
~., 

" 1991 MITH 92/11 

o 
, /f
~ 

New Developments of the Superradiant Nuclear Modell 

P.G. Ratcliffe 

INFN, Sezione di Milano, via G. Celoria 16, 20133 Milano 

Abstract 

In the framework of a novel approach to nuclear dynamics due to P 
a superradiant pion-nucleon-delta interaction, we discuss various phenomena of nuclear 
physics which have so far eluded convincing explanations. The central idea that the dy­
namics of the nucleus is dominated by a coherent 1r-N-tJ. interaction leads to a lowering 
of the effective nucleon mass by about 60 MeV and the presence of a rather peculiar pion 
condensate coupled to a large isobar content of the nucleus. A theory of the EMC effect 
is then presented derived from this mass-shift in a convolution model. It is further shown 
that the shadowing effect of the small-xs region can be explained via a single-diffra.ctive 
mechanism interfered upon by Pauli exclusion. The reduced nucleon content of this nuclear 
ground state leads to the experimentally observed suppression of the so-called Coulomb 
sum rule in quasi-elastic scattering. And the completely determined pion condensate per­
mits the calculation of the hypernuclear potential, predicting the depths and decay widths 
of lambda and sigma hypernuclei compatible with those measured experimentally. 
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1. Introduction 

In this lecture I discuss various experimental aspects of nuclear dynamics and their expla­

nation in terms of a novel approach to nuclear dynamics developed within the framework 

of the theory known as Superradiance (SR). The structure of the lecture is as follows: sec­

tion 2 provides a brief outline of the ideas behind the SR solutions to many-body problems 

and their application to the case of nuclear structure. The resulting explanation of the 

EMC effect and related nuclear DIS phenomena is presented in Section 3. A somewhat 

similar phenomena, the experimental quenching of the Coulomb sum rule, in quasi-elastic 

scattering is discussed in section 4. In section 5 the interesting, if somewhat controversial, 

problem of the existence and properties of hypernuclei is considered and finally I close in 

Section 6 with some comments and conclusions. 

2. Coherent Dynamics of the Nucleus and Superradiance 

Let us begin by outlining the dynamical model of the nucleus with which the above­

mentioned effects may be explained. The mechanism of SR has been applied for some 

time now with success to various aspects of condensed matter physics [1]. The philosophy 

underlying the development of this approach is that short-range forces cannot solely be 

responsible for large-scale structures and that one must seek long-range forces able to 

maintain coherence over large regions. In other words the picture of Fig. 1 (a), in which 

the matter fields behave incoherently and only interact when in direct collision, is to be 

replaced by that of Fig. 1 (b), in which communication via a background (radiation) field 

locks the phases of the matter fields and renders the dynamics coherent. The basic point 

is that (generic) dipole oscillations generate a radiation field which in turn influences the 

same dipoles, the non-linearity of the equations gives rise to stable non-zero configurations, 

i.e., non-trivial vacuum structure. 

In condensed-matter physics the obvious candidate as a background field is the elec­

tromagnetic field with its potentially infinite range. While one would normally expect 

screening to kill any long-range effect it is possible that under conditions of sufficient den­

sity even the relatively weak QED can develop classical solutions with phase coherence 

over large regions or coherence domains (CD) in which the matter fields oscillate in phase 
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(a) (b) 
Fig. 1 The incoherent (a) and coherent (b) pictures of multi-particle dynamics. 

with the background radiation field. The operation of the SR mechanism thus requires 

the presence of a two-level system whose transitions are determined by interaction with a 

potentially long ...range radiation field. The Nucleon-Delta-Pion system is just such a case; 

the N-d two levels have a suitably small energy (mass) difference of ,...., 292MeV and the 

1[" (radiation) field, on the scale of nuclear structure, has an effectively long range. For 

detailed derivation of the SR solutions see refs. (2,31. 

