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Abstract 

We propose an analytic method for predicting the large angle 
CMBR temperature fluctuations induced by model textures. The 
model makes use of only a small number of phenomenological param­
eters which ought to be measured from simple simulations. We derive 
semi-analytically the C'-spectrum for 2 $ I $ 30 together with its 
associated non-Gaussian cosmic variance error bars. A slightly tilted 
spectrum with an extra suppression at low I is found, and we investi­
gate the dependence of the tilt on the parameters of the model. We 
also produce a prediction for the two point correlation function. We 
find a high level of cosmic confusion between texture scenarios and 
standard inflationary theories in any of these quantities. However, we 
discover that a distinctive non-Gaussian signal ought to be expected 
at low I, reflecting the prominent effect of the last texture in these 
multipoles. 
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IlilnUllll1IIII1 Introduction o :L:LbO 0047723 b 
In the recent past, a large amount of work has been directed towards predict­
ing the CMBR temperature anisotropies associated with inflationary scenar­
ios (see [1] for a review), and with the various topological defect scenarios 
(e.g. [2, 3]). Inflationary scenarios are far better explored in this respect. 
The main reason for this is that it is easier in these models to plead igno­
rance of the detailed mechanism responsible for the density fluctuations of 
the Universe. Quantum fluctuations in the metric are a fuzzy subject, and 
hand-waving arguments for Gaussian fluctuations with a particular type of 
spectrum are normally considered acceptable. Once this is done, one is free to 
take advantage of the well developed and sophisticated industry of methods 
aimed at treating Gaussian fluctuations [4]. Aprecise prediction for the out­
come of concrete experiments follows easily, making inflation popular with 
experimentalists. The state of affairs in topological defect scenarios is rather 
different. No lack of fundamental physics understanding hampers working 
out in rigour the defect network evolution and the fluctuations they induce 
on the matter and radiation of the Universe. The price to pay for our honesty 
is that a serious treatment of the problem is computationally overpowering. 
A reliable link between the defect network and the perturbations it induces is 
undoubtedly still missing. To top off the trouble, it turns out that the fluctu­
ations induced by defects are often non-Gaussian. Setting up a data-analysis 
framework geared towards non-Gaussian fluctuations is virgin ground (but 
see [4, 5, 6, 7] for Gaussianity tests). Overall, even though defect scenarios 
have so far been poor in solid predictions, they have a potentially polemic 
value not to be discarded. Non-Gaussian data analysis does not exist partly 
because non-Gaussian theories are too vast a class to be treated in one go. 
Defect scenarios provide a motivated and topical example with which one can 
rehearse non-Gaussian data analysis techniques and experimental strategies. 

The main technical complication in predicting CMBR fluctuations in de­
fect scenarios arises from the fact that ~ maps photograph the whole sky 
(that is, our past light cone clipped by the last scattering surface) and not 
just its intersection with the last scattering surface. Hence the defect net­
work, surrounding matter, and CMBR photons have to be evolved through 
a large number of expansion times. The problem is usually tackled by means 
of full-blown simulations [2, 3}. These require access to supercomputers, and 
even so face severe limitations. Important issues like cosmic variance in de­
fect scenarios have hardly been addressed. A possible computational short 
cut can be found if one is to assume scaling. The defects network is expected 
to scale, by which one means that it looks statistically the same at any time, 
once the network length scale is equated to the horizon distance. This sug­
gests dividing the sky cone into cells corresponding to expansion times and 
horizon volumes. Scaling makes it plausible that the CMBR pattern in each 



of these cells is statistically the same, once some angular scaling procedure 
is applied to it. This being the case, all that is required from the simulations 
is good statistics for the CMBR spots induced by defects inside horizon size 
boxes during one expansion time. Such simulations are considerably easier to 
perform. A prototype of this type of study is [8]. In the case of textures, the 
short-cut which we have described has been adopted by [9] where a "scaling­
spot-throwing" process was implemented on a computer. The spots were all 
derived from model SSSS (self-similar and spherically symmetric) collapses. 
In this paper we advocate the use of a.nalytical techniques for scaling-spot­
throwing. An analytical approach allows the derivation of exact formulae 
for the G', G(8), and their cosmic variance, from which interesting general 
properties can be derived. These properties are naturally less evident in 
computer simulations, unless one explicitly sets out to find them. Further­
more, an analytical approach allows the treatment of a more general case 
than [9]. The method proposed here applies to quasi-circular spots with any 
profile. The scaling size (P,), number density (n), and brightness factor (a) 
of the spots are also left as free parameters. We should admit that only the 
brightness factor is a truly free parameter in the texture model. All others 
should be considered as phenomenological in origin, eventually to be fixed 
by simulations. As they still constitute a. controversial matter, we choose to 
consider a broader class of model spots. We can then sort out which spot 
properties it is really important to measure from the simulations. 

The plan of this paper is as follows. In Sec.2 we start by deriving the 
statistical properties of scaling texture model collapses as they appear in 
the sky cone, and from these a formal solution for the joint distribution 
function of the CMBR a~ is given. Using this solution, in Secs.3.1 and 3.3 
we derive exact formulae for the G' and u(G,) in texture models. We prove 
the general result that the cosmic variance in the G, is larger in texture 
scenarios than in Gaussian theories. The excess variance is negligible for 
high I, but significant at low I. In Secs.3.2 and 3.4 we compute numerically 
the G' spectra (with cosmic variance error bars) for a large class of spot 
types. We find that the spots' profile, intensity, and number density affect 
only the spectrum normaJization. The spectrum shape is largely controlled 
by the spots' scaling size P. alone. In general, the spectra are slightly tilted 
(and we numerically compute the dependence of the tilt on p,), but with an 
extra suppression of power at low I. In SecA we derive expressions for the 
two-point correlation function G(8) and its cosmic variance. Although closer 
to experiment, G(fJ) appears to be a very bad discriminator between texture 
and in:O.ationary scenarios. The most original result proved in this paper is 
presented in Sec.5, where we ask how many textures are responsible for a 
given a~. For high I, this number goes like I, suggesting Gaussian behaviour. 
For low I we find that the a~ are mostly due to the effects of a single texture: 
the last (that is, the closest) texture. This ought to impart a peculiar non-

Gaussian signal to the low a~, a fact which we prove explicitly. The purpose 
of the sequel to this paper [10] is to devise a low-I data-analysis technique 
(in the moulds of [11]) capable offully characterising this effect. 

