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Quantitative description of the reggeization of 
QeD still remains a challenge for the Leading Log­
arithmic scheme and its ext.ensions 1,2. In the first 
approximation the problem separates into sectors 
with fixed number nof the reggeized gluons prop­
agating in the t channel. The lowest nontrivial 
case, n == 2, was solved in the classical papers 
by Balitslcii, Kuraev, Fadin and Lipatov 8 result­
ing in the simple expression for the intercept of 
the hard pomeron. The notable progress for ar­
bitrary n was achieved by Lipatov and Faddeev 
and Korchemsky 4,6 who have established exact 
equivalence with the one dimensional chain of n 
noncompact spins. The success of this approach 
was confirmed by rederiving the Lipatov et al. re­
sult in the n 2 case 6,7. However, the adopted 
procedure requires an analytic continu.ation from 
the integer values of the relevant conformal weight 
h (see later) because only for integer h they were 
able to diagonalize the two spin hamiltonian. The 
n == 3 case, which gives the lowest contribution 
to the odderon exchange, was studied by Lipatov, 
Faddeev and Korchemsky, 5,6,7. Again, the spec­
trum of the syst.em for integer h can be found for 
any finite h =m. However, the general expression 
for arbitrary m is not known, and consequently the 
analytical continuation to h == 1/2 is not available .. 

We have developed a new approach which a) 
works for a.rbitrary values of the conformal weight 
h, providing explicitly above continuation, and b) 
gives the analytic solution of the n == 3 problem 
for arbitrary hand qa. Here we will apply the 
new method to the n == 2 case rederiving directly 
the BFKL result. without need of the analytical 
continuation. Our new results in the n =3 case 8 

will be a.Isoshortly summarized. 
The intercept of the Pomeron trajectory is 

given by 

Ot.,Nt; (. -)Ot.p(O);:;: 1 + ~ f2(h) + f,(h) , (1) 

where E2 and l, are respectively the largest eigen­
values of the n == 2 reggeon hamiltonian and its 
antiholomorphic counterpart 6,1. This system is 
eq~vaJent to the misleadingly simple set ofthe two 
noncompact spins .which for higher ngeneralizes to 
the one dimensional chain with nearest-neighbour 

"The lowest state or the n = 3 hamiltonian is believed 
to occur at h 1/2. 

interactions. Applying Bethe ansatz one obtains 
in the n 2 ease 

-(Q2(-i) _ Q2(i») _ 4, (2) 
f2 t Q2( -i} Q2(i) 

where Q2(..\) satisfies the following Baxter equa~ 
tion 

("\+i)'Q2P.+i)+("\-i)2Q2("\-i) = (2..\'+q2)Q2("\)' 
(3) 

q, is the eigenvalue of the square of the total spin 
of the system Q2. It commutes with the hamilto­
nian and its spectrum is known from the symmetry 
considerations 

q2::;;: h(l-h), h == ~(l+m)-ill' mE Z,II E R. 

(4) 
In order to solve the Baxter equation, (3), the fol­
lowing integral representation is customarily used 

Q,(..\) = ( z-i>.-1(1 _ z)'>.+1Q(z)dz. (5)
JCr 

Then, if the boundary terms do not contribute, 
Eq.(3) is equivalent to the simple hypergeometrie 
equation for Q(z) 

[~Z(1-Z)~-q2]Q(Z) 0, (6) 

with the well known solutions. However, for ar­
bitrary value of the conformal weight, h the sin­
gularity structure of the hypergeometric fundions 
together with the nontrivial monodromy of the 
kernel K(z,..\) = z-i>.-1(1_ z)i~+1 precludes exis­
tence of the contour such that the boundary con­
tributions cancel. For integer h = m, however, the 
solution regular at z == 0 does not have a cut and 
consequently the simple contour encucling both 
Z :: 0 and z 1 points guarantees vanishing of the 
boundary terms. This observation was exploited 
in RefS'·1 leading to the elegant solution of the 
n 2 problem for integer conformal weight.. The 
BFKL formula resulted after the analytic contin· 
uation in h to h :: 1/2. However, the case of 
noninteger . h requires further insight. In particu­
lar the boundary conditions for Q2(>') are not fully 
understood. For integer h, again, they can be de­
duced from the polynomial Bethe ansatz and are 
consistent with the above choice of the integration 
contour in Eq.(5). For arbitrary h, they are not 

available. It would be very instructive to investi­
gate the so called functional Bethe ansatz in this 
connection. 