From refs. [2,3] the nucleus is described in terms of 

(i) the nucleon and delta wave fields: 

(2.1) 

where X.,s and 'lefT are Pauli spinors for spin and isospin degrees-of-freedom, 8, t = ±l 
and S, T = ±l, ±I; 
(ii) the pion radiation field: 

tP.(x, t) = Tv ~ [46qe-i (...,-q.x) + aLae'(..·,-q·x)] , (2.2) 

where b = 0, ±1, Wq = J(q2 + m;') and the operators 4hq and 4~ obey the usual equal­

time commutation relations. The SR state (the true nuclear ground state in this theory) 
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fixes the dominant mode to be Wq = m A - mN = 292MeV and thus q = 256MeV. The 

interaction Hamiltonian is then given by 

+ 	 h.c., (2.3) 

where the C~, (Cft) are the spin (isospin) Clebsch-Gordan coefficients for coupling spin-f to 

spin-i plus spin-! and the coupling 9 is entirely determined by the /::,. -+ N1f decay width. 

The kinetic Hamiltonians are of the canonical form and we work in the non-relativistic 

limit. 

The salient features of the solutions are that: 

(i) 	 the SR nuclear ground state shifts the nucleon mass from its free value by -60MeV, 

the depth of the self-consistent potential, 

(ii) 	 the effective number of pions is n., ~ 0.63 per nucleon; 

(iii) the "matter" content of the nucleus is - 80% nucleons and - 20%deltas. 

3. The Application of Superradiance to Nuclear DIS and the EMC Effect 

The long-established vision of hadronic scattering at high energies embodied in the Quark­

Parton Model [4] (QPM) requires that quarks, though confined inside a nucleon, behave at 

short distances (i.e., when probed at high energies) as if free. Such a picture is supported 

by the couplin, constant (as) behaviour of PQCD, known to decrease as the energy scale 

(for which I adopt the generic notation Q2) increases and asymptotically to vanish. Thus 

the early belief was that since the quarks are effectively free inside the nucleon they should 

be unaware of the environment of the nucleon itself, i.e., whether it is in turn bound inside 

a nucleus. One must factor out purely kinematical effects such as Fermi motion, however, 

the important point is though that no dynamical difference was expected. 

Thus, one of the most striking results of the research programme carried out by 

the European Muon Collaboration (EMC) [5] at CERN was the discovery that DIS of 

leptons off nuclei does not behave as the incoherent sum of individual nucleon scattering 

cross-sections [6,7]. This deviation from the expectations has been fully confirmed in 

various other experiments [8,9]. 
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Fig. 2 The QPM picture of lepton-nucleon DIS. 

In the QPM, lepton-nucleon DIS is described as the convolution of a point-like hard 

scattering of a photon off a free, on-shell quark (including PQCD corrections to the desired 

accuracy) and a long-distance, incalculable, nucleon quark distribution, see Fig. 2. The 

hadron-photon piece of such an interaction is described in terms of structure functions 

(SF), Fl and F2 (neglecting parity violation and polarisation effects for which further 

structure functions are necessary): 

W"~ = ~ 1m / ~zeiq·· (PI [J"(z), J~(O)J Ip} 
(3.1) 

=[q:~~ -g,,~] F1(xs,Q2) + k-~:q"] [p~-~:q~] p~qF2(xs,Q2), 
where p", q" are the nucleon, virtual-photon four-momentum respectively for which q2 = 
_Q2 < 0 and defining v, the energy transfer of the photon in the nucleon rest frame, 

with m the nucleon mass then p.q == mil, J" is the electromagnetic current and the 

ellipsis represents the other Lorentz covariant structures, governed by F~h Gh G2 etc. 

At high energies the SF's depend only on the Bjorken scaling variable Xs = Q2/2p.q = 
Q2/2mll, and logarithmically (according to PQCD) on Q2. The main purposes then of 

DIS experiments is to measure these distributions. 

In the naive QPM F2 , for example, can be expressed in terms of quark distributions, 

denoted q,(xs ), which are interpreted as the probability of finding a quark (flavour I) 

carrying a fraction Xs of the parent momentum: 

F[(x) = x [~u(x) + ld(x) + ls(x)] , (3.2) 
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Fig. 3 The valence-quark distributions relevant to an isoscalar target as a function of :&.. and for various 
values of q2. 

where u, d and 8 are the up, down and strange quark distributions inside the proton and 

the factors ~ etc., are their charges squared in proton-charge units. From the kinematics 

Zs lies in the interval [0,1]. In Fig. 3 an example is displayed of the valence distribution 

relevant to an isoscalar target such as deuterium. 