2 Analytical spot-throwing 

In topological defect scenarios the CMBR :O.uctuations at large angles (2 :s; 
I :s; 30) are due only to the ISW (integrated Sachs-Wolfe) effect caused by the 
defect network ([2]). If we assume that the statistical scaling of the texture 
fields extends to their associated time-dependent metric perturbations, then 
we may expect the ISW spots themselves to scale. This allows the direct 
modelling of the statistics for texture induced spots as they appear in the 
sky. From these, we can then write an expression for the a~ joint distribution 
function for 2 :s; I :s; 30. For simplicity, we will assume that the texture spots 
are independent (not required by the formalism, but a good approximation). 
Then each texture angular position in the sky is uniformly distributed. Fur­
thermore its time position in the sky cone can be associated with a modified 
Poisson process in time, in which the probability of an event is allowed to 
vary. Let n be the average number of texture spot producing configurations 
per horizon volume. Then their average volume density is 

2n 
p = - (1)

91ff' 

and using the relation between the proper area dS, the time of emission t, 
and the apparent solid angle dO: 

(2)dS =dllHmil' -1) r 
we find that the angular density of spots in the sky per unit of emission time 
is 

oCt) =2n ((~)1/3 )2 (3)1ft t - 1 

It is convenient to introduce the variable 11 = log2(to/t), the expansion 
time number as we go backwards in time. Each Ay = 1 represents one 
expansion time, starting from Yo =0 (here and now) and going as far as 
y" =log2(to / t" ), when we hit the last scattering surface. In the standard 
recombination scenario y" ~ 15. In terms of 11 the spot density in the sky is 

N(y) =2nlog(2)(211/3 _1)2 . (4) 

Let us now introduce a Poisson-type process in 11, with a variable probability 
density N(y). If Pn(Y) is the probability of having exactly n textures at 
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'11' < '11, then 
dPndii = N(Y)(Pn-1 - Pn) , P-I = 0 . (5) 

This hierarchy of equations fully specifies the statistics of the textures' time­
position in the sky. From the Pn(Y) one can also derive the probability density 
of the n'h texture position Yn by means of 

Pn(Yn) =Pn-I(Yn)N(Yn) . (6) 

However one should be wary of the Yn variables, as they are not independent. 
Not only are their ranges constrained by '111 < '112 < ... < '!In but also their sta.­
tistical dependence is patent in the conditional distribution functions. From 
(5) and (6) one has that 

PI(YI) =N(Yl)e- 1:1 dllNM (7) 

but then 
P2(Y2IYI) =N(Y2)e - I:: dIlN(II) (8) 

which is dependent on '111. From these expressions we can derive the joint 
distribution function 

PI2(YI, '112) = N(YI )N(Y2)e- 10'112 dll N(II) (9) 

which misleadingly factorizes. More genera.lly one has 

PL..n(Yl, '112, ... , Yn) =N(Yl)N(Y2) ...N(Yn)e- I:" dllNM • (10) 

The statistics contained in Pn or pn refer to a sequence of textures ordered 
in y. Ordering will be crucial in Section 5 when we uncover the last tex­
ture. However for some other purposes (like the derivations in Section 
3) we may simply consider unordered textures. Then we have a total of 
N, =Ir' dy N(y) :> 1 textures in the sky. Their positions Yn are indepen­
dent random variables with a distribution 

P. ( ) _ N(Yn) (11)n Yn - N, 

for a.ll n, which is considerably simpler. 
We now model the texture spot patterns. These ought to follow some 

sort of statistical scaling law I where the scale angle is 

8'('11) = arcsin (min (1, 211';'- 1)) (12) 

for a pattern laid at time y. Here p, is the scaled impact parameter (p, = 
p/(3t» giving tT, = ,.p~, the scaled cross section for photon anisotropies. 

Causality requires that p, < 1/2. It may ha.ppen that P, is a random variable 
itself, but we sha.ll ignore this complication. For sma.ll, nearly circular spots 
with profile W'(8, '11), scaling implies that 

W'(8, '11) =W(x) (13) 

with x = 8/8'. This is a sensible scaling law even for '11 < I, although for '11 < 1 
the exact scaling law should be more complicated, as the photons propagating 
through the scaling metric no longer move along para.llel trajectories. In 
particular, if '11 < Yo = 310g(1 +p,), we live inside a texture and are enclosed 
by its pattern. Unless (2np,r' ~ 1 textures like these are very rare, and the 
approximation (13) should produce good enough final results. 