ViTe will present here a difFerent approach. It 
was observed in Ref.1l that the double contot£r rep­
resentation (c.f. Fig.I) 

Q:2(A) { z-'>'-1(1_ z)i>.+lQI(Z)dz 
Jer 

+ ( z-i>'-1(1_ z)i~+lQI1(Z)dz,
JCn 

together with simple boundary conditions on 
QIIII(Z), reproduced numerically the holomorphic 
energy in the half-integer case h:: m+ 1/2. Using 
the double contour representation we have sub­
sequenily derived the analytic expression for the 
holomorphicenergy for arbitrary complex h. With 
the aid of the new formalism of the transition ma­
trix this method was applied to the n == 3 case 
and led to the analytic expression for the inter· 
cept ofthe odderon trajectory for arbitrary values 
of relevant parameters. 

We begin with the general solutions of Eq.(6) 
and then show how the original freedom is re­
stricted leading to the unique solution. To this 

Z..i. 

c56 
® 

d;)
oZSIOI"'Z""%""' 

C1 ell 

Figure 1: Integration con\ourJ used in Eq,.(7}. S\art z't ...rt. 
middle %.....4. a.nd el;ld %..... points· c:oiuc:ide but the)' lie 
on t.he different sheet. or the- rue:ma:nn rorrac:e of the inte­

gra.na... 

end we write the two fundamental sets of two, lin­
early independent solutions of Eq.(6) 

u(z) (Ul(Z), U2(Z», (8) 
v(z);::: (V1(Z).17,(z», 

around z = 0 and z ;::: 1 respectively. 

Ul(Z) =: F(h, 1- h, Ii z} 	 L
00 

fnzz, 
n=O 

oo
s(h) s(h) L n112(Z) = -.10gz Ul(Z) - -. gnz, (9)

1t1 71"2­
n=O 

gn = fn[2..p(n + 1) - ..p(n + h) ,p(n + 1 - h)], 

where F(a,b,c;z) is the hypergeometric function, 
¥i(z} denotes the digamma function and s(h) == 
sin (r.h). The senes in Eq.(9) are con;vergent in 
the unit cucIe Ko around z = o. Similarly one can 
construct the tT(z) solU;tions in the unit drcle Kl 
around z = 1. In fact, because of the symmetry of 
Eq.(6), we take ­

til (z) = iUl (1 z), V2(Z) == -iU2(1 - z). (10) 

Since any solution is a. linear combination of the 
fundamental solutions, we have in general 

QI(Z) aUl(Z) +bu,(z} 

== A· u(z) :: A· Oii(z), 

QII(Z) CU1(Z) +dU2(Z) (11) 


== B· it(z) = B· Oii(z) , 


with a.n obvious vector notation, The transition 
matrix (1 is defined by 

it(z) = 011'(%), (12) 

and provides the analytic continuation ofour solu­
tions Q(z) between Xo and Xl._ It plays an impor­
tant Iole for higher n and its direct calcUla.tion for 
n > 2 is rather nontrivial. For the hypergeometric 
equation, and for the special choice of both bases, 
Eqs.(9,10), 0 is very simple. Due to the identity 
'lL2(Z)=iul(1 z) 

n (~ ~). (13) 

Next we introduce the monodromy matrix M... 
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Figu.f'C 2: Closed contour used to define the monodromy 
matrix, Eq,.(14}. ".tc,,-t = zt...4, however the)' belong to 

the diHerent sheets of the Riemann $urf"ace. 
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which describes the behaviour of the basis 1i in 
the vicinity of the branch point z 0 (see Fig.2). 

U(Zend) =Mu u(z'ta1't)' MtI. = (2S~h) ~), 
. (14) 

and similarly for the tI basis. It is easy to see that 
MfJ = M.;l. . 

We are now ready to write the condition for 
the cancellation of the boundary contributions in 
Eq.(7). With the choice of the contours CI and 
CIl as shown in Fig.l, the boundary contributions 
cancel if 

AT MI +BT MIl 0, (15) 

where the combined monodromy matrices for the 
corresponding contours read 

MI =OM"O-l - M;;1, MIl =OM;lO-1 - M ... 
(16) 

In terms of the coefficients, condition (15) reads 
simply 

a=c, b= d. (17) 

Hence the original freedom of four coefficients in 
Eqs.(ll) was reduced to the two free parameters. 
In fact the energy ofthe system, Eq.(2), is iJ1sensi.. 
tive to the absolute normali.za;t~on, hence only the 
ratio 

p = alb, (18) 

remains relevant.. This variable parametmes all 
possible boundary conditions which are consistent 
with the cancellation of the end-point contribu­
tions in the sum (7). The role of the remaining 
freedom is better seen when the explicit result. for 
£2 is derived. 