Since the zB-dependence of the distributions is incalculable, one actually studies, in 

the case of nuclear DIS, the ratio of F2 for a nucleus, of atomic number A, to that for 

deuterium R(z) = Ft(z)/Ff(z). Considering F2 as normalised to A, R(zs) is just the 

effective fraction of nucleons as a function of Zs. Naively then this ratio is expected to 

be unity. The behaviour of this quantity, displayed in Figs. 4,5, exhibits the following 

prominent features: 

(i) 	 in the region of Zs near to one a rise above unity in R(z), due to the bound nucleon 

Fermi motion; 

(ii) 	 a pronounced dip near Zs ,.... 0.6, where R(z) shows a large defect of ,.... 20%; 

(iii) 	 a rise above unity for ZB ,.... 0.2, more pronounced at higher beam energies, an effect 
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Fig. 4 	R(ss) versus Ss as compared with the iron data from SLAC {S] (0), BCDMS [9] (6) and EMC {6,7] 
(D). 

termed anti-shadowing; 

(iv) 	 the so-called shadowing effect at very small X Sl where R(x) again falls below unity by 

up to 30%. 

There are several surprising aspects to this phenomenon. The scaling nature of the 

phenomenon (apart from the anti-shadowing effect with its strong Q2 dependence), realised 

very precociously (i.e., for very small values of Q2), is all the more puzzling if interpreted as 

demonstrating that quarks scatter the highly virtual photon incoherently whereas nucleons 

do not. Furthermore, owing to the above-mentioned precocity, what is controlling the 

physics of the small-zs region is not true shadowing as such a process is expected to have 

strong Q2 dependence [10] (known as higher-twist). Although there exist in the literature 

descriptions of the small-zs behaviour exhibiting slow Q2 dependence [11], there is no 

generally accepted explanation and some parametrisation and phenomenological fitting to 

the basic effect itself as input is necessary. Many explanations of the phenomena outlined 

above have been proposed and there is no space here to discuss them; the interested reader 

is referred to ref. [12]. 
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Fig. 5 R(x.), the F'J ratio with respect to deuterium, in the small-x. shadowing region as compared with 
the NMC data for carbon, Q2 = 0.7 - 11.0GeY'J (o); calcium, Q'J = 0.6 - 10.0Gey2 (A); and tin, 
Q2 = 4 - 14 Gey2 (0). 

Based on the model presented R(z) can now be computed by describing it in terms 

of additive DIS of virtual photons off A nucleons of reduced effective mass m ~ m ­

60 Me V, populating the Fermi sphere of the nucleus and, in addition, off nt" pions. In the 

small-zB shadowing region, our theory is a generalisation to massive, space-like photons of 

single-diffractive (SD) scattering, which provides an excellent description of hadron-nucleus 

scattering [13]. 

Leaving aside the small-zB region for a moment, the nucleon contribution Ft·N to F2A 

is given by the following convolution integral of the deuteron SF, Ff: 

F,A,N(ZS) = ;, 10""p2 dp fl d; f d~ Ff(e) .s(~ - z=), (3.3) 

w here the integration variable pI' = (E, p sinS, 0, p cosS), the struck nucleon momentum, 

ranges over the Fermi sphere: Iii ~ p,. and z = cosS. The re-scaled, effective Bjorken 

scaling variable z= for the bound nucleon is given by 

z= ~ Zs ~ [1 + 2~2 + ;::] -I • (3.4) 
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For the deuteron SF's the parametrisation of Duke and Owens [14) was used. One sees 

from eq. (3.4) that the result is to shift the effective %B to a larger value and examining 

Fig. 3 one realises that for 0.2 < %B such a shift is to a lower cross-section, hence the 

suppression. 