We seek to write the a~ coefficients for skies filled with nearly circular 
spots described by the above statistics. For each of these spots let us first 
point the z-axis at their centre, and perform the spherical harmonic decom­
position in that frame. We obtain an expression of the form 

~, () W"() {2i+16 ' am n =an Yn ·V~· mO+€m (14) 

where W" is the Legendre transform of the scaled profile: 

W', = 2"/1 
dz pI(z)W'(z, Yn) (15) 

-I 

and ~m is a perturbation induced by the eccentricity. This perturbation is 
negligible, even if the spots are not very nearly circular, but I <: [1/9'(Yn)]. 
The extra factor an in (15) accounts for the texture brightness, and is a 
random variable with a Yn-independent distribution function. Performing a 
rotation to a general frame, where the nth texture has coordinates On, and 
summing over a.ll textures one fina.lly obtains: 

a~ =L anW"(Yn)Y!(On) . (16) 

The variables an are independent but equa.lly distributed. Their distribution 
has to be determined from the simulations. The On are uniformly distributed, 
and from them one can determine the Y!(On) distributions (but with care, 
as the Y! are not independent). Fina.lly from (10), (12), and (15) one ca.n 
determine the W;' distributions. The W;' makes the various terms in (16) 
dependent variables, rendering an analytic approach for the a~ distributions 
through (16) unfeasible. In any case finding the marginal distributions of the 
a~ would not be the end of the story, since the a~ are necessarily dependent 
random variables (see [11]). Hence we still would have to find the joint 
distribution F(a~l' a~21 ... ) for a complete solution to the problem of cosmic 
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variance in texture scenarios. Expression (16) constitutes a formal solution 
to this problem which, despite all the obstacles to an analytical solution, is 
particularly suited to Monte Carlo simulations. It separates the individual 
effect of each texture on each of the a!n. It also factorizes each texture 
contribution into three factors. The Y,!: are purely geometrical factors which 
should be present in any SSS (statistically spherically symmetric) theory 
(see [11] for a definition). The W;' are a reflection of the structure of the sky 
(foliation into expansion times and horizon volumes) and should be present 
whenever there is scaling. Finally, the an's factor out all that is peculiar to 
the texture model under consideration, and will have to be measured from 
detailed texture simulations. 

3 The angular power spectrum 

3.1 An expression for the C' 

In any SSS theory one has 

< a!na:;' >061= 0'51,5::, . (17) 

The angular power spectrum 0' can be estimated from the observable 

1 ' 
0, =2/+1m~' (18) 

since < 0, >061= 0' in any SSS theory. Cosmic variance introduces error bars 
of size u(0,) into this estimate. We start by deriving an exact expression 
for the 0'. From (16) and (18) we have that 

1 
0' =< 0, >= 2T11:1: < anan, >< W~W~, >< Y!*(On)Y!(Onl ) > (19)

+ m nn' 

but since 
5nn, 

< Y:(On)Y!(On/) >06,= 4i (20) 

we have simply 

0 , < a 
2 >"=--L..J< W'2 > . (21)

411' n n 

Computing the averages using the unordered statistical description (11) we 
can write 

2 
> f lll

0' < a 'dyN(y)W"2(y) . (22)
411' Jo 

Figure 1: The density O'(y) multiplied by 1(1 + 1) for I from 2 to 30 for 
(n = l,p, = 0.4) and (n = l,p, = 0.08) textures with Gaussian profile spots. 

If p, is a ra.ndom variable with distribution J(P,), then expression (22) still 
holds but now with W,'2 replaced by Jdp,J(p,)W,12(y,p,). Expression (22) 
lends itself to be written as 

0' folll# dy O'(y) (23) 

thus defining a density 

<a2 >O'(y) = --N(y)W"2(y) (24)
411' 

measuring the contribution of textures living at time y to a given 0'. In Fig. 
1 we have plotted 1(1 + I)O'(y) for (n = l,p, = 0.4) and (n = l,p. = 0.08) 
textures with Gaussian profile spots, for I from 2 to 30. These plots are to be 
confronted with the common belief that a given 0' is mostly due to textures 
living at a time when the apparent size of the horizon equals the multi pole 
angular scale. We find instead that O'(y) peaks for y: O'(y) ~ ~~l) that is,I 

when the textures' apparent size fits the multipole angular sc e. Further­
more the peaks comprise several generations and an accurate prediction for 
the 0' spectrum can never neglect any of the integrand in (23). Changing 
n only affects the normalization of O'(y). Reducing p. not only decreases 
the normalization but also shifts the peaks to the left necessarily affecting 
the shape of the integrated 0'. In general as I increases the peak's heights 
(multiplied by 1(1 +1» are slightly reduced, but their width increases. The 
delicate balance of these two effects will determine whether the 0' spectrum 
is flat or not. 

6 7 



3.2 Profiles and reduced a and P, 

It is not clear what profile W real texture spots have. Simulations [2, 8] 
suggest that the well-known SSSS profile may be oversimplified. We find that 
the exact profile form has little impact on the G'-spectra. For intermediate 
I, profiles do not matter at a.ll, and for low I they induce differences easily 
confused by cosmic variance. The issue of matching free parameters for 
different profiles is, however, non-trivial. We have considered the following 
profiles: 

I.-Hat profile. Defined by 

We(x) =H(l - x) (25) 

where H is the Heaviside function. Its Legendre transform is 

1 2'11" 
wei = 2'11" dz P(z) = -211 (Pr+1(cos ee) - Pr-l(COS ee» , (26)1 +COl" 

the I-weighted scaled solid angle. 
2.-Toy hat profile. We can skip the complications induced by the Leg­

endre polynomials approximating the hat profile by 

oe2 for 0' < o'{eat) = f1r wen - 1(1+1) (27)- { o'(eat)2 for oe > o'{eat) 

with 
oe = 2'11"(1 - cos ee) . (28) 

the scaled solid angle. 
3.-Gaussian profile. A large angle generalization of the well-known 

sma.ll angle Gaussian window: 

W,. = oee- (1+,;",2 (29) 

4.-5555 profile. A profile of the form (e.g. [12]) 

we(e) e' (30)
,Y ex -I2e,2 + e2 

with some sort of cut off at 

(31)eh(y) =arcsin (min (1, 2')!~ 1)) 

the angle subtended by the horizon. We define this cut off with the Legendre 
transform: 

2'11"ehe'e-../2,"'· for I < [l/eh]w', = , - (32){ 27reu-~ I for 1 2: [1/9h] . 