To this end we substitue Eq.(ll) with (17) 
in (7) and integrat.e resulting expression term by 
term expanding QI/II(Z) in the u basis on CI, and 
in the tI basis on CIl. Since the involved series are 
absolutely convergent in corresponding domains, 
the final result for f2(h) is the anal)1ic function of 
h. Consistent choice of the branches of the kernel 
K(z, >.) and of Q(z) must be made. Mter some 
calculations we obtain 

£2(h) 4'4'(1) - 2'¢(h) - 2'4'(1 - h) 

ir ( 1)-- p-p- . (19) 
8 

It is instructive to compare this result with 
the original hamilt.onian of the two spins 1 

it2 = 4,,(1) - 2,,(-i12 ) - 2,,(1 + jul. (20) 

where the eigenvalues of ill are equal to -h c.f. 
Eq.{4). It is now evident that the choice 

p=±l, (21) 

gives the correct spectrum of energies. We em­
phasize, however, that the additional information 
was required to fix the remaining freedom. This is 
diff'erent in the n 3 case (see below). It is impor­
tant to note that the above choice is independent 
of h which a priori is not guaranteed. 

Substituting Eq.(19), with (21), in Eq.(I). and 
setting h = Ii = 1/2, we reproduce the BFKL 
formula 

a.N
( ) =1 + -;-410g 2. (22)ap 0 

This was also obtained in Ref.1 after analytic con­
tinuation of their result from integer nlues of 
h. The difference between both approaches is 
best seen by comparing Eq.(19) with Eq.(6.31) of 
Ref.1. It follows from the form of the hamiltonian, 
Eq.(20), that the complete holomolphic eigenen­
ergy f,{h) is singular also at positive integer h. 
This is true for our result, Eq.(19). On the other 
hud, as seen from Eq.(l), in order to calculate 
the physical intercept only the reo.l part of E2 is 
required. It is finite for positive integer h and was 
correctly reproduced by the method of Faddeev 
and Korchemsky, c.f. Eq.(6.31) in Ref.7, 

One of the ingredients of the calculation pre­
sented in Ref." is the prescription how to fix an 
overall constant term in the two spin Hamiltonian, 
Eq.(20). In the present formalism the result (19) 
also has a freedom which is parametrized by p. It. 
would be interesting to see if the arbitrariness seen 
in both methods had the same origin. 

Our method can be extended to higher n. For 
n = 3 we have carried out this procedure explic­
itly 8. The complete set of linearly independent 
solutions of the corresponding third order differ­
ential equation was constructed. The transition 
matrix between the it and v bases was also ob­
tained. Since in this case there is no simple iden­
tity connecting linearly independent solutions, the 
o matrix is nontrivial. Remarkably it tUrns out 
that the condition for cancellation of the end-point 
contributions in the double integral representa­
tion determines u.niqu.ely the final solution of the 

3 

Baxter equation. Existing arbitrariness in both 
transforms QI/II(Z) is irrelevant. Consequently 
we have obtained the holomorphic (and antiholo­
morphic) energies as the analytic function of the 
two relevant parameters hand qs. The new vari­
able qa is the eigenvalue of the second, commuting 
with hamiltonian, observable <ia which is known 
but unfortunately was not diagonalized in spite of 
many attempts10,l1,u. We have therefore mapped" 
numerically the analytic structure of fa (1 /2, qa) in 
the complex qa plane. Result is sketched in Fig.3. 
The holomorphic energy has a series of poles at 
imaginary qa ". The intercept. of the odderon tra­
jectory is smaller than one for alnlost all values of 
qa including all qa E R. However in the vicinities 
of the poles it can be arbitrarily large. Therefore 
any further conclusion about the numerical value 
of the ao(O) depends crucially on the spectrum of 
qa. 

(l.fDI."E~f1l2.lbl q] 

E, ~ 0 

Figure 3: Sehematic map of the analyticity lIIt.ructW"e of 
£3(1/2.q~) in the complex!l3 plane. E3 is positive only in 

the vicinity of the poles. 
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