As for the pion contribution to F2A, one writes analogously: 

(3.5) 

The same arguments as above lead to a similar re-scaling of %B to 

1(' m 
X B 	 (3.6)

%B = (w + kz) , 

where the reduced pion frequency w = 0.28wo, the momentum of the dominant pion mode 

k = JW5 - m; and Wo, the resonating ,,"-mode frequency, is just the proton-delta mass 

difference. The pion SF was taken from the Owens parametrisation, extracted from J /lJ! 
and muon-pair production [151. 

1.1 

1.0 

-)( 

""' tk: 
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0.8 L-~~-L~~__L-~~~-L~--L-~~~~~~~~ 
0.0 0.2 o.t; 0.6 0.8 1.0 

)( 

Fig. 6 	The data are as in Fig. 4, the solid and dashed curves correspond to our calculation for Q2 !::! 14 - 200 
and 2 - 10 GeV2 respectively, where Q2 varies with x. according to the relevant experimental setup. 
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It is clear from Eqs. (3.5,3.6) that the pion contribution is important only for small XSo 

Moreover, the experimentally relevant lower bound on the produced mass W 2 of _ 2 Ge y2 

limits its contribution to high values of the incident lepton momentum, i.e., rather above 

the original SLAC energy region. In Fig. 6 the result of the calculation is reported which, 

it should be noted, from the foregoing has absolutely no free parameters. For moderate 

values of Xs (where F2 is rapidly decreasing) one sees the expected suppression due to 

the shift in the effective Xs to larger values. The suppression is eventually more than 

compensated for by the Fermi..motion effect. For Xs - 0.1 the extra contribution coming 

from the pion content leads to an enhancement, provided Q2 is sufficiently high. 

p 

Fig. 7 The single-diffractive mechanism for the small-:r:. shadowing region, the Regge exchange is dominated 
by the Pomeron, P. Definitions and relationships of the different variables are given in the text. 

The Regge picture of high-energy behaviour implies that one diagram for DIS in the 

small-xs region is that representing the SD process displayed in Fig. 7. Let us suppose 

this diagram to be indeed dominant here, then its diffractive nature implies the outgoing 

nucleon to be a proton of the same spin and approximately the same momentum as the 

initial proton. This kinematical contiguity of the nucleon is of no consequence in DIS off a 

free nucleon, but when the scattering occurs off a nucleon bound inside a heavy nucleus a 

large volume of final-state phase--space is unavailable, due to the Pauli exclusion principle. 

One is thus lead to a simple Pauli-blocking mechanism suppressing the cross-section as 

compared with the spectator-model predictions, which is as observed experimentally. The 
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size and A-dependence of such a suppression are strongly dependent on the dominance of 

this diagram and the quality of its diffractive nature. A rather accurate analysis carried out 

in ref. [13J does in fact show that the fundamental· SO mechanism by far dominates high­

energy hadron-hadron scattering in the relevant kinematical region. Using the parameters 

obtained from phenomenological fits [131 one estimates that the SO mechanism should 

account for ~ 75% of the cross-section. 

In order to calculate the diagram of Fig. 7 it is necessary to extend the triple-Regge 

formula to the case of a virtual photon of space-like momentum. Generalising the standard 

Regge SO cross-section formula [16] to a virtual photon of space-like momentum, q2 < 0, 

for the process shown in Fig. 7 one derives 

(3.7) 


where get), the Regge residue function, is parametrised as get) = go ebt (see ref. [13], in 

which b = 5.81 Ge V-2 was obtained) and here go is fixed from the single-nucleon scattering 

cross-section; the primes refer to the outgoing proton and P = p+q-p' is the momentum of 

the remaining outgoing system, Qp(t) is the Pomeron trajectory. To a good approximation 

one has 
1 [1 + x,(l - xs )]cos(Jt ~ and 
2 [1 - x,(l - xs)] 

where x, is the usual Feynman momentum fraction for the outgoing proton. 

This reveals two important features: for very small Xs the outgoing nucleon has (i) 

x, close to one and (ii) its transverse momentum kept small by the sharply falling t­

dependence of g(t). Thus one expects substantial suppression owing to the Pauli exclusion 

of the portion of outgoing momentum states lying below the Fermi surface, i.e., the region 

of integration in Eq. (3.7) is restricted to Ii'I ~ p,.. 