The hat profile is suggested by the belief that ~ circular averages are a.ll 
that matters for 2 ~ I ~ 30. Circular averages have been extensively studied 
(eg. [13}) and some useful properties have been found for them. The toy 
hat profile, due to its simplicity, is ideal for an heuristic explanation of the 
results obtained (Sec.3.5). The Gaussian profile is particularly amenable to 
analytical work, thus providing a good check on the numerics. Furthermore 
it is probably a good approximation to the peaks found in [8]. Fina.lly, there 
is no harm in considering the SSSS profile, for it might have something to do 
with reality after a.ll. 

With the W defined as they are, the functions G'(y) peak for different 
values of y. To facilitate comparison we should therefore define a reduced p,: 

hat tOf! 
- _ L = L = pgau,. (33)Pe - 1.8 2 

which ensures that, for high I, G'(y) peaks at the same Ymos for the same fie 
for a.ll profiles. For the SSSS profile Gl(y) peaks always for y : eh(y) ~ t. 
This is understandable as the integrated anisotropy increases logarithmically 
as we go away from the core. As a result, the effective cross-section for SSSS 
textures is the horizon area, for a.ll Pe. For this reason we will always treat 
the SSSS profile separately, as it does not rea.lly have a parameter Pe' 

It also happens that the value of G'(Ymas) depends on the profile, taking 
the form 

G'(Ymos) =< a2 > .2n log(2).'II"p~ (34)1(1 +1) .a 

gouwith a hot ~ 0.58, atOf! =I, a .. = 1/(4e). By defining a reduced a as 

agou.. 
a=aVa~ =1.05ahot = 2at = r= (35)Of! 

p, 2v e 

we can ensure that G'(Ymos) for high 1 is the same for a.ll the profiles with 
the same < a2 > and Pe' 

In Fig. 2 we have plotted G20(y) in units of < a2 > n, with 'P, =0.2, 
for the first three profiles proposed. We notice that for Y > Ymos a.ll the 
G'(y) have the same form, as for a.ll profiles W 'e ex 0' (even though the 
proportionality constants may be different). Consequently, in this region 
G'(y) ex W(y) ex 1/N(y) regardless of the profile. For y <:: Ymos we have 
W', <: oe and 80 G'(y) is proportional to N(y) or sma.ller than that. The 
exact form of G'(y) in this region is profile dependent, as it involves details 
of how W"(oe) starts to cut off at a particular scale. While this portion of 
the integrand is not the main contribution to the total G' it is dear that the 
detailed form of the spectrum is going to be profile dependent, It remains 
to be seen if these differences have any meaning once cosmic variance error 
bars are taken into account. 
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Figure 2: C 20(y) for the hat profile (oscillating line), the toy hat profile 
(non-oscillating line), and Gaussian profile (with points). For all the curves 
'P. =0.2 and < (i2 > is the same. 

3.3 An expression for U 2(C,) 

We now turn to the issue of cosmic variance in the C,. This turns out to 
depend on the nature of the theory. It is known that in Gaussian theories 
the C, are X~'+I -distributed with a variance 

12 2 
(36)O'&<C,) =C 21 + 1 . 

In some of the literature these are also the cosmic variance error bars at­
tributed to non-Gaussian theories. We will use our model to compute directly 
O'~x(C,). From (16) we have that 

<c1 >06. = (21 ~ 1)2 E, E < an1a"2anaa". >< W!l W!2W!aW!. > 
mm (n1n,n3".) 

<Y,!;(On1)Y!(O"2)Y:'(On3)Y!,(Ont) > . (37) 

The last factor can only be non-zero in one of the following cases: 

• if nl =n2 and n3 =R4 but nl # n3, giving rise to (21 + 1)2 terms, 

• if nl = n3 and n2 = n4 (but nl # n2) or Rl = R4 and n2 = n3 (but 
nl # n2), giving rise to a total of 2(21 + 1) terms, 

• if nl =n2 n3 = n4, giving rise to a single term. 

10 

Figure 3: The relative non-Gaussian excess variance l'(p.) for Gaussian pro­
file spots. 

Putting all these terms together one has 

2 4 
2 < a >2 ~ '2 12 ( 2) < a >~ '4 

< C, >06.= (411')2 n~' < Wn Wn, > 1 + 21 +1 + (411')2 ~ < W" > 
(38) 

Subtracting off C12 written as (21), using (11), and neglecting terms in lIN" 
one finds after some algebra 

2 ( 0'2(a2») Jf'dy N{y)W'·4(y) )12 (39)O'~x(C,) = C ( 21 + 1 + 1 + < a2 >2 Uf'dy N(y)W,.2(y»2 . 

We note that the cosmic variance in the C' in texture scenarios is always 
larger than in Gaussian theories. We define e', the relative size of the excess 
variance, as 

e' _ O'~x(C,) - O'b(C,) (40)
- O'b(C,) 

e' is a function of n, p.) and the profile. In general e'(n,p.) = e'{l,p.)/n, 
so we define ?(P.) = e'(l,p.), the excess variance per unit of lIn. The 
quantity e' can be seen as a (theoretical) indicator of how non-Gaussian a 
given multipole is. A texture theory with n -+ 00 will be a Gaussian theory. 
A low R theory will be very non-Gaussian, at least for some I. In Fig. 3 we 
have plotted l'(p.) for spots with a Gaussian profile. Generally the excess 
variance is very small for high 1 < 30. For low 1 (say from 2 to 5) the 
correction can be considerable, the more so the smaller the P •. 
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Figure 4: C'* spectra for the hat, toy hat, and Gaussian profiles. 

3.4 C'*-spectra for different p, and profiles 

From (24) we see that the parameters < a' > and n can only affect the 
overall normalization of the spectrum. Also (34) suggests that the "average" 
spectrum normalization is proportional to 1rp!, although p, may affect the 
spectrum shape as well. Furthermore a roughly scale invariant (oc 1/1') spec­
trum can be expected. We do want more than a rough prediction, though, 
so we define a reduced spectrum 

C'* _ 411'"l(1 + l)C' 
(41)- < cr >.2nlog(2).11"~ . 

