b (2.5)* * 
2 aa* + q bb* = 1, 

aa + bb* = 1. 	 (2.6)* 
Since the matrix elements of GL (2) belong to a c* 

. 	 q
algebra, they are reverse-multiplicative and therefore by 

the relations (~.5) the deformation parameter q must be a 

real number. Thus we can take the parameter q such that 

o 	 < q < 1. 


We define the * operation as follows. 


+ +a and (a) * = a. 
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Eliminating bb* from the equations in (2.6) results in 

z * zaa* qaa=l-q. (2.7) 

We will take this equation to define our q-oscillator[18] 

where the operator'a* is the creation and its hermitean 

conjugate a is the annihilation operator. Note that the 

normalization of the oscillators are chosen such that in 

the q~1 limit this operators commute and give c-numbers. 

The spectrum of the q-oscillator defined by equation 

(2.7) is completely fixed for 0 < q < 1 and it shown 

that [18] 

" a*a = 1 - q2N ~ [N] (2.8)q 

where N denotes the number operator. Also one has [6] 

rN r(N+l)
aq = q a 

(2.9) 
* rN r(N-l) * 

a q = q a 

Moreover, one obtains (n = 0,1,2, ••• ) 

(2.10) 


where 

2n
[n] = 1 qq 

Now, if we define B by 

2 -1/2 -N/2
B = (1 - q) q ~ (2.11a) 
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so that 

2)-1/2 * -N/2= (1 - q a q (2.11b) 

where N+ = N. Then (2.7) becomes 

+ + -NBB - qB B = q (2.12) 

This is the form the one dimensional q-oscillator which 

has been conventionally used in various works by ~any 

authors (see, for example, Ref.s 6,9). Note t~at -although 

for 0 < q < 1 equations (2.7) and (2.12) are related by 

just a rescaling,in the q~1 limit they are fundamentally , 
different. In this limit, the oscillator creation and 

annihilation operators in (2.7) are commutative so that a 

and a* can be considered as commuting complex numbers. 

It shown that the parametrization of a SU (2) matrix 
q

in terms of ~ q-oscillator plus a commuting phase [18] : 

M = M(a)x(a) (2.13) 

where 

a 

M(a) (2.14)= [ 
-q(1-a * a) 1/2 

and 

e 0 

;t(a) = (2.15)[
ia 

].
-io.

0 e 

By this construction the representation given in (2.13) 

is unique and due to Ref. 18, we can take the matrix in 

5 



(2.14) as a representative of' the quantum projective 

space CP (1) since the quantum isotropy group [20] of 
q

CP (1) is U (1) ~ U(1) = S[U ( 1) xU ( 1 )] • 
q q 

III. THE QUANTUM PROJECTIVE SPACE CP (n) AND 
q 

COVARIANT q-OSCILLATORS 

The unitary quantum group U (n) will be defined as the 
q 

set of nxn matrices M=(m~.) obeying (2.3). Explicitly, if 
~J 

MeU (n) we have 
q 

6 .... = 
~J 

(3.1) 

o~ i;-!j 

where the matrix elements of every 2x2 submatrix A of M 
rs 

obey the commutation relations (2.2) and for r ;-! i < I 

and s ;-! j < k 

6 (A ) = m..mkl - qm.lm. k q rs J~J ~ 

The quantum determinant ~ of the matrix M is defined 
q

recursively: 

n j-i
(-q) m •• i:J. (A .. ) = 1_ (3.2)E ~J. ~Jqj=l 

The quantum determinant D has the property that it 
q 

commutes with all the matrix elements of M, and therefore 

6 



~ is a central. element. 
q 

Now we consider the quantum group SU (3). It can be 
q

shown that any element of SU (3) can be expressedq 
uniquely as [18] 

(3.3) 

where 

o 
(3.4)= [ 

o 1 1 
"

I 

(3.5) 

o 

with (2.14) and 

o 

1 (3.6) 

1 

1 

(3.7) 

o 

- with (2.15). The matrix M in Equ. (3.3) contain three 

q-oscillators and with their hermitean conjugates they 

satisfy q-oscillator relation (2.7) whereas different u. 
~ 

commute; a and ~ are phases which are central. 

In equation (3.3) the element MI2(a3)XI2(a)X23(~) is 

an arbi trary element of ,the quantum isotropy group [20] 

SU (2)xU (1). Hence q q 
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(3.8) 

can be taken as a representative of the quantum 

projective space CP (2) [18] _ ' 
q 

Explicit form of 	the matrix H in (3.8) is 


0. 0.10. a' a'

1 2 1 2 

H = (3.9)-qa1 * 1
0.~la2 0.* , 2 

0 -qa2 0.
2 

where 

a'. = (1 - a.a * _ ) 1/2 • 	 (3.10)
l. l. l. 

Now we take 

(3.11) 


where different q-oscillators, commute, then one obtains 

AIA2 = qA2Al 


-1 + +
A+A+ = q A2Al1 2 
(3.12) 

+ +
A.A. = qA.A. , i;il!j (i,j=1,2)

l. .J .J l. 