Owing to finite-size effects and to the reduced nucleon density coming from the 

model [2,3] there is a reduction in the Fermi momentum, more pronounced for lighter 

nuclei, from the infinite nuclear matter value of pC:> =264 MeV. According to the model 

the density of nucleons is reduced by a factor of 82%, see above, which in turn reduces p,. 

by 0.821/8, this reduction is discussed in detail in ref. [12]. The calculation yields, for the 

- 11 ­

(3.8) 



1.0 

-x 
tiC 

0.9 

I 
I 

0.8 

2 2 

I 
I 

I 
I 

I 

I 
I 

-7­ - - --­
I 

I 
I 

2 
x 

Fig. 8 	The data is as in Fig. 5, the upper, middle and lower solid curves correspond to p, = 198, 225 and 
240 Me V respectively. The dashed curve gives the limiting case of infinite volume and ignoring the 

nucleon density reduction referred to in the text, for which p, takes its Baitle value of 264 MeV. 

region X B :S 0.1, the results reported in Fig. 8, where they are compared with a collection 

of existing data. The solid curves in Fig. 8 refer to p,. =198, 225 and 240MeV; values 

appropriate for carbon, calcium and tin respectively, the dashed curve corresponds to 

the infinite nuclear matter value of 264 MeV. Thus shadowing is more conspicuous and 

persists to higher x B in heavier nuclei, as indeed observed experimentally. Note the results 

are independent of Q2 in this kinematical range, in accord with the recent, precise NMC 

data [17]. 

4. Quasi-Elastic Scattering and the Coulomb Sum Rule 

It is commonly held that an effective way to count the protons in a nucleus is to consider 

the longitudinal response function (RL ) in the quasi-elastic scattering (QES) of electrons 

off the nucleus. In a range of nuclear models one derives a sum rule (analogous to the 

Coulomb sum rule): 

(4.1) 
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Fig. 9 	C'(q) for 66Fe. The circle is the NE9 data [18], the squares are Saclay [19] and Bates [20] da.ta. The 

solid curve is our result and the dashed curve is a Fermi-gas calcula.tion. 

where w~ signifies integrating from w just above the elastic peak and Wmax is the maximum 

value for which R£ is non-zero. 

The sum rule is expected to measure an effective nucleon charge form factor; in 

contrast the experimental data [18-20], summarized in fig. 9, show a clear discrepancy 

between theory and experiment. 

From the discussion in section 2 on the nuclear model one may write, for the baryon 

wave-function in the nucleus: 

IB)nudeus = costJ IN) + sintJ 1i11r)· 	 (4.2) 

The peculiar wave-function (3) derived in our model shows that the number of protons 

counted in the Coulomb sum rule will be reduced from Z by precisely a factor cos2 tJ ~ 
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0.82 (2,3]. One might worry that the contribution of the remaining ~-1r content of the 

nuclear wave-function should also be considered. However, both the pion and Delta fields 

of the coherent ground-state are much further off the mass-shell (by about 200-300 Me V) 

and thus their ejection is kinematically forbidden in the experimental range of w. Moreover, 

since the ~-N transition is known to be purely magnetic, one expects this contribution to 

the Coulomb sum-rule to be suppressed. Including the correction factor of 0.82 and taking 

into account the kinematical effects of the mass shift our prediction for the uncorrected 

Coulomb sum rule, displayed in fig. 9, is seen to describe the data well. 