C'* describes in detail depa.rtures from scale invariance and factors out all 
that contributes only to the normalization of the spectrum. It depends only 
on the profile and .". In Fig. 4 we have plotted the C'* spectrum for 
various values of p, ~ 1/4 (to ensure causality), for the hat, toy hat, and 
Gaussian profiles. The spectrum normalization still depends on the profile. 
Even though the peak heights in C'(y) have been matched by our definitions 
of p. and (1", the differences in the peak's shapes and in C'(y) away from 
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Figure 5: C'* spectrum (middle line) and its Gaussian (lines) and non­
Gaussian (bars) cosmic variance error bars for spots with a SSSS profile 
with n=0.25 and p, = 0.2. 

the peak produce different integrated C' for different profiles. Apa.rt from 
this it is remarkable that the C'*(p,) spectra shapes do not depend on the 
profile in any significant way. For intermediate scales (I] < I < 30, for some 
I]), the spectra are scale-invariant if p, is not too small. If p, is small, the 
spectrum is slightly tilted. Whatever the case, for low I (I < 11) the power 
is suppressed relative to a scale invariant (or slightly tilted) spectrum. An 
exact evaluation of the tilt, II, and low I suppression factor can only be done 
numerically. An approximate formula and heuristic explanation of this effect 
is given in Sec.3.5. 

3.4.1 SSSS collapses 

We have applied our formalism to concrete choices of (n, p,) and profile which 
have often been suggested by simulations. In [9) there is the suggestion that 
it is a good approximation to consider that only SSSS collapses followed by 
unwin dings cause CMBR spots. This leads to a scenario with a low spot 
number density (n ::::: 0.25), and rega.rdless of p, (which is a random varia.ble 
in this case), to an effective spot size of the order of the horizon angula.r size. 
We have pointed out before that n and p. do not matter for the spectrum 
shape produced by SSSS spots. We have plotted in Figure 5 the C'* spectrum 
(JJ, = p" a = a, no division by 1rP~ in (41» for SSSS spots with P. =0.2 
(for definiteness), with cosmic variance error bars computed from (39). A 
flat spectrum without any significant low 1cut-off is obtained, in agreement 
with [2, 9]' This is a general feature for any profile whenever p, is sufficiently 
large. The only novelty is the large non-Gaussian correction to the cosmic 
variance in this scenario, due to the low value of n (recent reruns of [2) have 
shown an abnormally la.rge cosmic variance). 
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Figure 6: The spectral index ni for high I as a function ofp•. 

3.4.2 Gaussian spots 

In [8]. on the other hand, it was found that both realistic (non-symmetric) 
unwin dings and concentrations of gradient energy produce CMBR spots. 
Together, these two types of effect bring the spot number density up to 
n :::::: 1. The spots produced by the two effects appear to be indistinguishable. 
Their profile is clearly non-SSSS, and is better approximated by a Gaussian 
profile with a sma.ll P., around 0.1. A clear evaluation of p. has not been 
provided by the simulations. These simulations are essentia.lly flat space-time 
simulations ([8]) in which the horizon size is ambiguously defined. Hence we 
leave p. as a free parameter. Low p. produce slightly tilted spectra even for 
intermediate I (cf. Fig. 4). A natural question is how the tilt depends on 
P•. We fitted the C'* spectra for Gaussian profiles to the inftationary type of 
spectra 

c' (X 	r(l +¥)r(¥) (42)
r(1 +5-;n')r(¥) 

where ni is the spectral index. The fit was performed for I € (25,30), and 
the resulting n' = ni(p.) function is plotted in Fig. 6. For p, > 0.15 we find 
ni :::::: 1, but for p. = 0.05 and p. = 0.1 we have respectively ni = 1.3 and 
ni = 1.2, for instance. Hence the importa.nce of an accurate measurement for 
p, as it will provide the intermediate scale spectral index for textures. Still, 
this is not the end of the story. In Fig. 7 we plotted the C'* spectrum for four 
values ofp. with 1-0' cosmic variance error bars. Superposed on them are the 
fitting inflationary type of spectra, with their Gaussian cosmic variance error 
bars. If p, is not too sma.ll, a 1-0' differentiation between the two theories 
arises for I = 2 and 3 although the cosmic confusion at intermediate I is 
almost 1. This is somewhat surprising, as the cosmic variance in the low 
C' is very high (and even higher in texture scenarios). In spite of this, the 
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Figure 7: C'* spectrum (middle line) with its Gaussian (lines) and full (bars) 
cosmic variance error bars for Gaussian profile spots with p, = 0.25, 0.2, 
0.1, and 0.05, confronted with fitting Gaussian tilted spectra with the same 
normalization (points). 

extra suppression of low I in texture scenarios is strong enough to survive 
cosmic confusion. It is tempting to connect this effect with the abnorma.lly 
low C, for I = 2,3 observed by COBE. However, the experimental error 
bars make it unwise to draw any conclusion. This effect also shows how a 
concept like the spectral index n', coined for inflation, becomes inadequate as 
a texture spectra qualifier. Texture spectra have a non-uniform tilt. If p. is 
very sma.ll the extra suppression, although meaningful if the cosmic variance 
were Gaussian (high n), is completely drowned by the non-Gaussian excess of 
cosmic variance. Although somewhat disappointing, this result also signals 
strong non-Gaussianity for low-I. At the same time as it renders the C' 
spectrum useless, it suggests that a particularly strong signal ought to exist 
in quantities measuring non-Gaussianity. 
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3.5 	 An heuristic interpretation and an approximate 
formula 