+ 2 + 	 2 
AIAl q AIAl = 1 - q 

+ 2 + 
A2A2 - q A2A2 = (1, - q2) + (q

2 

These results generalize to CP (n) as follows. We q
arrive at [18] 
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n 
H = n M .. l(a.) (3.13)

1,1+ 1i=l 

being identified with the matrix representatives of the 

n-dimensional quantum projective space CP (n). Here each 
q 

M.. l(a.) is a matrix whose 2x2 diagonal block in the 
1,1+ 1 

i,i+l position is a q-oscillator matrix 

(1 

(3.14)a* )1/2[ -q(l - a a 

and the remaining diagonal elements contain 1, and all 

elements apart from these are zero.In Equ. (3.13) each a. 
1 

is a q-oscillator and their properties are determined by 

the commutation relations, for i,j = 1,2, ••• ,n 

" 

[a.,a.] = 0 = [a. , a .] , (3.15)* * 1 J 1 J 

2 2N
[a.,a.]* = (1 - q)q (3.16)

1 J 
D.ij 

where 6 ... denotes the Kronecker del ta. 
1J 

In the matrix H given by (3.13) instead of taking the 

(n-l) a.'s as independent one can take the first (n-l)
1 

elements of the first row as independent. Then. these 

elements can be shown to be the annihilation operators of 

Pusz-Woronowicz oscillators [16] provided they are 

rescaled as follows 
" 

a = (1 - qZ) 1/ZA 


a * = (1 - q2)1/zA+'. (3.17) 


In fact, if we take 
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(3.18) 

for k = 2,3, ••• ,n, and 

one can has 

A.A. = qA_A. , i < j 
~ J .J ~ 


"
+ + 

;II!A.A. = qA_A_ , i j 
~ .J .J ~ 

(3.19) 
+ + + +

A.A. = qA.A. i > j 
~ .J ~ J " 

Now we take 

a. = (3.20a)
1 

For a representation in a Hilbert space where a denotes* 1 

the hermitean conjugate of aI' the eigenvalues of 

are real and non-negative. Moreover,by the relation (2.6) 

the operator is bounded and the eigenvalues of 

this operator are in the interval [O,I).Thus one can take 

(3.20bJ 

We require that the relations which we will obtain, after 

the defining the transformations, are the same with the 

relations (3.16) and (3.15). Thereby we will take 
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2)1/2Aa = (1 - (3.21a)1 9 l' 

2) 1/2X-IAa = (1 - (3.21b)2 9 2' 

where 

X2 + + = (3.22)AlAI AlAI· 

Note that 

2 2 2 A+X2 __ -2 2 + 
Al X = 9 X AI' 9 X A1 1 

+1 +' +1 +1 +X- A = - X- A , (3.23)q 11 

Now,using the commutation relations (3.19) with (3.23) it 

is easy to check that the relations (3.16) and (3.15) are 
.... 

invariant under the transformations (3.21). Indeed, for 

example, 

• 
and 

= 1 - 9
2 

· 

Consequently, we have shown that there is a one to one 
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correspondence between the matrix elements of the matrix 

representation of CP (n) and covariant Pusz-Woronowicz 
q 

oscillators. 

In the general case, one can take 

and for k = 2,3, ••• ,n 

(3.24) 

where 

+ + x~ = (A.A. A.A. ) (3.25) 
~ ~~ ~ ~ 

and a straightforward shows that the relations (3.19) are 

satisfied • 

Finally,array the oscillators in Jordan-Schwinger [21] 

bilinears: 

e. _ = a.a. i,j = 1,2 (3.26)* ~J ~ J 

+ e._ = e_ .• 
~J J ~ 

Then, after some algebra, one obtains 
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• 

.. ' 

j " 

2
[e11 ,e12] = (1 - 9 )e12 ,

2 
9 

2
[e21 ,e11] = (1 9 )e21 , (3.27)

2 
9 


[e22 ,e12] = (1 9 -2 
)e12 ,


-2 
9 

-2
[e21 , e ] = (1 9 )e 21 ,22 -2 

9 
where 

2
[a, b] 2 = ab - 9 ba, (3.28) 

9 
or by the transformations 

a -1
E .. = (1 - 9) e .. i,j = 1,2 (3.29)

1J 1J 

one obtains 

[E11 ,E12] 2 = E12 , [E21 ,Ell] 2 = E21 , (3.30) 

9 9 
-2 = - q- -2 =[E22 ,E12] 

2 
E12 , [E21 ,E22] 

9 -9 
These relations are same with the ones appearing in 

Ref.l0 for the single quantum parameter case. 

These result can be generalize as follows: 

2 * 29 aiai = 1 - 9 

[a.,a·r = 0 = [a.,a.] , i ~ j* * 1 J 1 J 


e .. = a.a . 

.1.1 *.1 J 

[e .. ,e_ ] = (1 - 9
2 

' £ ~ k (3.31)
.1J J k 2 

)eik 
9 

[e __ , e _.] = e _ . e .. i < j.
.1J J.1 .1.1 JJ 
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IV. DISCUSSION 

In this work,we haven taken the matrix elements of the 

unitary quantum group as the independent q-oscillators 

and have shown that the entries of the matrix representa

tions of the quantum projective space CP (n) are the 
q 

annihilation operators of Pusz-Woronowicz oscillators. 

Moreover, we give an explicit construction of Jordan

Schwinger bilinears in terms of q-oscillators which are 

the matrix elements of the matrices M. . 1 appearing in 
~,~+ 

the matrix representation of CP (n).These are commutative . 	 q 
and one of them satisfy the q-oscillator relation (2.7). 

The quantum projectivespacehas two different 

limits. In the first case it reduces to the ordinary 

complex projective space CP(n), in the other case it 

reduces to the n-dimensional ordinary oscillator. 

This work was supported in part by T.B.T.A.K. the 

Turkish Scientific and Technical Research Council and in 

part by Bogazici University Center for. Turkish-Balkan 

Physics Research and Applications. 
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