The Coulomb sum rule is defined by dividing out the nucleon charge form factor with 

a relativistic correction [21]: 

w 
C(q) = 1-- dw ~(q,w) 2' (4.4) 

w;' Z [G.( Q2)] 

the effective nucleon charge form factor has been taken to be 

- 2 ] 2 { [ 2 ] 2 [( 2)] 2 } [1 + Q214M;] (4.5)[G:e:(Q) = G~(Q) + (NIZ) G. Q x 1 + Q2/2M;, , 

where MN is the nucleon mass, Z and N are the numbers of protons and neutrons, respec­

tively. Taking into account smearing (due to Fermi motion) and the potential well of our 

coherent nuclear model we obtain for R£: 

3 i'P 2d /1 dcos8 , £( 12 2) (4.6)R£ = 3'" P P 2 2po fJ P - m ,
Pp 0 -1 

where p and p' are the intial and final nucleon momenta respectively and in Po we include 

the energy shift due to the coherent ground-state potential. For the proton form factor, 

G~, a dipole form is used while for the neutron, one has ~ = O. The use of other 

parametrisations has little effect on the Coulomb sum rule. We compare the experimental 

sum rule with our calculation, the results of a Fermi-gas model [22] and a random-phase 

approximation [23]: 


C(q) = 0.76 ± 0.23 (expt. q=1.14 GeVIc) 


=0.82 (our calculation) 
(4.7) 

= 1.10 (Fermi gas) 

= 1.16 (random phase). 
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Fig. 10 	The longitudinal response function for 06Fe for an effective three-momentum tranafer of q = 1.14 Ge V / c. 

The data are from the NE9 collaboration [18], the curves are: our calculation (solid), a Fermi-gas 
model [22] (dashed), a random-phase approximation [23] (chain-dashed) and a plane-wave Born 
approximation [24] (dotted). 

Using the nucleon mass shift and the Fermi momentum of our model [25,26], in the 

case of s6Fe PI" = 230 MeV , we obtain R£(w) plotted in fig. 10 together with data and 

previous calculations. One sees that the data are well represented by the results of our 

calculation, which we note has a X2 = 11.5 for 14 data points. 

5. Hypernuclei and the Hypernuclear Potential 

One of the most interesting results of kaon-nucleus physics has certainly been the discovery 

of hypernuclei [27,281. The extant phenomenology of the spectrum and properties of 

hypernuclei shows that lambda and sigma hyperons within a nucleus behave rather like 

the nucleons themselves, being arranged in typical shell-model levels associated with a 
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potential of approximately half the depth of the standard nuclear potential and which 

displays no significant spin-orbit splitting [29]. Note that whereas there exists a quark 

model explanation of the smallness of the spin-orbit interaction in lambda hypernuclei 

the picture fails in the case of the sigma [30]. Furthermore, the very existence of sigma 

hypernuclei, with widths of the order of a few MeV, is surprising since the commonly 

accepted model would predict fast conversion of E --+ A through interaction with the nuclear 

environment and hence widths of a few tens of MeV. These then seem to be the challenges 

posed by established phenomenology to nuclear model building. Thus in this the final part 

of this lecture I present a parameter-free calculation of the hypernuclear potential that 

successfully meets these challenges. 

According to our view it is a highly correlated physical system that a lambda or sigma 

hyperon encounters once produced in a kaon-nucleus interaction; the question then is: how 

do they interact with it? 

Applying second-order perturbation theory, fully justified a posteriori from the point 

of view of the results, the effective hyperon-nucleus interaction is 

Vefl' = -i /00 dt (YI T(Hr (t/2)Hr ( -t/2)) IY}OD, (5.1)
4my -00 

where Y is either lambda or sigma and the interaction Hamiltonian, HI, will be given 

explicitly later and the expectation value is evaluated over a coherence domain. 

We insert into eq. (5.1) a complete sum over intermediate states: 

Veff = -i L 1 (Y*I HI (x', -t/2) IY}, (5.2)(00 dt (YI Hr(x, t/2) IY*}-2
2my y. Jo my· 

where the intermediate states, y* of relevance to our calculation are the E*, the E and A 

themselves; the A(1405) and higher mass states give negligible contributions for reasons 

which will become clear later. A pictorial representation of eq. (5.2) is given in fig. 1t. 