The expa.nsion into spherical harmonics acts as a scale filter. Each harmonic 
selects spots with an angular scale 0' smaller tha.n O'(·fd) =1(1":1)' Whatever 
the spot profile, if 0' <: O'(·Gt) then W'· :::::: 0', but if 0' ::> O'(·Gt) then 
W'· <: 0'. In the latter case, depending on the profile, W" may either 
reach a plateau (:::::: O'(·Gt» or simply decrease monotonically with 0'. We 
can understa.nd the shape of C'(y) by taking this into account. For y : O· < 
O'(·G'), each texture contributes to C' like 0", but when we add them up in 
the a!,. they may interfere either constructively or destructively. As a result, 
only a r.m.s. fluctuation proportional to IN contributes to VCi. The overall 
contribution from a given y is therefore proportional to NO·2, which decreases 
as we go up in y. As'll increases we do have more textures in the sky, but 
their apparent size is also much smaller, and since NO :::::: con't, the balance 
mues C'(y) decrease. For'll: O· > O'(·G'), the filter starts to act, collecting 
in a given C' a contribution from each individual texture proportional to 
W'·, <: 0". This may either saturate or cut-off. Whatever the case the 
contribution from a given'll will be proportional to N or less than that. The 
contribution from each texture is smaller than a consta.nt, and C r increases 
as we go up in'll, simply because there are more textures creating a r.m.s. 
fluctuation. Hence there will be a peu in C'(y) at'll: 0'('11) :::::: O'(·Gf), and we 
may expect that most of the contribution to a given C' will come from the 
scales where the filter starts to act. The contribution from these textures is of 
the order NO'(·Gt)2, and recalling that NO' :::::: con.st, we can expect a value of 
C' proportional to O'(·Clt) <X III'. This explains why we can always expect a 
roughly scale-invaria.nt spectrum in the texture scenario. The only exception 
to this argument is the case where the O· > O'(·Clt) regime does not exist (or is 
irrelevant), simply because O'(·Gt) is greater than < 0 1 >, the average angular 
size of the last texture. This is the case for low I, which do not act as a :filter 
for any of the texture spots, because their cut-off scale is above the angular 
size of the last (and largest texture). Then, the largest contribution to C' 
comes from the last texture, this being the case for all I : O'('CI') ::>< 0 1 >. 
The last texture contribution to these C' is, of course, independent of I, and 
proportional to < O~ >. Hence we can expect a white noise type of spectrum 
(C' <X con.st) in this I region. In practice, the transition from white noise 
to scale invariance happens very quickly. We never observe a white noise 
regime, but only a suppression for the low I. 

This heuristic argument ca.n be converted into an approximate formula 
by taking the toy-hat profile and carrying out explicitly the C' integration, 
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Figure 8: Approximate spectra 1(1 + I)C' for various values of P.· 

starting from'll =< 'Ill >. Let us define 'I as 

4'lI" 
(43)0 1 = 0'« YI » = ' 1{l1 + 1) 

(the I-scale of the last texture), and I" as 

0'('111.) = '''(/~1f+ 1) 	 (44) 

(the I-scale of textures living at the last-scattering surface). Then 

{01 	 0,. 
(45)

I (01 W·n - for I :S 11 

C <X 1o dO 0" <X 30 (.ot) _ 2(11(·4.)2 - 0" for I > II 


I, 	 01­'

giving mathematical expression to what we have said above. This leads to 
the approximate spectral formula 

1 
, {'1(':+1) - 'I ('1,+1) for I :S I}

C <X 3 21 '1+1 I 
'('+1) -	 (It,t»1 - 1{,(III+1) for I ~ II (46) 

with II :::::: O.51p, and I" :::::: 30lp, for standa.rd recombination, with P. =2i',. 
The approximate spectra. were plotted in Fig. 8 with an arbitra.ry vertical 
scale. Confronting this with Fig. 4, we see that (46) does provide a good 
qualitative description of the spectra. 

4 The two-point correlation function 

The two-point correlation function C(6) is a tool sadly closer to experiment 
than the C' spectrum (however see [14] for a more hopeful point of view). 
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We will now show that C(O) is a very bad discriminator between inflationary 
and texture scenarios. C(0) is defined as 

5T 5T ,
C(O) =< T(O)T(O ) >oh. (47) 

with 0 (0-:11'), (0 and 0' any two fixed directions in the sky). Making use 
of (17) this can be written as 

21 +1
C(O) = l:C'-4-P'(cosO) . (48) 

, 1r 

The theoretical C(8) can be estimated from the sky average of ,(0),(0') 
with a fixed 8 =(0-:11'): 

dOdO'5T 5T ­
Coh.(8) = ~T(0)T(O')5(cos8 - cos (0, 0'»/ 

which after some algebra leads to 

21 + 1 
Coh.(O) =l:C'-4-P,(cos 8) (50) 

, 1r 

with C, defined as in (18). An expression for C(O) in texture scenarios can 
be found by replacing (22) in (48). It is curious that a simpler expression 
can be derived. Inverting the Legendre transform (15) one has 

21 + 1 
W'(z, y) = l:-4-W"(y)P,(z) . (51) 

, l' 

If we define the Legendre-squared spot profile to be 

21 +1
W·(2)(z, y) =l:4;-W·'2(y)P,(Z) (52), 

then the correlation function is simply 

2 >11111< a ()C(O) -- dyN(y)W' 2 (cos 8, y). (53)
41r 0 

The profile W,(2) is the Legendre analogue of W' *W' (where * is the con­
volution) in Fourier analysis. Depending on whether the profiles are defined 
in the 0 or in the Legendre spaces it may be easier to use (53) or to combine 

and (22). If one wants to take into account the telescope beam filter­
one should multiply the C' in (48) by the square ofthe beam Legendre 

transform J=f2. In the numerics we will use an approximation to the CO BE 
beam :P = e-i(I+i)2a 

2 with 0' 21r(10°1360°). 
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We have also derived an expression for the cosmic variance in Coh(O). In 
Gaussian theories ([4] with a factor of 2 correction) we have: 

.1,(C...(8» =~>1,(CI)C'4: 1)2P,'(co. 8) (54) 

with O'MC,) given by (36). In the texture scenarios not only does one have to 
replace O'l,(C,) by O'~x(C,) (as in (39», but also terms in P,P" (with I ¢ I') 
appear, reflecting the inter-I correlations. A rather elaborate calculation, in 
the moulds of Sec.3.3, brings us to 

2 ( (» " 'I' 21 + 1 21' + 1O'TX C06.8 =L.,\'iI'C C -----P,(cos8)P,/(cos8) (55) 
'I' 41' 41' 

with 

25". ( u2(a2) ) fl"dy N(y)W •2(y)WI'·2(y)
V. =--+ 1+--- '

II' 21 + 1 < a2 >2 (fl"dy N(y)W,.2(y»(fo.·dy N(y)W,.·2(y» 
(56) 

where, again, we have neglected terms in lIN,. The intensity of the non­
Gaussian correction to the cosmic variance can be measured by means of the 
quantity 

£(8) = 0'~x(Coh(8» - 0'l,(Coh.(8» (57)
0'l,(C06.(8» 

which depends on n, P., and the profile. The dependence on n is trivial, 
so we define 2(p.,8) = fen, P., O).n. The numerator in (57) can be rewrit­
ten as < (W'(2»2 >, showing that the variance in C06.(8) is always larger 
in texture scenarios than in similar Gaussian theories. As before, we adopt 
the attitude that while this does reduce the predictability of the theory on 
C(8), it also signals non-Gaussian behaviour and the need of a non-Gaussian 
data-analysis approach to fully make out the predictions of the theory. In 
particular, on angular scales where f ::> I, we know that it is worth study­
ing the collapsed (to two points) n-point correlation function. In Fig. 9 we 
divided 8 E (0,1') into 100 points and plotted f(8) for Gaussian spots with 
(n =I, P. = 0.25). The fact that the low I multipoles contribute to C(8) for 
a.ll8 distributes non-Gaussianity nearly uniformly over O. In Fig. 10 we anal­
yse the various contributions to O'~x' separating its Gaussian, diagonal and 
off-diagonal components in v,,.. We note that the inter-l correlations respon­
sible for the off-diagonal elements of v,,, can act so as to reduce the cosmic 
variance, an important fact which we sha.ll make use of in 
the subtle differences in the C'-spectra pointed out at the end of Sec.3.4 are 
completely drowned in C(O). As an example we have plotted in Fig. 11 C(O) 
for the above texture theory, and for its fitting tilted spectrum inflationary 
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Figure 9: f(8) for Gaussian spots with (n =1, P. =0.25). 

Figure 10: O'fx (top line), and its Gaussian (bottom line), diagonal (top 
points), and off.diagonal (bottom points) in 'Vir', contributions, 

theory. As C(8) spreads the low lover all 8, the two theories come out com­
pletely confused. Note however that the normalization in the C' and in C(8) 
can be substantially different (in Fig. 11 we used a different normalization 
procedure than in Fig. 7). 

5 	 The last texture and non-Gaussianity at 
low I 

In the derivation of (22) we made use of statistics for unordered textures. 
However, a similar expression could have been obtained using ordered tex­
tures. In this case one should be wary for the W:' are not independent 
variables. Nevertheless formula (21) remains valid if one uses the marginal 
distribution functions of Y,. in computing < W:'2 > for each term in (21). 
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Figure 11: C(8) for Gaussian spots with (n = 1, p. 0.25) with its full 
cosmic variance error bars, confronted with its fitting n = 1.001 theory (top 
line at C(1r». 

The marginal distribution functions P,.(y,.) are defined as 

P,.(y,.) =JdYI".dy,.-ldy,.+I ...dYN,Pl...N,(Yl, .. " YN,) (58) 

and using they can be found to be 

P,.(y,.) =N(y,.)e-M('ft)M,.-I(y,.) (59)
(n -	 I)! 

where M(y) =fl N(x)dx. Then: 

< 2 > N, 1111$ 	 M,.-l ( )c' =_a_E dy,.N(y,.)W'·2(y,.)e-M(l/ft) 1/,. (60)
41r ,.=} 0 (n - I)! 

and since Nt is very large we recover (22). The advantage of (60) is that it 
allows us to write 

C' =EC~ (61) 

with 
, < a2 >10111$ M,.-I( )c,. = -- dy,. N(y,.)W"2(y )e-M(lIft )__Y_" (62)

41r 	 0 ,. (n - I)! 

reporting the contribution of the nth texture to the multi pole C'. In Figure 
12 we plotted the C ... spectrum for four plausible scenarios: for a Gaussian 
profile with p. =0.05 and P. =0.1 (n =1 in both cases), and for a SSSS 
profile with n = 0.25 and n = 0.1 (P. =0.2 for both). Underneath the 
spectra we plotted the result of stopping the sum (61) at Nt from 1 to 10, 
thus obtaining the contribution of the first 10 textures to each C'. In all 
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Figure 12: Contribution of the last ten textures for a. Ga.ussia.n profile, with 
P. =0.05 a.nd P. 0.1 (n = 1 in both cases), a.nd for a SSSS profile with 
n =0.25 and n =0.1 (a.nd P. =0.2). 

the cases considered we notice that the low I multipoles a.re dominated by 
the contribution from the last texture. The I at which this stops being the 
case depends on the spot details (profile, n, P.), but I =2,3 a.lways seem to 
be subject to this effect. Also the intensity of the last texture dominance a.t 
low I depends on the spot details, the effect being notably pronounced for 
Gaussian profiles with low p •. As we go up in I, the last texture becomes less 
prominent, but no other single texture replaces it as a dominant fea.ture. We 
may ask how many textures are responsible for, say, 95% of a given C' for 
high I. Using the toy hat model and performing an a.pproximate ca.lculation 
similar to the one in Sec.3.5, we can show that this number is proportiona.l 
to Ill. This implies tha.t for high I the number of defects responsible for a 
given a:" is proportiona.l to I. 