The energy denominators coming from the t integral provide an effective cut-off on 

the intermediate state momentum of the order of several hundred Me V, much larger than 

the impulse corresponding to the size of a coherence domain (....., 44 MeV), thus the space 

integrals in the expectation value of eq. (5.2) are restricted to the region x = x'. The 

resulting expression for the effective potential for a hyperon inside the nuclear medium is 

Veft' = ~3 G;yy. w; (la,..(x)1 2 
[ 1 ( ) + 1 + ()]) , (5.3)
my. - my - w x my· - my W x CD 
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Fig. 11 	The hyperon-nucleus interaction via the SR pion condensate, to this should be added the contribution 
with the pion lines crossed. 

where a", is the pion field amplitude, w(x) - 90MeV is the renormalised pion frequency 

inside the SR nuclear medium and my. implicitly includes a possible imaginary part com­

ing from the finite width in the case of the Y·. The two different energy denominators 

correspond respectively to the diagram of fig. 11 and that with the pion lines crossed. The 

dimensionless coupling constant G;yy. is of order unity and is defined by analogy with 

refs. [2,3] as 

8_2 g-2q2 PG2 _ II nuel (5.4)
",yy. - 9 4m m • w: ' y y 

with q and Wq as in eq. (2.2), Pnuel is the density of normal nuclear matter and 9 is now 

fixed (analogously to 9 above) by the E· --4 A(E)w decay width. 

The reasons why the higher mass strange baryonic resonances (including the A(1405) 

give negligible contributions are twofold: i) suppression due to the energy denominator of 

eq. (5.3) and ii) the couplings (as deduced from the widths) are very small. Since the 

energy denominators for the case Y· = E have opposite signs, the resulting cancellation 

also renders this contribution negligible. Thus by far the dominant coupling is precisely 

AE*w for the lambda potential and EE*w for that of the sigma. 

In the previous problems we have systematically neglected any spatial dependence 

inside a CD, however, we have recently made progress in this direction [31] and have now 
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Fig. 12 	The radial dependence of the SR pion field, the solid curve represents the pion-field density, 

{a,,{r)/a,,{O)12 , and the dashed curve is ~(r); r is in units of RCD = 4.Sfm. 

obtained the radial dependence of Q,.. and w displayed in fig. 12. The relationship between 

~ the SR pion-field phase velocity and w is w = (1 - ~)Wq [2,3]. 

With this information (and G;'yy* - 1.2, Q;'(O) - 0.1 and w(O) - 90 MeV) we obtain 

the following results: 

(i) 	 the hypernuclear potential has the same shape as the nuclear potential with a depth 

of -30MeV for both the A and E (slightly shallower in the case of the E); 

(ii) 	 the width of the states (the imaginary part coming from the E* width) calculated from 

eq. (5.3) is - 8 Me V for E hypernuclei, while for A the system is below the threshold 

for E* decay and thus has a weak-interaction lifetime. 

(iii) 	 due the size of the CD we find that the spin-orbit coupling is suppressed by a factor 

- (Ry* / ReD)' (Ry* is the resonance wavelength). 

6. Conclusions and Comments 

We regard our explanation of the unexpected behaviour of the EMC effect and the lon­
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gitudinal response function in quasi-elastic scattering as significant confirmation of the 

correctness and potentialities of the picture of nuclear structure afforded by the coherent 

1r-N-tJ,. interaction introduced in refs. [2,3}. 

The undeniable success obtained in this simple, preliminary, calculation of the hy­

pernuclear interaction shows that the universality of shell-model levels for baryons inside 

a nucleus is profoundly linked to a collective dynamics of nucleons interacting with a co­

herent pion field inside the nuclear medium. Indeed it is the universality of the structure 

of such a coherent pion field that is able to guarantee the universality of the shell-model 

states. The large spin-orbit coupling our model predicts for nucleons in the nucleus [2,3], 

being an important feature of the collective nucleon 1rN tJ,. interaction, is not present in 

the hypernuclear potential for in this case there do not exist such collective effects at the 

hyperon level and our calculations bear this out. 

Looking toward the future then, our approach to the collective dynamics of the nu­

cleus clearly opens the way to simple and straightforward descriptions of many diverse 

nuclear phenomenon. The developments we foresee in the near future regard the spatial 

dependence of the SR solutions, which could in particular lead to an understanding of 

the instability and decay of large nuclei and, OIl the other hand, to a treatment (not yet 

possible) of smaller nuclei where finite size effects are likely to become important. It goes 

without saying that application of the model to all forms of nuclear scattering is expected 

to lead to a substantially clearer picture of such processes. 