These results ha.ve fa.r reaching consequences. H one believes in fiippant 
a.pplica.tions of the centra.llimit theorem, then one ca.n expect the a:" for high 
I < 30 to be independent Gaussian distributed random varia.bles, as they a.dd 
up a. la.rge number of independent contributions (proportiona.l to I). We ha.ve 
now shown tha.t this argument ca.n certainly not be repea.ted for the low I. 
In fa.ct, our rema.rk in Sec.3.3 that u~x(C,) > ubau..(C,) , a.nd the numerica.l 
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Figure 13: The all a.nd a3 function for a Ga.ussian (top), and a SSSS profile 
(bottom). 

results plotted in Fig. 3, prove tha.t the a:" are distinctly' non-Ga.ussian a.t 
low I. This a.lso implies tha.t these a:" are dependent random varia.bles [11]. 
We can now understand better why this is so. The non-Ga.ussia.n fea.tures in 
the a:" for low I result from the fa.ct tha.t they a.re mostly due to one single 
lumpy object blatantly different from Ga.ussian noise. We may even expect 
the a:" for low I to reproduce the morphology, size, and other fea.tures of 
the la.st defect. Devising a datar-ana.lysis method ca.pa.ble of uncovering these 
features is the purpose of [10]' We should stress tha.t both the centra.llimit 
theorem a.nd Fig. 3 strongly suggest, but still do not prove, tha.t the a:" are 
Ga.ussia.n for high 1<30. 

The non-Ga.ussia.n toy model studied in [11] showed in which wa.y the low 
I multipoles would display non-Ga.ussia.n beha.viour if they were fully due to 
the last texture. The contribution from n > 1 textures will soften this non­
Ga.ussia.nity. Hence a plausible mea.sure for the expected non-Gaussianity 
present in a. low I multipole is a' =cUO', a. quantity which depends on the 
profile, n, and P•. We ha.ve computed numerica.lly all a.nd a3 for a Gaussia.n 
and a SSSS profile. The results are plotted in Fig. 13. A better connection 
between a' and detailed features of non-Ga.ussia.nity measure distribution 
functions will be given in [10]. 
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What's new? 

The focus in Part I of our work was to derive for texture scenarios whatever 
one normally derives for Gaussian theories (e', e(8), and their cosmic vari· 
ances). We met anomalous behaviour (eg. formulae (39) and (SS» which 
(theoretically) indicates non-Gaussianity, but we have left to Part II ([10]) 
the task of developing a non-Gaussian data analysis method. On the whole, 
within the standard lore, the results obtained are surprisingly similar to in­
flationary scenarios. Still, we found a few novelties. We discovered that 
texture spectra are tilted, but not uniformly. Fitting a tilted spectrum for 
, E (25,30) (see Fig. 6) leaves a significant suppression of power at low 
, E (2, S) (see Fig. 7). We have also computed directly the cosmic variance 
error bars in e, and e06.(8), and found them to be larger than in comparable 
Gaussian theories (see formulae (39) and (SS) and Figs. 3 and 10). In fact, 
if the non-Gaussian correction is very large (which does happen for most of 
the parameter values suggested in the literature), cosmic variance drowns the 
otherwise 1-0' suppression of power at low' mentioned above (see Fig. 7). 
However, one should not give way to despair. Large non-Gaussian correc­
tions to cosmic variance only hint that we have not applied to the theory the 
right data analysis procedure. To give a flavour of [10] let us point out that 
as the e, are dependent random variables in non-Gaussian theories ([11]), it 
may happen that the e, 6pectrum 8hape 6een by any ob6erver ;6 never the 
average e' 8pec;trum 6hape. A more intelligent method to· make predictions 
on e, spectra and to estimate global parameters in the e' spectrum is in 
order. It appears that even a proper study of the e' (or e,) spectrum for 
textures requires non-Gaussian data analysis. 

The central result in this paper is undoubtedly the proof that texture low 
, multipoles are strongly non-Gaussian, and that the last texture is to be 
blamed for this (see Sec.S). We showed how the lowe' are mostly due to 
the last texture (slightly perturbed by the one after - see Fig. 12), and so 
we may expect the last texture's non-Gaussian features to be imparted on 
the low 'multipoles. In [11] we proposed the use of m-structure and inter-' 
measures to complement the e'. m-structure measures act as multipole shape. 
factors. Inter-' measures correlate preferred directions in two multi poles. 
These two types of quantities are uniformly distributed in Gaussian theories. 
In topological defect scenarios we can expect low , shape factors to reflect 
the morphology of the last defect. Hence their distributions should be non 
uniform, peaking at different values for, say, texture and cosmic strings. 
Inter-' measures should also display the correlations between the various low 
, which are all due to the same last defect. In remains to be seen ([10]) how 
much cosmic confusion there is between these signals and their Gaussian 
counterparts. 

On a lower key this paper was simply intended as an analytica.l model for 
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texture CMBR skies with the greatest possible generality. We tried to leave 
as free parameters whatever simulations ha.ve failed to determine. The point 
is to find out what exactly must be decided in order to answer a particular 
question. We have concluded, for instance, that the e' spectrum shape is 
insensitive to n or a, and depends very little on the spots' profile, once the 
identifications (33) and (35) have been made. The controlling parameter is 
P. which fixes the spectrum tilt at intermediate' (see Fig. 6). The spectrum 
normalization, on the other hand, depends on all the parameters of the model 
(see Sec.3.1), which must be evaluated before any prediction for the texture 
symmetry breaking energy or bias parameter can be made. Interestingly 
enough, we found that the low' non-Gaussianity effects depend only on n, 
P., and profile (Sec.5). These are not free parameters of the theory, so one 
ought to decide on this important issue purely by means of hard work. 
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