- 19­



References 
[1] 	 G. Preparata, in Problem8 0/ Fundamental Modern PhY8ic8, eds. R. Cherubini, P. Dal­

piaz and B. Minetti (World Scientific, 1990), p. 303. 
[2] 	 G. Preparata, Nuovo Cim. AI03 (1990) 1213. 
[3] 	 G. Preparata, in Common Problem8 and Ideas 0/ Modern Physic8, eds. T. Bressani, 

B. Minetti and A. Zenoni (World Sci., 1992) p. 3. 
[4] F .E. Close, An Introduction to Quarks and PartonB (Academic Press, 1979). 
[5} T. Sloan, G. Smadja and R. Voss, PhY8. Rep. 162 (1988) 45. 
[6] 	 EMC collab., J.J. Aubert et al., Phys. Lett. B123 (1983) 275. 
[7] 	 EMC collab., M. Arneodo et al., Nud. Phys. B333 (1990) 1. 
[8] 	 SLAC E-139, R.G. Arnold et al., PhY8. Rev. Lett. 52 (1984) 727. 
[9] BCDMS collab., A.C. Benvenuti et al., PhY8. Lett. B189 (1987) 483. 

[10} S.J. Brodsky, F.E. Close and J.F. Gunion, PhY8. Rev. D6 (1972) 177. 
{II} 	 J. Qiu, Nud. PhY8. B291 (1987) 746. 
[12] 	 P.G. Ratcliffe, in Common Problem8 and Ideas 0/ Modern Physics, eds. T. Bressani, 

B. Minetti and A. Zenoni (World Sci., 1992) p. 71. 
{13} 	 L. Angelini, L. Nitti, M. Pellicoro and G. Preparata, PhY8. Rev. D41 (1990) 2081. 
[14] 	 D. W. Duke and J.F. Owens, PhY8. Rev. D30 (1984) 49. 
[15] 	 J.F. Owens, PhY8. Rev. D30 (1984) 943. 
[16] 	 P.D.B. Collins and A.D. Martin, Hadron Interactions (Adam Hilger, 1984), p. 81. 
[17] 	 NMC collab., P. Amaudruz et al., CERN preprint PPE/91-52 (1991). 
[18] J.P. Chen et al., Phys. Rev. Lett. 66 (1991) 1283. 
[19] Z.E. Meziani et al., PhY8. Rev. Lett. 52 (1984) 2130; PhY8. Rev. Lett. 54 (1985) 

1233. 
[20] R.M. Altemus et al., PhY8. Rev. Lett. 54 (1980) 965. 
[21] 	 T. de Forest, Jr., Nud. Phys. A414 {1984} 347. 
[22] 	 J.W. Van Orden, Ph.D. thesis, Stanford University, 1978. 
[23] 	 X. Ji, PhY8. Lett. B219 (1989) 143. 
[24] 	 D.B. Day, in Proceeding8 0/ the Workshop on Momentum Di8tributions, ed. R.N. Silver 

and P.E. Sokol (Plenum, New York, 1989). 
[25] 	 G. Preparata and P.G. Ratcliffe, A Novel Approach to Nuclear Shadowing, Milano 

preprint MITH 91/13. 
[26] 	 G. Preparata and P.G. Ratcliffe, PhY8. Lett. B276 (1992) 219. 
[27] 	 R. Bertini, Europhys. News 22 {1991} 115. 
[28] 	 T. Bressani, in Common Problems and Ideas 0/ Modern Physic8, eds. T. Bressani, 

B. Minetti and A. Zenoni (World Sci., 1992) p. 211. 
[29] 	 W. Bruckner et al., PhY8. Lett. B79 {1978} 157. 
[30] 	 H.J. Pirner, Phys. Lett. B85 (1979) 190. 
[31] 	 G. Preparata and P.G. Ratcliffe, work in progress. 

- 20­


